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Geometric absorption of electromagnetic angular momentum
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Abstract

Circularly polarized electromagnetic fields carry both energy and angular momentum. We investigate the conditions

under which a circularly polarized wave field transfers angular momentum to a perfectly conducting macroscopic

object, using exact electromagnetic wave theory in a steady-state calculation. We find that axisymmetric perfect con-

ductors cannot absorb or radiate angular momentum when illuminated. However, any asymmetry allows absorption. A

rigorous, steady-state solution of the boundary value problem for the reflection from a perfectly conducting infinite

wedge shows that waves convey angular momentum at the edges of asymmetries. Conductors can also radiate angular

momentum, so their geometric absorption coefficient for angular momentum can be negative. Such absorption or

radiation depends solely on the specific geometry of the conductor. The geometric absorption coefficient can be as high

as 0.8, and the coefficient for radiation can be )0.4, larger than typical material absorption coefficients. We apply the

results to recent experiments which spun roof-shaped aluminum sheets with polarized microwave beams. Applications

of geometric, instead of material, absorption can be quite varied. Though experiments testing these ideas will be simpler

at microwavelengths, the ideas work for optical ones as well.

� 2003 Elsevier B.V. All rights reserved.
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A polarized classical electromagnetic wave

carries angular momentum as the sum of many
photon spins. Much work has been devoted to the

flow of energy in classical electrodynamic systems,
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but how classical wave angular momentum inter-

acts with macroscopic bodies seems largely unex-
plored [1–4]. Recently, new interest in handling of

small objects electromagnetically has stimulated

ideas for using polarized optical beams [5–7] and

other uses further afield [8].

Boundary effects can enter into angular mo-

mentum coupling, but there seems no study of how

the geometry of the target object affects this. Par-

ticularly, we shall find that a perfect conductor can
ed.
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still absorb angular momentum geometrically

from a circularly polarized beam, with no material

absorption whatever. We calculate model prob-

lems to determine how angular momentum is

conveyed to solid bodies classically and compare

with recent experiments that measured such effects
for the first time.

A plane wave encountering an obstruction

necessarily deforms in passing by it (see Fig. 1).

The wave of electric field strength ~EE can acquire a

component Ek parallel to the wave vector ~kk de-

pending on the specific obstacle shape. Acquiring a

parallel component Ek results in a perpendicular

component of the energy flow S? that conveys
angular momentum to the obstacle.

If the wavelength k exceeds the obstacle size d,
the electric field created parallel to ~kk is roughly of

magnitude [1]

Ek �
k
d
E: ð1Þ

Seen quantum mechanically, wave angular

momentum L acts to produce a torque through an

effective arm of a wavelength, so each photon

conveys a quantum �h to the object,
Fig. 1. A plane wave passing an obstacle of extension d acquires
L ¼ N�h ð2Þ
with N the photon number. The wave energy
is E ¼ Nhm, so the ratio of L=E imparted by a wave

is L=E � 1=m. Therefore, longer wavelengths

are more efficient in producing spin. The ratio of

angular to linear momentum P ¼ h=k is

L=P � k2=d ð3Þ
since d is also the transverse scale of the beam.

This scaling with k=d shows why lasers cannot

usefully spin objects, since for them this ratio is
�1, but microwaves can.

The total angular momentum of a wave field is

defined by [2]

~LL � 1

c2

Z
~rr �~SS d3x ð4Þ

with ~SS ¼ c
8pRð~EE � ~HH �Þ the Poynting vector. This

can be broken into independent spin and orbital

terms, but the distinction between the two parts is

somewhat unhandy since neither the orbital an-

gular momentum nor the spin are gauge invariant.
Only the total angular momentum (4) is gauge

invariant and can therefore be assigned to a

physical quantity. Here we only consider the total
field components Ek and Hk parallel to the wave vector ~kk.



Fig. 2. Incoming plane waves ~EEi and ~HH i are reflected by an

infinitely extended, perfectly conducting wedge, which gains an

angular momentum Lx.
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angular momentum ~LL and its transfer to macro-

scopic objects.

