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The Magnetic Pole, A Useless Concept

F. W. WARBURTON, Department of Physics, University of Kentucky

The description of magnetism in terms of moving
electric charges rather than in terms of magnetic poles
reduces both the number of experimental laws upon
which the theory is based and the number of new quantities
defined. Certain sources of confusion are discussed and
an elementary description is developed which permits a
clearer visualization of the process of magnetization than

does the pole theory and which is, in certain respects, less
confusing. Emphasis is placed on the distinctions between
the electric fields, E and D, and the magnetic fields, B
and H, and their relative importance. The definitions are
chosen so as to give each of these four quantities simple
physical meaning.

HE magnetic pole, as ah entity, as a unit
of magnetism from which 47 “lines of force”
emanate, is showing signs of vanishing from the
theory of electricity and magnetism. No free
poles have ever been found. Swann! some years
ago classed the pole as obnoxious and unneces-
sary and Mason and Weaver? consider it non-
existent. The most accurate determinations of
magnetic quantities are now made in terms of
magnetic forces of currents.? In most textbooks,
however, the pole still clings tenaciously to a
place of fundamental importance. It appears as
the new and as the all-important quantity in
Coulomb’s law of attraction and repulsion of
poles, upon which the theory of magnetism is
based. When the magnetic field strength is
defined as the force on a pole, it is inevitable
that the student accept the pole as very funda-
L Swann, Bulletin of the National Research Council 4,
Part 6, No. 24, 12, Dec., 1922.
2 Mason and Weaver, The Eleciromagnetic Fieid, Uni-
versity of Chicago Press, 1929.
3In his address before the American Physical Society
at Chicago in June, 1933, Dr. H. L. Curtis stated that the

ampere is now determined most accurately by means of the
current balance.

mental and he can give up the pole later only
with considerable reluctance and confusion.
Developing a subject in historical order has
advantages but when such development fixes in
the mind of the student that the pole, which is
non-existent, is the fundamental quantity of
magnetism, the method loses its value. This
fiction is avoidable and it seems opportune that
an improvement of presentation should filter
down into intermediate and elementary teaching.

In this paper an endeavor is made to show
that an elementary description of magnetic
phenomena entirely in terms of currents com-
posed of moving electrons can be made more
simple and less confusing than the discussions
involving poles. Instead of three laws, (a)
Coulomb’s law for charges, (b) the corresponding
expression for magnetic poles and (¢) the inter-
action of poles and currents, we can have two
fundamental expressions: (@) Coulomb’s law
for charges and () the corresponding law for
the magnetic effect of moving charges, Eq. (8),
while the properties of magnetic substances can
be expressed in terms of current whirls. This
procedure treats magnetism with the introduc-
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tion of no new quantities. The Gaussian system
of units is used throughout.*

The first difficulty with the pole theory
appears in Coulomb’s law itself. As usually
expressed, the law, f=mm'/ur?, implies that the
poles are permanent quantities unchanged by
the introduction of magnetic material of per-
meability g and it states clearly that the force
of attraction between the ‘“‘north” end of a long
magnet and the nearby ‘‘south” end of another
long magnet is decreased upon the introduction
of soft iron (u>1) between them. This is con-
trary to fact and, rather than consider a revision
of the law, one usually employs devious explana-
tions in this, the most evident case of the effect
of the magnetic medium. Why resort to con-
sideration of the “induced’ poles in the soft iron,
when the permeability is introduced expressly
for the purpose of describing the behavior of
the medium?

The ‘“demagnetizing effect of the induced
poles’ is another source of difficulty. The student
learns to believe that by the use of the ‘“‘de-
magnetizing field”’ he has explained quite simply
the experimental fact that the so-called “mag-
netic induction” B, in a short piece of a given
specimen of soft iron in a given field H, is much
less than B in a long piece in the same field H.
Yet when he attempts to follow out his explana-
tion more in detail, his induced poles fade away
and- he is forced to consider the interaction
between the atoms. Indeed, when one expresses
the magnetic moment of the atom in terms of
Amperian currents and motions of electrons,
he has no language in which to describe the
imaginary stuff at the ends of the iron, and such
a demagnetizing field does not exist. All the
atoms in the iron may be divided into two
classes: those whose fields at the point in question
oppose the applied field H and those whose fields
have components in the direction of the applied
field. Letting A (Fig. 1) be the point at which
the field is desired, and letting C be an atom
whose field at 4 is normal to H, we can see that

