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Rep. Prog. Phys., Vol. 44, 1981. Printed in Great Britain 

Mach's principle and space-time structure 

D J Raine 
Department of Astronomy, University of Leicester, Leicester LEI 7RH, UI< 

Abstract 

Mach's principle, that inertial forces should be generated by the motion of a body 
relative to the bulk of matter in the universe, is shown to be related to the structure 
imposed on space-time by dynamical theories. General relativity theory and Mach's 
principle are both shown to be well supported by observations. Since Mach's principle 
is not contained in general relativity this leads to a discussion of attempts to derive 
Machian theories. The most promising of these appears to be a selection rule for SOIU- 
tions of the general relativistic field equations, in which the space-time metric structure 
is generated by the matter content of the universe only in a well-defined way. 

This review was received in April 1981. 
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1. Introduction 
{The} investigator must feel the need of.  . . knowledge of the immediate connections, say, of the masses 
of the universe. There will hover before him as an ideal an insight into the principles of the whole matter, 
from which accelerated and inertial motions result in the same way. 
This rarely quoted passage from Mach (1883) is a clear, if distant, presentiment of a 
general theory of relativity. Mach‘s sought-after equivalence of accelerated and inertial 
motion can be related to Einstein’s use of the principle of covariance in the development 
of general relativity. According to this, physical laws are required to take the same form 
in all systems of coordinates and, by implication, for all observers. Equally, Mach’s 
insight touches on Einstein’s other cornerstone of general relativity, the principle of 
equivalence. This, in one of its many forms, states that inertial forces generated by 
‘absolute’ acceleration cannot be distinguished from gravitational forces in an ‘inertial’ 
frame of reference. We shall discuss this more fully in §2, where we shall find it follows 
that inertial forces can be considered as an aspect of gravity, and therefore dependent on 
the masses in the universe. Indeed, that inertial forces should be generated entirely by 
motion relative to matter has become the commonest abbreviation of this group of 
ideas that Einstein referred to as Mach’s principle, and one that we too shall adopt. 

Einstein’s general theory is not only a theory of gravity, but also an invitation to 
consider dynamics from a geometrical point of view. For Newtonian dynamics such an 
approach was initiated by Cartan (1923, 1924) and continued more recently in the work of 
Trautman (1964, 1966). A complete understanding of the geometry of dynamical theories, 
and in particular of the relation of the equivalence principle to the geometry of space- 
time, has been achieved only relatively recently (Penrose 1968, Ehlers 1973, Misner et a1 
1973). I t  is in this context that Mach’s principle finds its clearest expression. This is 
taken up in §2, which will serve as an introduction to the geometrisation of dynamics 
in general, and general relativity in particular. I shall illustrate the place of Mach’s 
ideas in the geometry of three representative dynamical theories, those associated with 
Aristotle, Newton and Einstein. We shall see that Mach’s principle can be taken to 
imply that certain geometrical structures must be determined by the distribution of matter 
and energy throughout space-time. In this way Mach’s principle appears as an aspect 
of dynamical theories in general and not merely tied to general relativity. 

How then does general relativity theory fare in this regard? The first attempt to 
demonstrate the explicit inertial effect of distant matter was made by Einstein himself 
(Einstein 1955). This attempt to show the change in mass of a body brought about by 
the presence of other bodies in the general theory failed because it turned out to be no 
more than an effect of the arbitrary choice of coordinates (Brans 1962). In general 
relativity, inertial mass is an intrinsic local and invariant property of bodies, a point to 
which we shall return ($5). Lens and Thirring (1918) reinterpreted the problem in terms 
of the induction of Coriolis and centrifugal forces and this aspect of Mach has developed 
a long and continuing history (for reviews see Heller (1975) and Raine and Heller (1981)). 
The answer to Mach’s question as to how Newton’s bucket ‘experiment would turn out 
if the sides of the vessel increased in thickness and mass till they were ultimately several 
leagues thick’ (Mach 1883, p284) was answered by Brill and Cohen (1966) in the case that 
the rotating system becomes the whole universe. The result is the complete dragging of 
inertial frames by the rotating matter in accordance with Mach’s principle (Orwig 1978). 
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Einstein remarked that distant matter should not just influence inertia, but should 
completely determine it. In a simple, non-relativistic, vector model of gravity Sciama 
(1953, 1969) showed how a l/r acceleration-dependent inertial induction force coupling 
to matter with the same strength as the l/r2 Newtonian force could provide the inertial 
forces required for Mach’s symmetry between accelerated and non-accelerated motion. 
In a sense this leads to the integral formulation of general relativity in $6. Nevertheless, 
it is now well-known that general relativity does not in general encompass Mach‘s 
principle because it admits universes in which the principle does not hold (Ostvath and 
Schiicking 1962). This can be seen clearly not only in explicit examples but in the 
structure of general relativity itself. 