First, we state a theorem: a perfectly conducting

body of revolution with a piecewise smooth sur-

face around the axis of symmetry (for instance a
cone, a disk, a cylinder, or a sphere) absorbs no

angular momentum ~LL from an axisymmetric elec-

tromagnetic wave field.

Our discussion is physical, not mathematical.

The effect occurs because the magnetic field lies in

the surface of the obstacle. The same holds true

for the surface current density ~jj which of course

cannot have a component perpendicular to an
infinitely thin surface. As a second boundary

condition, the electric field has no tangential

component on the surface of a perfect conductor.

Therefore the electromagnetic force density
~FF ¼ qs

~EE þ ð1=cÞ~jj� ~HH with surface charge density

qs is normal to the surface. Since the obstacle is a

body of revolution this implies that ~FF has no azi-

muthal component, so the torque ~TT ¼~rr �~FF at any
point of the surface can therefore have no com-

ponent along the z-axis which would make the

obstacle spin around the axis of symmetry. Other

components of the torque cancel out on opposite

sides of the surface since the value of the force F is

independent of the angle h for an axisymmetric

wave field. This does not hold if we shift the object

away from the wave axis of symmetry.
Now consider the parts of the surface Fe which

do not have tangential planes like edges, rims, or

kinks. The surface current density still lies inside

the surface, but there is no surface normal any-

more, so the former boundary condition for the

magnetic field is not true. But all symmetric edges,

rims or kinks are one-dimensional circles around

the axis of symmetry. Therefore, the current den-
sity only has an azimuthal component jh while the
tangential component of the electric field Eh van-

ishes. Again, the force ~FF does not have an azi-

muthal component that would give rise to a torque

around the z-axis. Other components of the torque

cancel out on opposite sides of the object because

of the symmetry of the problem. Field or geo-

metric asymmetries destroy this theorem.
What can be said about more complex surfaces?

Consider the scattering problem for the �wedge� in
Fig. 2 whose rigorous solution [3,4] may be applied
to recent experiments with aluminum �roofs� spun
by microwave beams.

Take an infinitely extended, perfectly conduct-

ing wedge of opening angle b with its edge along

the z-axis and its two faces each enclosing an angle

b=2 against the x-axis (Fig. 2). An infinitely ex-
tended plane wave ~EEi, ~HH i with angular frequency

x, incident along the x-axis, reflects from the faces

of the wedge as the scattered wave field ~EEs, ~HH s.

A circularly polarized incoming wave field

which is infinitely extended and homogeneous does

not carry angular momentum, since the Poynting

flux is parallel to the wave vector. However, the

reflected wave field does have a finite angular
momentum Lx. To conserve angular momentum,

the wedge geometrically absorbs the negative

angular momentum Lx of the reflected wave field.

Using Carslaw�s solutions [4] we calculate di-

rectly the coupling coefficient observed in experi-

ments. When microwaves reflect from a �roof�,
angular momentum constantly transfers from the

wave field to the object. The roof undergoes a
constant torque s ¼ dL=dt � Lx=Dt where Lx is the

total angular momentum contained in the volume

between the faces of the wedge out to a radius R,
taken from the edge of the wedge. We assume that

the angular momentum Lx is built up in the

�crossing time� Dt ¼ 2R=c in which the microwaves



Fig. 3. The geometric absorption coefficient a� vs. opening

angle b and �roof size� v0.
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cross the interior of the roof and are scattered

back. This is a simple approximation, replacing the

tedious work of finding and evaluating a retarded,

time-dependent solution of the Helmholtz equa-

tion. It implies a steady state compatible with

causality.
The equation of motion for the roof is

s ¼ I
dx
dt

¼ a�

2pm
P ; ð5Þ

where I is the inertia of the roof, x its angular

frequency, m the microwave frequency, and P the

power of the microwave field radiated onto the

roof.

In analogy to the material absorption case, we

define a geometric absorption coefficient a�. For an
absorbing material, we have to replace a� in (5) by
a function aTða; a�; dÞ of the material and the

geometric absorption as well as the skin depth d of

the microwaves. The described experiment deals

with aluminum, so we can neglect any material

absorption.

For the incoming plane wave the constant

power is given in terms of the Poynting flux S,

P ¼ SA ¼ c
8p

E2
0A; ð6Þ

where A ¼ 2R sinðb=2Þd is the cross-section of the

roof.