4 Since, in electrostatics, the Gaussian system is identical
with the electrostatic system and, in the case of magnetic
quantities, identical with the electromagnetic system, it
can readily be used in elementary teaching. At the same
time it is equally as satisfactory in theoretical develop-
ments as the other rational system.
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Fic. 1. Atoms in regions 2 contribute a demagnetizing ficld
at 4 and those in regions 1, a self-magnetizing field.

the surfaces, of which CD and C’D’ are traces,
containing all the atoms C, divide the iron into
two parts. In regions 2 the atoms contribute a
demagnetizing field at A and in regions 1 the
atoms contribute a partial field in the direction
of H, the self-magnetizing field. One should not
consider the demagnetizing field (regions 2)
without at the same time considering the self-
magnetizing field (regions 1). If the iron be cut
in two at LM and the left end removed so that
A is near the end, we see that the field at 4 is
reduced, not because of a demagnetizing field
but because of a reduced region 1 supplying a
self-magnetizing field. In a short piece of a
paramagnetic material, in which there is no
appreciable interaction between the atoms, the
field B should be less than in the long piece,
simply because there are not so many atoms of
the material contributing to B. These two causes,
the fields of neighboring atoms together with the
effect of the number of atoms, are ample to
describe qualitatively the experimental facts in
iron. The foregoing demagnetizing and self-
magnetizing fields are effects of the applied field
H aswell as causes of B. B is always the combined
effect of the applied field H and the contribution
of the atomic orbital currents. It is customary
to designate a field H’ within the iron which is
the combined effect of the applied field H and
the usual “demagnetizing” field. This classical
“magnetic field within iron,” H', serves no useful
purpose. The numerical difference between B
and H is the contribution of the magnetic
material. The permeability y, introduced as the
factor describing the medium, should represent
the fractional increase of field upon addition of
the magnetic medium; hence H inside the iron
should be the applied field alone. This means
that the ratio B/H in the short piece of iron
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differs from that in the long piece and also
varies from point to point in iron which is non-
uniformly magnetized. For quantitative compu-
tations, rather than use tables of “‘demagnetiza-
tion factors’ for correction for H’, we should
use the corresponding tables for B.

The elimination of the “demagnetizing field
of the induced poles” is in harmony with the
useful approximate relation between flux, mag-
netomotive force and reluctance in the magnetic
circuit. Such a circuit is composed of compara-
tively short lengths of magnetic media of differ-
ent permeabilities, yet it has been customary
here not to introduce the “demagnetizing’’ fields
but rather to consider “ampere turns” as the
sole cause of magnetization, and to add the
correction in terms of flux leakage.

ELECTROSTATICS

The electric field, defined as the force on a charge,
E=f/q’, takes within a parallel plate condenser the form,

E=4wg, (1)

where ¢ is the surface density of charge on either plate.
When a dielectric material is introduced between the
plates of the condenser, the charge ¢ being maintained
on the plates, it is convenient to compare the (weaker)
field E in the dielectric medium with the field which was
there with the same charge ¢ in vacuum. The latter field
is the so-called “‘electric induction” D,

D=4nro. (1a)

Each electron of the medium experiences a force directed
toward the positive plate equal to EX4.77X10-10 dynes.
The resulting displacement of the electron depends on
this force and on the atomic restoring forces. The displaced
electron together with the equal positively charged atom
constitutes a dipole. The electric moment of the dipole
may be defined either as the product of the charge and
its displacement, or as the ratio of the maximum torque
on a rigid dipole to the field E,

es=Imax/E. )]

The electric moment of an atom is the sum of the products
of the charge on each electron and its displacement. The
sum of the electric moments of all the atoms divided by the
volume is a quantity which is a measure of the state of the
dielectric medium and is called the polarization P,

P=Zes/v. (3)