To examine this problem, in $3 we consider general relativity in its converse role as 
the dynamics of geometry. We shall find that Einstein’s field equations provide a Mamil- 
tonian system for the evolution of the metric on space-like hypersurfaces in space-time. 
The existence of free degrees of freedom for the field, the specification of which is inde- 
pendent of the distribution of non-gravitational energy, can be interpreted as the origin 
of the failure of Mach’s principle in general relativity, since an aspect of the geometry 
becomes unconstrained by matter. An alternative view is that this elucidation of the 
plan of relativity provides us with a way of specifying the distribution of gravitational 
energy, which too is to be allowed to contribute to inertial forces (Wheeler 1964a). 
Isenberg (1974) in particular has suggested that space-times which arise from suitably 
posed initial conditions should be called Machian. This is taken up in $5. 

Section 4 is devoted to the observational status of Mach’s principle. This involves 
firstly the status of general relativity, for which I give a brief review of recent reviews. 
The main point here is the considerable strengthening of the observational basis for 
general relativity, which increasingly points to a role for Mach’s principle as, at best, a 
selection rule within that theory. Such a role was again first proposed by Einstein with 
the suggestion that requiring space to be closed would eliminate the unconstrained element 
in the geometry and thereby implement Mach’s principle (5s). Secondly, Mach’s principle, 
embracing as it does the whole universe, is confronted by cosmological evidence. Thus 
I consider in $4 the extent to which the observed universe can be seen to satisfy Mach’s 
principle. 

Attempts to express Mach’s principle other than through general relativity are 
considered in $5.  Any successful alternative must violate one or more of the assumptions 
leading to general relativity, while remaining compatible with the observations. It is 
clear from the preceding discussions that these represent severe constraints. Several 
attempts have been made to generate inertial masses, rather than inertial forces, by 
interaction with the universe, and in such cases inertial mass clearly ceases to be a local 
invariant property. A favourite red-herring in this context is the arbitrariness of the 
choice of fundamental units. In the most viable of these theories (the Brans-Dicke theory 
or theories closely related to this) it is a strong version of the equivalence principle that is 
violated. But there is increasing observational evidence against this theory, and it is not 
in any case at all clear that it is any more successful than general relativity in incorporating 
Mach’s principle. Perhaps the least compelling aspect of general relativity is the field 
equations. It is not, after all, necessary that these should agree formally with the 
Newtonian limit; only an agreement with observation is mandatory (for all but the most 
extreme Machians). Thus alternative generalisations of Newtonian theory may be 
possible. Finally the most ambitious recent attempt at a reformulation is that of Barbour 
(1974) who seeks to construct a dynamics using the space-time structure appropriate 
to a purely relative concept of motion. 
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In 56 I return to the implementation of Mach’s principle as a selection rule on 
solutions of the field equations of general relativity through the integral equation approach 
pioneered by Al’tschuler (1967) and Lynden-Bell(1967). An integral formulation of the 
field equations provides a separation of the gravitational potential (and hence inertial 
forces) into a part due to material sources and a part due to arbitrary boundary condi- 
tions. Mach’s principle can then be imposed as a selection rule in the sense that in 
physically acceptable space-times satisfying Einstein’s equations the contribution from 
the boundary terms must vanish when the contributions from all the material sources are 
included. In principle this provides a well-defined meaning to the condition that inertial 
forces should be generated entirely by motion relative to matter, but there are technical 
difficulties associated with this approach which are reviewed. I then outline some new 
work in which I attempt to re-express the field equations in an integral form that admits 
only Machian solutions. 