By using the �crossing-time� approximation for

the torque we find the geometric absorption coef-
ficient,

a� v0ð Þ ¼ 2p

sin b
2

bLxLx v0ð Þ 1
v20

; ð7Þ

where v0 ¼ jR indicates the size R of the wedge

along its faces in terms of the wave number

j ¼ 2p=k.
Fig. 3 shows a� vs. b and the normalized �roof

size� v0. The geometric absorption coefficient takes

its maximum value of approximately 0:75 at

R � k=2 and b � p=2. For larger R or smaller k the
coupling falls very fast. Notice that a� also as-

sumes negative values down to �)0.4 and there-

fore physically differs very much from a material

absorption which is restricted to values between 0

and 1. This surprising result means that a perfectly

conducting roof can radiate angular momentum at

small opening angles.
The figure reveals a structure of wave interfer-

ence, with maxima and minima � k=2 apart for

b > p=3. This is not a strict periodicity, due to the
widening of the wedge for larger radii. For

b < p=3, interference produces parallel valleys,

saddles, and shoulders. At b ¼ p=n with n an odd

integer, a� ¼ 0 and the wedge reverses wave po-

larization. A spatial plot shows that the angular

momentum is mostly concentrated at the faces of

the wedge while it is close to zero in the middle

region. The transfer of angular momentum to the
wedge clearly is a boundary effect!

Fig. 4 shows the geometric absorption coeffi-

cient a� as a function of the opening angle b for the

�quasi-radius� v0 � 3:8 used in the experiments.

Two data points [9] are also shown taken for roofs

with opening angles of approximately 25� and 90�.
At the enclosed angle of 90� the measured a� is

about half the theoretical prediction. At 25�, there
is rough agreement. This confirms the qualitative



Fig. 4. Geometric absorption coefficient a� vs. opening angle b
at v0 ¼ jR ¼ 3:8; data points shown for experiments with alu-

minum roofs.
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features of our idealized model for the wedge.

Considering that we took an infinite shape along z,
equivalent to a very broad �roof �, and in experi-

ment this was 2.5 cm, comparable to the wave-

length, one cannot expect quantitative agreement.

As well, the exact solution holds for infinite radius,

and again this was only a few wavelengths in

experiment. We hope to soon consider less ideal
solutions.

The central qualitative conclusion of J. Benford

et al. was that, within experimental error, intact

disks and cones did not rotate. This conforms with

our theorem. Carbon disks and cones did spin

readily, since they had an absorption coefficient

a � 0:1 for the frequency used (7.17 Ghz).

Electromagnetic waves not only carry energy
but transport angular momentum as well if they

are circularly polarized and finite. While the in-

tensity of a wave is a large issue in many inter-

ference problems, the angular momentum remains

mainly unexplored.

There are 11 exact solutions for an electro-

magnetic wave reflecting and diffracting around

obstacles, since there are 11 coordinate systems in
which the wave equation is separable. Of these,
most are figures of revolution and by our theorem

will not absorb angular momentum – spheres,

disks, oblate spheroids, etc. Of the others, the

shapes of a wire, a narrow strip, a wedge, square,

circular cylinder, elliptical cylinder, and half-plane

allow for a calculation of the coupling coefficients
for the angular momentum.

The angular momentum density of a wave field

physically differs very much from its energy den-

sity. Both are subject to constructive or destructive

interference when a wave is diffracted or reflected

by a finite obstacle. But while energy can only be

absorbed or reflected, angular momentum can also

be radiated. In fact, an object can act as a polarizer
when irradiated by an electromagnetic wave, just

by reflection, if it has a specific geometry. We have

to distinguish between an inherent material ab-

sorption coefficient aP 0 and a geometric ab-

sorption coefficient a� determined by the shape of

the object. Generally, a� may be negative, and the

object will rotate in the opposite sense than if it

were an absorber. Uses of geometric absorption
can be many. Small objects in, for example, bio-

logical media can be shaped to either respond to

an electromagnetic momentum-carrying wave (i.e.,

be asymmetric) or not. We shall soon present

further theory and experiment showing the basic

physics.
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