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Optical diametric drive acceleration through
action–reaction symmetry breaking
Martin Wimmer1,2, Alois Regensburger1, Christoph Bersch1, Mohammad-Ali Miri3, Sascha Batz1,
Georgy Onishchukov1,4, Demetrios N. Christodoulides3 and Ulf Peschel1*
Newton’s third law of motion is one of the pillars of classical
physics. This fundamental principle states that the forces two
bodies exert on each other are equal and opposite. Had the
resulting accelerations been oriented in the same direction,
this would have instead led to a counterintuitive phenomenon,
that of diametric drive1. In such a hypothetical arrangement,
two interacting particles constantly accelerate each other in
the same direction through a violation of the action–reaction
symmetry. Although in classical mechanics any realization of
this process requires one of the two particles to have a negative
mass and hence is strictly forbidden, it could nevertheless
be feasible in periodic structures where the effective mass
can also attain a negative sign2–7. Here we report the first
experimental observation of such diametric drive acceleration
for pulses propagating in a nonlinear optical mesh lattice8–14.
The demonstrated reversal of action–reaction symmetry could
enable altogether new possibilities for frequency conversion
and pulse-steering applications.

Newton’s third law states that action–reaction forces involved
in an elemental two-body interaction must be equal and opposite:
F1 = −F2. Combined with the second law of motion, this leads
to m1a1 = −m2a2, where m1,2 represent the masses of these two
particles and a1,2 their respective accelerations. Given that mass is
by nature a positive quantity, two classical bodies are expected to
accelerate either towards or away from each other, but never in
the same direction (Fig. 1a). However, this situation completely
changes if hypothetically one of the masses is negative. In fact,
in this regime, an intriguing scenario arises whenever m1 =−m2;
under these conditions, two interacting bodies will indefinitely
accelerate in the same direction while keeping a constant distance
among themselves (Fig. 1a). Interestingly, this possibility was first
speculated within the context of diametric drive that could itself
provide a possible mechanism for space propulsion1. Of course,
given that in classical mechanics the mass of a particle is always
positive, no such acceleration behaviour that breaks the action–
reaction symmetry has ever been reported.

Waves on the other hand are free of such limitations. In the case
of a free quantum particle governed by the Schrödinger equation,
the resulting parabolic dispersion relation between energy and
momentum has a positive curvature defined by the particle’s mass.
Meanwhile, quasiparticles such as electrons and holes in solid-state
crystals, mass–spring systems5 or collective excitations such as
Bose–Einstein condensates in lattices6,7 may exhibit a dispersion
relation with regions of inverted curvature where the effective mass
is negative. Similarly, in photonic guiding structures, the effective
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Figure 1 | Diametric drive interaction between two particles, fibre-optic
set-up and mesh lattice dispersion (effective mass) diagram. a, Two
bodies of positive masses accelerate towards each other in the presence of
attractive forces. In contrast, two particles with equal and opposite in sign
masses tend to self-accelerate when subject to the same force (schematic
illustration). b, Set-up of two time-multiplexed fibre loops with length
difference1L, connected through a 50/50 coupler. Sequences of light
pulses circulating in both loops obey the same dynamics as in a spatial
mesh lattice8,10. The nonlinearity in the fibres introduces a nonlinear phase
shift on each pulse that is proportional to its peak power. c, Dispersion
diagram associated with two oppositely curved bands. The upper (lower)
band has a positive (negative) curvature and therefore exhibits a positive
(negative) effective photon mass that is inverse to the curvature. The Kerr
nonlinearity tends to focus excitations in the upper band whereas the
corresponding effects in the lower band are of the defocusing type. Q, wave
number; θ , propagation constant. See Supplementary Methods for details.