Polarization is a volume effect; it is a shift in position of
electrons throughout the material. In any cubic centimeter
within the material there are as many negative charges as
positive charges, while there is a surface charge of negative
electricity at the boundary of the dielectric medium near
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the positive plate and a positive charge at the negative
plate. In order to see that the surface density of this
charge is equal to P, we have only to observe that g¢,l,
the product of this charge and the distance ! between ¢,
and —¢gp, is equal to the total electric moment, Zes.
Solving for ¢, and dividing by the area, we see that the
surface density of the induced charge is ¢,/4 =Zes/Al
=3Zes/v=P, the polarization. The net charge at the plates
is thus reduced from ¢ to ¢— gy, ¢ remaining constant, and
the net surface density of charge is ¢—P; hence the field
is reduced from

D =4zc (1a)
to
E=47r(c—P); 4)
thus
E=D—4xP, 5

The potential difference between the plates is given by

v=w/q = [Eds, (6)

and in vacuum Vo= S Dds.
With constant g,

o/loe=P)=q/(q—q) =D/E=Vy/V=C/Co=¢, (T)

where C and Cy are the capacitances of the condenser with
and without the dielectric. The dielectric constant e is an
indicator of the effect of the medium, It gives the field E
within the medium for any applied field D.

In many cases of practical importance the potential
difference between the plates of the condenser, rather than
the charge ¢, is kept constant or externally controlled,
when the dielectric medium is introduced. The charge on
the plates go then increases to ¢ until the field E is equal
to the original field E,. Hence

Eo=47r0'o,
E=Ey=4x(c—P),

and therefore ¢=0¢+P, while D=4n¢ and E=D—4xP
as before. Thus

o/00=4/q0=D/E=C/Co=c. (7a)

Since, in practice, electric fields are usually set up between
charges on metallic conductors the potentials of which are
externally controlled, it is V and E which are of physical
importance. Were the charge ¢ externally controlled, D
and ¥, would assume greater importance. In both cases
D is the field due to the ‘“‘free”” charge ¢, whereas E is the
field due to the combined effect of ¢ and the induced
charge ¢p.

MAGNETOSTATICS

Magnetism is an effect of moving charges.
Two currents ¢ and ¢' exhibit an attraction when
flowing in the same direction and a repulsion
when flowing in the opposite direction. These
magnetic forces are proportional to the magni-
tudes of the currents ¢ and 7/ and to their
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lengths s and s’ and vary inversely as the square
of the distance between them; that is

F=kist's' /2P, (8)

provided s and s’ are short compared to r and
s" is a part of a closed circuit. The constant %
is dimensioniess, a function of the angles between
7 and 7/, < and r, ¢’ and 7. Eq. (8) is the funda-
mental “law” of magnetism. The justification
for designating this expression as fundamental
is that on it can be built the theory necessary
for describing all phenomena of magnetostatics.
If 7 is to be expressed in the (electrostatic) units
used in Egs. (1) to (7), ¢ must have the dimension
of a speed. Experimentally ¢ is found to equal
within the limits of error, the speed of light,®
¢=2.99796 X10' cm-sec.™™.

Since 4s and 's’ are directed quantities it is
found convenient to use vector notation and to
define the magnetic field as the region around
one closed circuit made up of current elements
#'s’, in which another current element 4s experi-
ences a force. The field strength H, in gauss, is
equal in magnitude to the force in dynes acting
on ¢ electrostatic units of current (1 cgsm) 1 cm
in length and its direction is given by the well-
known right-hand rule. That is,

H=f/(is/c), 9)

when ¢ is perpendicular both to f and to H.
The force on a wire carrying current making an
angle a with the field H is, in view of Eq. (9),
given by

f=H(i/c)s sin a. (9a)

The force on a single charge moving with speed
v perpendicular to a magnetic field is f=Hgv/c.

By combining Eq. (9a) with Eq. (8), the
remaining part of k becomes sin 6, where 8 is
the angle between ¢’ and 7, and

H=3('s"/cr?) sin 6, (10)

where the direction of H is given by the proper
right-hand rule. This holds only when s’ is part
of a closed circuit. The field H due to an extended

5If we arbitrarily set ¢=1 cm-sec.™, then when s=g’
=1 c¢m, =10 cm and f=1/100 dyne approximately, ¢ and
#/ have the magnitude of the electromagnetic unit of
current and the dimension of the electrostatic unit. If we
set ¢=1 without dimension, then 7 and 2’ are measured in
electromagnetic units.
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wire carrying current is found by adding up
the fields due to the short lengths of current s’
in Eq. (10). In the notation of the calculus,

H= f (3'ds’ /cr?) sin 0, (10a)

the integral sign indicating a vector addition.
At the center of a long solenoid, H is uniform
and

H=4xni'/cl, (11)

where [ is the length of the solenoid.