It should be clear that this review is intended to set the ancient and venerable 
principle of Mach in the context of recent developments in gravity theories. I aim, in 
particular, to make these developments accessible to interested readers with the minimum 
of technicalities. In the final section (57) I discuss what one might call the psychological 
power of Einstein’s presentation of Mach’s ideas and the reasons for the continuing 
interest in them. Appendix 5 contains a summary of notation and conventions. 

2. The geometry of dynamics 

Dynamical theory is concerned with a comparison between the motion of bodies subject 
to forces and force-free motions. To begin dynamics then, it is necessary to specify the 
force-free motions of particles, and this is the task of a ‘first law’. How such motions 
should relate to the matter content of the universe we might call the Mach problem. 

It turns out that a first law of dynamics is a statement about the geometrical structure 
of space-time. The geometry of space-time, in turn, is investigated by observation of the 
motion of bodies and the behaviour of clocks in much the same way that one thinks of 
the geometry of space as related to the results of measurements with rigid rods. In this 
way the Mach problem becomes a question of the origin, or determination, of an aspect 
of geometry. 

To illustrate these ideas in a sufficiently broad context I start with an account of what 
is essentially Aristotle’s theory of dynamics, and go on to consider the Newtonian and 
relativistic theories. It will be seen that the last can be introduced in a fairly straight- 
forward way given a suitable formulation of the Newtonian picture. A fuller interpreta- 
tion of the evolution of ideas concerning dynamics and space-time geometry is given in 
Raine and Heller (1981). 

2.1. Aristotelian dynamics 

The first law of Aristotelian dynamics is: 

A body subject to no forces retains its state of absolute rest. 

That this is observed to be wrong is beside the point. We shall see that it leads to a 
coherent dynamics of relevance to the subsequent discussion. More immediately it leads 
to a structure for the Aristotelian space-time manifold d. One can think of this manifold 
heuristically as the set of space-time events (a>, with a concept of smoothness in passing 
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from one event to another but without, as yet, any quantitative measure of distances 
between points of d. (For a more extensive discussion see, for example, Raine and 
Heller (1981) or Davies (1977); for mathematical details see, for example, Hicks (1965), 
Kobayashi and Nomizu (1963) or any book on differential geometry.) As to the geometry 
of d imposed by the dynamics we see that bodies at rest define ‘the same place at different 
times’ and hence an absolute meaning for location. This provides a projection vc of 
any event in d to a three-dimensional manifold, C, of spatial locations (figure 1). 

Further, we may assume that clocks associated with bodies at rest run ai the same 
rate, so we can give a meaning to ‘the same time at different places’. This provides an 
absolute simultaneity which associates a time ~ = T T  (a) E T  to any event a ~ d .  Thus 
Aristotelian space-time is i? product manifold, = C x T, of Euclidean space and time. 
Equivalently, the first law asserts the existence of a global privileged vector field on d, 
which provides a foliation of the space-time into a continuous sequence of three- 
dimensional hypersurfaces orthogonal to the vector field. 

Aristotle’s second law, interpreted in modern terms?, gives the velocities, U, induced 
by ‘forces’,f, acting on a body of mass m as 

f = nzv 

Figure 1. The projections, xg ,  X T  of Aristotelian space-time, d, into space, 2, and time T. 

and is, of course, consistent with the space-time structure just described, since f is zero 
if and only if 0 is zero. The velocities in the law are absolute velocities, measured by 
observers at absolute rest. To an observer with velocity U the law becomes 

f+mu=mu’ (2.2) 
where v = U‘ - U. We see that what, by analogy with Newtonian theory, we should call 
inertial ‘forces’, mu, have to be introduced to balance the equation. 