photon mass can be positive or negative depending on the sign of
the associated group velocity dispersion3,4. In addition, photonic
lattices such as waveguide arrays15,16 or mesh lattices8–12 provide
a versatile environment to experimentally investigate this class
of phenomena, as broad light excitations of these structures are
effectively governed by their respective mass that can be either
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Figure 2 | Linear scattering experiments with positive- and negative-mass optical beams interacting with potential hills and valleys, established through
external phase modulation. a, In the case of a flat potential (ϕ(n)=0), the left beam with a positive mass and the right beam (with negative mass) behave
in a very similar fashion. The slight asymmetry is caused by a minor degree of nonlinearity present in the experiment. b, The positive-mass beam is pulled
towards the valley, where the negative-mass beam is reflected. c, The left beam with meff >0 is repelled by a hill, whereas the right beam with meff <0 is
now attracted. d, When a potential valley precedes a hill, both beams are reflected, but at different positions. See Supplementary Fig. S7 for details and a
comparison of these results with the trajectory of a classical particle.

positive or negative (Fig. 1c). The second component needed for
realizing a diametric drive is an effective interaction between
the two entities involved. Although in general such forces can
emerge from a number of physical processes, in optics, this can be
achieved only through nonlinear effects. For example in waveguide
structures, optical wave packets can interact through third-order
Kerr nonlinearity—in direct analogy to point-like scattering in
Bose–Einstein condensates6,7,17. In this setting, an effective force
is established between two partially overlapping light beams2,18,19.
Therefore, nonlinear optical periodic configurations can serve as an
ideal platform to observe diametric drive acceleration and to study
action–reaction symmetry breaking effects.

Here we experimentally demonstrate such optical self-
accelerating bound states in a temporal mesh lattice. A composite
beam or a wave packet is formed by a sequence of circulating
optical pulses11,12 propagating in two fibre loops connected by a
50/50 coupler10 (Fig. 1b and Supplementary Methods). A length
difference1L between the two loops essentially creates an effective
grid of positions or time slots n that are coupled to their nearest
neighbours at every propagation step or loop round-trip s. A light
pulse propagating in the short loop takes a shortcut and thus
advances by a fixed time amount, moving its time slot to the left
from n+1 to n. In contrast, a pulse circulating in the long loop is
delayed from n−1 to n. After each round trip s, pulse sequences in
both loops are linearly interfered by thematrix

(1/
√
2)

(
1 i
i 1

)
of the central 50/50 coupler. In the linear optical regime of low
pulse powers, this results in the following system of coupled
evolution equations10:

short loop : us+1n =
1
√
2

(
usn+1+ iv

s
n+1

)
exp(iϕ(n))

long loop : v s+1n =
1
√
2

(
iusn−1+v

s
n−1

) (1)

Here, usn and v
s
n are the pulse amplitudes at the time slot or position

n and propagation step s circulating in the short and long loop,
respectively. The term ϕ(n) denotes the external phase shift being
imprinted onto the field during each round trip by a phase mod-
ulator in the short loop. Similar to cases where a refractive index

distribution is present, this phase accumulates during evolution and
affects the interference between neighbouring pulses. Hence, ϕ(n)
can be regarded as a position-dependent effective potential.

The required interaction between optical pulses is provided by
the Kerr nonlinearity of the optical fibres themselves. The pulse
powers needed to induce these nonlinear effects are sustained
by employing erbium-doped fibre amplifiers that compensate
for round-trip losses.

In our set-up, the resulting nonlinear pulse dynamics are
described by14:

short loop : us+1n =
1
√
2

(
usn+1exp

(
iχ

∣∣usn+1∣∣2)
+ iv sn+1exp

(
iχ
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exp(iϕ(n))

long loop : v s+1n =
1
√
2

(
iusn−1exp

(
iχ

∣∣usn−1∣∣2)
+ v sn−1exp

(
iχ

∣∣v sn−1∣∣2))
(2)

where the coefficient χ represents the accumulated nonlinearity in
each loop (Supplementary Methods).