The torque on a coil of z turns carrying a
current ¢ in a uniform magnetic field H is found
by application of Eq. (9a) to be L=(nid/c)H
sin ¢, where ¢ is the angle between the axis of
the coil and H, and A is the area of the coil.
The ratio of the maximum torque Ly.x to the
field H is called the magnetic moment M (see
Eq. (2) for electric moment),

M=niA]c=Luax/H. (12)

If the orbits of the electrons in an atom lie
predominately in any plane, the atom has a
magnetic moment normal to that plane and
behaves like a coil. The sum of the magnetic
moments of all the atoms divided by the volume
is a measure of the state of magnetization and
is called the intensity of magnetization I,

I=ZM/v. (13)

If a bar of iron is placed in a solenoid the effect
of the field H is to rotate, perhaps indirectly,
the orbits of the electrons in the atoms of the
iron so that the orbits become lined up in planes
perpendicular to H. The electrons are moving
around in the atoms in the same direction as the
electrons in the copper wire of the solenoid,
counterclockwise as one looks along H, and
contribute an additional field which can be shown
to be equal to 471. As in electrostatics, polariza-
tion can be described in terms of the induced
charge appearing at the surfaces, the charges
balancing out within the material; likewise,
magnetization can be described in terms of
current whirls 4,, flowing around the surface of
the iron, the currents within the iron balancing
out. Let us assume, for the sake of setting up
the picture, that the electron orbits are rectangu-
lar and that they touch one another (Fig. 2).
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F16. 2. The orbital currents of the atoms ¢, furnish a current
im around the surface of the iron.

We see that within the material the orbital
currents cancel out, the sum of the areas 4,
of the orbits being equal to 4, the cross section
of the iron, and the current ¢, around the
periphery of one layer of atoms being equal to
1., the current around each atom. The orbital
currents are not, of course, rectangular and the
orbits may not touch or may overlap but, in
any case, the current at the surface of the iron
a is of such magnitude that its magnetic moment
ninA/c is equal to the sum of the magnetic
moments of all the atoms Zi.4./c. Thus 1,
=(Zi./n)(ZA./A) and the current whirl per
unit length of the iron’ ni,/lc, is equal to the
intensity of magnetization I, ni,/lc=ni. A /Alc
=M/v=1I. The net current around the solenoid
and iron is increased from 7' to 7 -+im, 7' re-
maining constant; hence the field is increased
from

H=4xmni/cl (11), (11a)
to
B=4mn(i +in)/cl; (149
thus
B=H-+4xl. (15)

B, the so-called ‘“‘magnetic induction,” is the
force per unit length on a current 4, in the
presence both of the current ¢/ in the solenoid
and of the current 7,, around the magnetized iron.

If we were to make the definitions of magnetic fields
strictly parallel to those of electric fields we should have
to define B, not H, in Eq. (9) as equal to the force on a

6 The same development applies to spinning electrons.

current 4, and replace H by B in subsequent equations
excepting Eq. (11a) and Eq. (15). However, to the engineer,
H is the field due to conduction currents whether in
vacuum or near iron and it is well to define it so. Also, H
is of more importance than D because it is H, a function
of 4/, rather than B, a function of 7’44, which is externally
controlled, whereas in electrostatics it is psually E, a
function of V and ¢—g;, rather than D, a function of ¢,
which is externally controlled.