What causes these inertial ‘forces’? According to Mach, since we can observe motion 
only of matter relative to matter, they must arise from motion with respect to the rest of 
the universe. However, in Aristotle’s theory, the immediate cause of the inertial ‘forces’ 
is motion relative to the privileged vector field in space-time. The two views can be 
reconciled only if the foliation of space-time is itself generated by matter. How then 
is the privileged field to be identified by observation? In principle, we are supposed to 
be able to determine which bodies are subject to no ‘forces’, thus to distinguish between 

t There is a large medieval literature on the correct formulation of this law resulting essentially from 
confusion due to the intercession of static friction (and the fact that the law is not true anyway). This is 
not relevant to us. 
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on the one hand the case v ’ = O  because f=O and u=O, and on the other v’=O because 
f= - mu # 0. This presents problems because certain natural ‘forces’ are defined for 
Aristotle in terms of the motion they produce. In practice, the Earth is taken to provide an 
independent absolute standard of rest. This does not, however, provide a causal relation 
between the Earthly standard of rest and the induction of inertial forces, since the 
dynamical laws do not require the existence of the Earth in order to operate. 

Nevertheless, the relation between the location of the Earth and the geometry of d 
is not entirely arbitrary. The question as to why the Earth should be situated at the 
centre of the universe leads to what one might regard as the Aristotelian substitute for a 
theory of gravity. According to this, there is a distinction between natural motions (due 
to natural ‘forces’) and unnatural, forced motions. Natural motions are of two kinds: 
the regular circularity of the heavens beyond the lunar sphere, and the purely radial 
motions beneath. We can describe this by adding vector fields to d to represent the 
natural velocity of a particle at any point. Bodies couple to these fields with appropriate 
strengths (so airy bodies have negative masses and rise, Earthly bodies fall). This results 
in the agglomeration of Earthly material at the centre of the universe and for a suitable 
choice of vector fields explains the location of the Earth. But the Earth merely responds 
to the geometry; it does not generate it. Therefore Aristotelian dynamics does not 
satisfy Mach‘s principle. 

2.2. Newtonian dynamics 

According to Newton’s first law bodies subject to no forces are not necessarily at  rest. 
This suggests that the Aristotelian space-time structure is not appropriate to Newtonian 
theory. In particular, it follows from the first law that a whole class of observers in 
uniform relative motion, the inertial observers, are privileged observers with respect to the 
dynamical laws, and that only this class as a whole should be picked out in the space- 
time structure. It follows that there can be no absolute location and hence no absolute 
space in Newtonian theory. On the other hand, there is still an absolute time and absolute 
acceleration. The latter is correctly demonstrated by Newton’s bucket, in which the 
curvature of the fluid surface is a measure of the absolute acceleration, despite a long 
literature of criticism. The objection of Mach and Berkeley, that one should look to the 
effect of the stars, is not relevant, since we are dealing here with a local theory for which 
there need be no stars. Note that the existence of absolute space does not follow from 
absolute acceleration, a circumstance which is responsible for much of the confusion in 
the discussion of Newtonian absolutes. On the other hand, absolute acceleration does 
imply an absolute time, since the vanishing of the acceleration, dzxldt 2 = 0, is a condition 
which is invariant under only a trivial rescaling of time, t+at+b, a and b constants. 

What then is the geometrical structure of Newtonian space-time? To see this, note 
that the vanishing of acceleration connects space-time zrelocities at different events, so 
we can refer to ‘the same velocity at different points’ (in contrast to an absolute zero of 
velocity which connects space-time points). We might therefore seek to describe the 
geometry in terms of a vector field on a space of velocities. But this is not quite the 
whole story, since zero acceleration implies zero rotation of the local frame of reference, 
as well as zero linear acceleration. So we want to describe Newtonian geometry in terms 
of a connection between moving frames. 