As previously indicated, the arrangement used here is in
every respect equivalent to a periodic mesh lattice and as such
it exhibits a band structure8,10. The corresponding dispersion
relation is obtained by using discrete Floquet–Bloch modes
(usn,v

s
n)∼ e−iθ s/2eiQn/2, in the linear equation (1) (Supplementary

Methods). The resulting band structure relates the propagation
eigenvalue θ to the BlochmomentumQ by cosθ = (1/2)(cosQ−1).
Our system exhibits two symmetric bands with opposite curvatures
or group-velocity dispersion—in contact at a zero-dispersion point
located at the edge of the Brillouin zone (Fig. 1c). Photons excited
in the lower band have a negative effective mass, whereas for those
in the upper branch this same quantity is positive.

In our experiments, we use two broad pulse sequences having
a Gaussian envelope (Fig. 2a). The phase relation between the
two loops is appropriately set by external phase modulation
so that the left Gaussian wave packet or beam populates the
upper band, whereas the right one occupies the lower branch
(Supplementary Methods).

To demonstrate the analogy between our results andmechanical
objects with positive and negative mass, we first perform a linear
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Figure 3 | Experiments highlighting optical nonlinear effects on wave packets propagating in a time-domain mesh lattice with χ>0. a, When the upper
band is excited, nonlinear self-phase modulation counteracts dispersive spreading. As a result, a stable discrete soliton is formed. b, On the other hand, by
exciting the lower band with a Gaussian pulse sequence, nonlinear defocusing occurs. See Supplementary Figs S8 and S9.
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Figure 4 | Observation of optical diametric drive acceleration. A bound state involving a soliton in the focusing positive-mass band and a wave packet
from the lower band (meff <0) self-accelerates by reversing the action–reaction symmetry. a,b, Nonlinear pulse dynamics in the short loop (a) and
numerical evaluation of equation (2) when χ = 1.2 (b). The bound state accelerates until reaching the limiting velocity vmax. The hyperbolic trajectory of a
relativistic particle subject to constant acceleration assuming c= vmax is overlaid (white dashed lines) to demonstrate the conceptual analogy.
c,d, Measured and simulated total intensity profiles after m= 150 steps.

scattering experiment (χ ≈ 0) on a smooth potential hill or valley,
as imposed by the external phase modulation ϕ(n) (Fig. 2). In
the absence of any external potential (ϕ(n) = 0), the two wave
packets propagate at a constant velocity (at a constant slope) very
much like free quantum mechanical particles while at the same
time experiencing broadening because of dispersion (Fig. 2a). This
situation changes in the presence of a potential. From a mechanical
perspective, an object with a positive mass will be eventually
attracted and hence accelerated towards a valley with decreasing
potential (ϕ(n) decreasing). On the other hand, had the mass of

this particle been negative, it would have instead been repelled
by this same potential valley (Fig. 2b). The converse is true when
experiencing the effects of a potential hill where the phase ϕ(n) in-
creases. In this scenario, the positive mass entity is repelled whereas
that with negative mass is attracted (Fig. 2c). Optical experiments
confirming this behaviour in linear mesh lattices are shown in
Fig. 2b,c. In this arrangement, the optical wave packets undergo
different accelerations depending on the sign of the curvature of the
band they originate from. Figure 2d also depicts what happenswhen
a potential valley precedes a hill. In such a configuration a positive-
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mass wave is first attracted and then repelled, in contradistinction
with the case of a negative-mass beam. It is worth noting that
the acceleration effects presented in Fig. 2b,c are an outcome of
wave dynamics under the action of an external potential. Unlike
self-bending Airy beams20–26 that always accelerate in a unique
fashion, here the attraction/repulsion dynamics are dictated by the
sign of the effectivemass governed by the band curvature.