The so-called magnetomotive force, defined as MMF
= [ Hs, is formally similar to the potential difference or
e.m.f, defined in Eq. (6) but more similar to Vy= SD.ds.
It is useful in describing conditions in a magnetic circuit.
S Bsds would correspond more to fE.ds but is not so
useful, There is no necessity for imagining a tunnel cat
lengthwise through the iron in order to evaluate the line
integral S Hds, for H is simply the partial field due to
currents 7' alone. The average value of the force on an
electron due to its motion should be B, the same whether
the average is taken along a line along B or across a
section perpendicular to B. Taking the line integral just
inside the iron and back just outside, S B.ds— S Hds
=4xiyfc. The line integral f H,.ds within the iron is equal
to that just outside the iron and equal to that with the
iron removed, the current 4’ remaining constant.

The ratio
(' +in) /1" =B/H=p

indicates the fractional increase of the field upon
introduction of the medium and is called the
permeability.

Inside iron within a solenoid, H is the mag-
netizing field due to the solenoid alone. In the
short cylinder of iron, the intensity of magneti-
zation I and its contribution to the field vary
from point to point. Near the ends this contribu-
tion is one-sided, hence I has its maximum value
at the center. Both the average and maximum
values of B and [ are less in the short cylinder
of iron than in the long one. As a general expres-
sion we may write in place of Eq. (15),

(16)

B=IH+al, 17)

where@ =47 only in the ideal case of an infinitely
long, uniformly magnetized bar. Just as in
electrostatics the electrons move over until the
elastic return force just balances the (reduced)
field E, so the orbits line up until the opposing
torques, due to local fields and thermal agitation,
just balance the torque due to the (increased) B.
For a given value of B at a point, there is a
definite value of I and a definite ratio I/B, no
matter whether B is obtained with a very strong
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applied field H and a medium of limited size or
with a weaker applied H and a larger medium.
This ratio may be found from the ideal case of a
uniformly magnetized bar (approximated in the
endless toroid ring). By solving Eq. (15) for I
and combining with Eq. (16) and Eq. (17), we
find

I=(u—1)B/(4wu)
=[(u—1)/@rp—a)(u—1)]H. (18)

For a uniformly magnetized sphere, the partial field af
is found, by integrating the surface density of im over
the surface, to be 871/3, whence for a sphere, a=87/3, and

I=[3(u—1)/(u+2) J(H/47);

and for u>>1,
B=H-+4x1/3=3H.

There is thus no necessity for postulating a ‘“‘demagnetiz-
ing” field.

Just outside the end of the short iron cylinder,
B determines the force per unit length on
current 7 (or the force on a moving charge g)
due both to solenoid and iron and is equal to
the field B just inside the iron but not equal to
the average value of B throughout the iron.

In permanent magnets the electron orbits are
at least partially lined up in planes perpendicular
to the direction of magnetization and 4, is
permanent. The field inside the ideal magnet is
47nin/cl, whereas the field outside is found from
im in the same way that the field outside a
slender solenoid is computed; that is, on the
axis of a magnet

H=(2nin.A/c)(d/(d2—12/4)?)

=2Md/(@*—1/4)%. (19)

The actual permanent magnet is, of course, most
strongly magnetized (elementary magnets in
best alignment) at its center and I, the length of
the equivalent uniformly magnetized magnet,
corresponds to the usual ‘“‘distance between the
poles.”

To Professor Webster, whose article follows
this one, the author wishes to express sincere
appreciation for his extraordinary courtesy in
reading this manuscript and writing his paper
in such a way as to avoid duplication. With
Professor Webster’s conclusion that it is more
logical to define B rather than H as the force on
a current, the author agrees. The author has,
however, endeavored to strip the classical mag-
netic field (H') of its fictitious character, allowing
the H of this paper to retain as much of the
usual meaning as is compatible with Amperian
currents. This H has a twofold use: first, it is a
very definite part of the total field B, the part
most easily computed, that due to conduction
currents; second, it is the cause of magnetization
in the sense that it is the force (per unit current)
which is externally applied. For simplicity, a
single sample of iron has been considered. If in
any problem it can be ascertained that the fields
due to conduction and Amperian currents in
other pieces of matter be unaffected by the local
magnetization, then these fields may be included
in H; otherwise they must be included in the
contribution of magnetized matter.

The electric fields £ and D and the magnetic
fields, B and H, as introduced in this paper, may
be shown to lead directly to Maxwell’'s wave
equations (containing only E and H) in a
development which further emphasizes the dis-
tinctions between these four fields. Lack of
space forbids including this derivation.