This can be thought of in terms of privileged vector fields, as in the Aristotelian theory, 
if we imagine these fields on a space, the points of which are each reference frames at 
a point of space-time (figure 2). 
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Figure 2. The affine connection on the frame bundle P(M)  of Newtonian space-time, M .  The fibre, 
is a 4(4- 1) = 12-dimensional space if M has four dimensions. A curve, n-l(n), over n 

N N  in P ( N )  projects into a curve, nn’, and a parallel propagated frame in N .  

The appropriate space is the frame bundleP(M) to the Newtonian space-time manifold 
N .  Each point N of P ( M )  consists of a point n€M and a frame of reference, a set of 
four independent (unit) vectors, at n (figure 2). Since four unit vectors are specified by 
16-4=12 numbers, each point in P ( N )  is specified by 4$12=16 coordinates. There 
is an obvious projection 7i from P ( M )  into .K at each point, T :N-+n, and the subspace 
n-l(n) is called a fibre of P ( M ) .  P ( M )  can be shown to be a differential manifold, so we 
can consider tangent vector fields on P ( M ) .  The zero-acceleration tangent vector fields 
on P ( M )  connect non-rotating frames in uniform relative motion and, in particular, 
inertial frames at  different points. There are four such independent zero-acceleration 
vectors at each point. One connects non-rotating frames along the space-time worldline 
in Jlr of an inertial observer. The remaining three can be taken to connect parallel frames 
for different observers at  the same absolute time (or, equivalently, frames on inertial 
trajectories in the limit of infinite velocity). In  the space sections of absolute simultaneity 
of N this concept of parallel frames must agree with the standard parallelism of vectors 
in Euclidean geometry. By extending our concept of geometry to measurements in 
space-time, we obtain an extension of the idea of parallelism to space-time frames of 
reference. 

One can think of the privileged (inertial) observers in Newtonian theory, those having 
zero absolute acceleration, as moving along curves in P ( M )  to which a privileged vector 
field is tangent. This geometrical picture can also be described in terms of the com- 
ponents of an afine connection on M .  Vectors UP, UP+ SUP at adjacent points XP,  xP+ Sxp, 
on the projection of such a curve in N will be parallel if they have the same components 
in the reference frame of a privileged observer at the two points. The most general 
form for SUP depends linearly on U P  and SXP,  so 

6 U P  = - IlPh”Uh 6.X” 

where the negative sign is conventional. The rPAv are referred to as the components of 
an affine connection. A vector undergoes parallel transport therefore if 

a U P / a x u  + r P n Y u h  = o (2.3) 

since this is the condition that its components are constant with respect to a parallel- 
transported frame. 

In particular, inertial frames are specified by zero acceleration, and hence must satisfy 
the condition that the frame velocity vector, dxpldt, remains parallel to itself along its 
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trajectory. From equation (2.3) with ufi = dxfi/dt, this condition is 

dzxr __ + F A  dxr dX” - 0 
dtz f iv  dt- dt- 

in an arbitrary coordinate system. Inertial coordiizates are defined by the requirement 
that inertial trajectories take the form 

dZXpldt2 = 0 

and hence by the requirement r=O. That the coordinates can be adapted to the space- 
time structure in this way is useful for calculation, but is also a source of confusion, 
since it tends to hide the geometric structure behind the choice of coordinates. 

In non-inertial frames the I’ represent inertial forces. As an example, consider a 
coordinate system ( t ,  [, 7, 5) which has uniform acceleration g relative to an inertial 
system (t, x, y, z), so 

We obtain the only non-zero I?, 

and the equation of an inertial trajectory for a particle of mass n? : 

[ = x ++gt2. 

roo%= -g 

m d2[/dt = mg. (2.4) 

The resemblance of this to a particle moving under gravity will be of significance presently. 
To summarise then, the space-time of Newtonian dynamics, Jzr, has a projection 

n~ on to absolute time, T, with associated spaces of absolute simultaneity {nT-l(t)  I t E T }  
having Euclidean metric. The frame bundle P ( N )  has privileged vector fields which 
describe an affiiie connection and the associated concept of parallel vectors. The con- 
nection relating vectors at non-simultaneous points arises from dynamics and is unrelated 
to the space metric. For simultaneous events the usual parallelism provided by the 
metric and by the connection are required to be the same. For a useful brief review of 
the geometry of Jlr see Kuchgr (1981). 