The dynamics of these two beams become even more intriguing
when they start interacting without an external potential (ϕ(n)=0)
through the nonlinear response of the fibre (χ > 0). In this regime,
a Gaussian excitation in the upper band experiences self-focusing
that in conjunction with dispersive effects leads to a stable localized
state. The measurement in Fig. 3a represents an experimental
demonstration of this new class of solitary waves—discrete-time
solitons in mesh lattices. In contrast, when the same Gaussian
excitation excites the lower band (where the effective mass is
negative), the nonlinearity reverses its action and induces strong
nonlinear defocusing effects (Fig. 3b).

In our set-up, optical diametric drive acceleration is realized
by allowing the self-trapped wave packet of Fig. 3a to nonlinearly
interact with the defocusing beam shown in Fig. 3b. While the
positive-mass soliton is attracted by the negative-mass beam, the
latter is constantly repelled. As a result, the positive-mass beam will
permanently pursue its negative-mass counterpart while the latter
one tries to escape. In this respect, a self-propelled bound state
forms, provided that both beams exhibit identical accelerations.
According to Newton’s third law, this requires that the masses of
these two constituents are equal but opposite in sign. Given that the
effective photon masses in both bands of a mesh lattice have the
same absolute value, the negative-mass beam should carry roughly
the same number of photons as its positive-mass counterpart to
achieve diametric drive acceleration.

To excite such a self-accelerating bound state, we launch two
optical Gaussian wave packets having opposite masses, in close
proximity to each other (Fig. 4a). A slight frequency detuning
between the two beams ensures that their interaction is incoherent
and restricted to pure cross-phase modulation. Still all fields
within the same band remain fully coherent with respect to each
other (Supplementary Methods). Our experimental results (Fig. 4)
show the formation of such a mass/anti-mass self-accelerating
state. In all cases, this combined entity accelerates towards the
direction of the negative-mass component. Even though the particle
perspective provides an insightful picture in terms of understanding
the working principles behind diametric drive, it cannot fully
account for the wave-like nature of the beams involved in our
experiment. In particular, all interacting waves remain surprisingly
well localized even after an appreciable propagation distance.
This could be expected for the positive-mass soliton component
(because of self-trapping) but is totally counterintuitive for the
negative-mass beam that is meant to undergo spreading as a result
of nonlinearity (Fig. 3b). What explains this odd behaviour is the
fact that any spreading in the direction of propagation becomes
eventually suppressed because of acceleration; the repelling action
of the solitonic part tends to block the negative-mass beam from
spreading further into the interaction region.

Note that in the double-loop configuration employed, all group
velocities are limited to a maximum value of vmax= 1/

√
2 positions

per roundtrip, a restriction arising from the maximum inclination
of the band structure8. During acceleration, the bound state
inevitably shifts its Fourier spectrum away from the centre towards
the edges of the Brillouin zone. Hence, during this process, the
local curvature of the band structure is continuously reduced,
leading to an increase in the effective mass of the interacting
pulses. Although the diametric drive mechanism is still at play, the
attained acceleration slows down. This is directly analogous to a
relativistic particle whose mass seems to increase during the course

of acceleration and therefore cannot exceed the velocity of light. The
hyperbolic trajectory of a constantly accelerated relativistic particle
viewed from an inertial reference frame27 coincides well with the
motion of our optical diametric drive (dashed white line overlaid to
Fig. 4a,b; see Supplementary Methods), thus proving the ongoing
action of the propulsion mechanism.

In conclusion, we have experimentally demonstrated diametric
drive acceleration in time-domain optical mesh lattices. This
was accomplished by involving two wave packets with equal
but opposite in sign effective masses. The underlying concept
presented here is quite general and can directly apply to many
other physical settings. Given that the effective mass is a generic
concept in physics, diametric drive effects can inspire new
approaches in controlling particle interactions in crystal lattices.
The demonstrated reversal of action–reaction symmetry in optics
could also enable new possibilities for frequency conversion and
pulse steering applications, as in figure-eight laser systems or during
supercontinuumgeneration in photonic crystal fibres18,19,26,28–30.
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