We have still to discuss how the specification of l? is to be related to physical coordin- 
ate systems. The situation is similar to that in Aristotelian dynamics. The appropriate 
choice cannot be made locally unless one has a way of identifying bodies subject to no 
forces, and we shall see shortly that as a consequence of the principle of equivalence 
this is not possible. The theory is usually made to work by the extraneous introduction 
of the fixed stars, analogous to Aristotle’s fixed Earth. For Mach, of course, this step 
was not extraneous, since he insisted that one should not ask for more than the relation 
of appearances in the presence of the universe as it is. We tend to be more demanding, 
since only the theory itself can tell us how the universe is. 

Consider now what happens if we introduce gravity. Relative to the fixed stars we 
see apples fall with uniform acceleration. Newton would have us ascribe this to the force 
of gravity exerted by the Earth. But to confirm this by local experiment, we would have 
to turn off the action of gravity and compare the inertial motion that would then arise. 
Unfortunately, this is not possible; according to the Galilean principle of equivalence, 
all bodies fall with equal acceleration under gravity independent of conposition. In the 
absence of a supererogatory reference to the fixed stars, it follows from equation (2.4) 
that we could equally attribute the apparent action of gravity to non-inertial behaviour 
in a uniformly accelerated frame of reference. 

The distinction between gravitational and inertial forces in Newtonian theory is 
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therefore ambiguous and depends on the frame of reference. To obtain a dynamical 
theory in the presence of gravitating matter we reverse the preceding argument. 
From the principle of equivalence we deduce that to a freely falling observer, i.e. one 
subject to no non-gravitational forces, bodies behave locally according to standard 
Newtonian dynamics. For this is simply a reversal of the transformation leading to 
equation (2.4). By the local behaviour of bodies we imply that in a mathematical 
development we should consider an infinitesimal neighbourhood (or take the appropriate 
limit); from a physical point of view we may consider a neighbourhood sufficiently small 
that departures from uniformity are not detectable to some pre-assigned accuracy. In 
the presence of gravity, then, it is the freely falling frames of reference that play the role 
of locally unaccelerated frames as far as the local dynamical laws are concerned. I t  is 
therefore these frames that must be connected by privileged vector fields on the frame 
bundle. 

Four distinguished vector fields on the frame bundle again lead to the existence of 
40 components of the affine connection, P A p v ,  as before. The velocity vector tangent to a 
free-fall trajectory in JV must be parallel to itself at events along the trajectory, since 
the path connects frames which are locally unaccelerated. This gives 

dxp dxv d2xA 
ds2 ds ds 

-0 -+ rAll,,  ~ -- ( 2 . 5 )  

as the equation of free falls. Here s is a parameter along the path and we can take xO= t 
as usual. Of course, the existence of an absolute time leads to a simplification if we take 
s = t, and then we must have POpv = 0. However, the existence of a system of coordinates 
in which all the components of I? vanish would imply the complete absence of gravitational 
effects. The presence of gravitating matter causes the convergence and divergence of 
free falls (‘tidal forces’), as a result of the non-uniformity of the gravitational acceleration, 
and these can be detected on a sufficiently large (non-local) scale. Now therefore there 
can be no global system of coordinates in JV in which the components of I’ vanish. In 
this case the affine connection is said to be non-integrable. 

‘In the absence of gravity we saw that we can use the free falls, which are inertial 
motions in this case, to define a Cartesian system of coordinates in space-time. The 
tangent vector fields to the coordinate lines form a global system of parallel vectors, 
hence a unique association of frames in P(M)-the parallel frames at different points 
of M .  One can view this as providing a continuous map N+P(Jtr) by n+(n, e,(n)>, 
where the {e,(n)> are parallel to some fiducial frame {e,(O)} at an arbitrary origin O E M .  
A continuous map JV+P(Jlr) is called a section of P(Jlr). In the presence of gravity the 
deviation of free falls leads to a dependence of the parallel transport of a vector on the 
path along which it is transported, hence to no unique (path-independent) way of defining 
the sane  frame at different points of M .  The presence of gravitating matter is revealed 
therefore through the absence of distinguished global sections of P ( J f ) .  

To connect up with the usual description of Newtonian gravity we note that there 
must exist a coordinate system-Galilean coordinates-in which equation (2.5) takes 
the form 

.--??Lo d2xi 
dt2 ax6 

where rp is the gravitational potential (Misner et al 1973). Thus, in Galilean coordinates, 

rioo = a?/axZ 
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and the remaining components vanish. Again, this coordinate system is usually identified 
with that naturally associated with the fixed stars. We see that the appropriate compo- 
nents of the affine connection are related to the matter distribution through Poisson’s 
equation, Vzg, = 477Gp. 

In the absence of gravity the connection appears as an absolute geometrical element. 
Introducing gravity we obtain a relation between the connection and the distribution of 
matter. The position of Mach’s principle in the dynamical theory can therefore now be 
readily clarified. According to Mach, the connection should be determined completely 
by the distribution of matter. 

Since Poisson’s equation admits source-free solutions, the inertial behaviour of bodies 
is not in this theory automatically determined by matter. The question arises as to 
whether a different theory, for example a replacement for Poisson’s equation, might be 
constructed to admit solutions only for universes in which Mach’s principle is satisfied. 
We shall not take up the question in this context. General relativity does indeed provide 
an alternative to Poisson’s equation more appropriate to the discussion of cosmology 
and is considered next. 

2.3. General relativity 

In the space-time of special relativity, A, we no longer have the absolute time of JV, 
of course, but we gain instead a proper time, s, as the measure of time-like separation, 
and with it a space-time metric. This brings about a remarkable simplification, since in 
relativistic dynamics the affine connection required to describe the inertial trajectories 
turns out to be related to the space-time metric! Indeed, the Minkowski coordinates 
(@), p=O, 1,2, 3 are precisely those in which the metric coefficients take on the standard 
form, =diag (- 1, 1, 1, l), and the inertial paths of particles are straight lines, in 
the sense that along an inertial path (h(s) 

d2&‘/ds2= 0. (2 * 6) 

I t  is then easy to show, by transforming to new coordinates xh=xh(&), that equation 
(2.6) takes the form 

where the components of the connection, F A p v ,  are related to the transformed metric 
coefficients, 

The privileged vector fields on P(&) provide a natural global section of P(&) by the 
same argument as before but using Minkowski coordinates as the special global coordinate 
system. The affine connection is again an absolute geometrical element imposed on 
space-time by the first law of (relativistic) dynamics embodied in equation (2.6). The 
equivalence principle again provides a relation between inertial forces and gravity and 
leads to a geometric theory of gravitational forces. 

In the presence of gravitating matter, the Galilean equivalence principle of $2.2 
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translates here into the universality of free fall, also called the weak equivalence principle. 
According to this : 

uncharged test particles projected from a given point with a given 
velocity follow a worldline in space-time independent of their 
composition 

(see Thorne et a1 1973, Will 1974). If particle dynamics were the whole of relativistic 
physics an argument parallel to that of 92.2 would show that gravity must be described 
by a non-integrable connection. But the universality of free fall does not directly rule 
out the possibility that by non-dynamical experiments involving, say, radio waves or 
nuclear forces, a local distinction between gravity and acceleration might be established. 

The proposition that this is not the case is called the strong principle of equivalence. 
According to this : 

all the non-gravitational laws of physics take on their special 
relativistic form in a local freely falling frame. 

There is some direct experimental evidence for this strengthened version (54). However, 
there is manifestly a difficulty in that we do not yet know all the laws of physics. Never- 
theless, Schiff (1960) has conjectured that the existence of a fundamental interaction 
violating the strong principle would entail a macroscopic violation of the universality 
of free fall for a test body composed of particles subject to this interaction. A restricted 
version has been proved by Lightman and Lee (1973). 

From the strong principle of equivalence it can be shown that the motion of test 
bodies under gravity is described by a connection derived from the space-time metric. 
We suminarise this by saying that we have a metric theory of gravity. For the existence 
of a non-integrable connection follows, mutatis mutandis, as in Newtonian theory. The 
relation to the metric follows because at each point equation (2.6) must hold for free 
falls in local Minkowski coordinates. Therefore in general coordinates we obtain 
equation (2.7) provided equation (2.8) holds. This must be true everywhere since both 
the fiducial point and the coordinate system there are arbitrary. Indeed one readily sees 
that the laws of physics in a gravitational field are obtained from their Minkowski form 
by transforming to a general frame of reference from a local freely falling one in a 
neighbourhood of an arbitrary point. (For a more detailed review see Will (1974, 1979).) 

Strictly, the relation (2.8) holds only if we assume that the connection coefficients are 
symmetric, FApY = F A V p ,  An antisymmetric part of I?, the torsion of the connection, 
would not contribute in equation (2.7), but might couple to spin. Indeed in the Sciama- 
Kibble theory (Sciama 1962, Kibble 1961), originated by Cartan (1922, 1923) and 
revived and developed by Trautman and others (see Kuchowicz 1975), torsion of space- 
time is generated by a spin density of matter. No observations rule out this theory- 
essentially because there appear to be no accessible circumstances in which the effects of 
torsion are significant-but it provides a viable exception to the statement that the 
geometry of space-time must be described entirely by a metric. Thus, this statement is 
not what is meant by a metric theory. 

Summarising, then, we see that the strong principle of equivalence (incorporating 
special relativity) leads to a metric space -time with test particle motions described by a 
connection derived from the metric. Thus, if we accept the strong principle of equivalence, 
Mach’s principle requires that the metric be determined solely by the distribution of 
matter. How this is supposed to come about depends on one’s choice of metric theory. 
In most of the following I shall take this to be general relativity (see $4). Some other 
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theories will be considered in 5.5, All of those of which I am aware do not differ from 
general relativity in their failure to incorporate Mach’s principle. 

3. The dynamics of geometry 

In metric theories of gravity the geometry of space-time itself becomes subject to 
dynamical laws. In general relativity the dynamics is controlled by the energy-momentum 
density of matter, T,,, through the Einstein field equations 

R B v - + g , v R = K T p v  

and in other theories by other field equations with, perhaps, additional fields. Convenient 
as this form of the equations is for expressing the covariance under general coordinate 
transformations, in order to exhibit the dynamical structure a Hamiltonian formulation 
is more appropriate. According to this point of view, one looks at the geometry of three- 
dimensional space-like surfaces evolving in time. We shall assume throughout that the 
space-times with which we are dealing are globally hyperbolic (e.g. Hawking and Ellis 
1973). This is equivalent to assuming a global topology Z x R where 2 is a space-like 
hypersurface (Geroch 1970). (But it is not equivalent to an absolute time (!) since the 
product structure does not arise in any unique, physically significant, or natural way.) 

It was Einstein who first noted that a generally covariant field theory cannot lead to 
a unique determination of the field variables. For the field equations can only determine 
the metric coefficients up to a coordinate transformation. This means that the field 
equations cannot be independent; in fact, they satisfy the four contracted Bianchi 
identities, which in turn reflects the conservation of energy and momentum. It follows 
that the field equations must provide constraints on the field variables which represent 
the data on an initial hypersurface, since otherwise the ten equations would determine 
the time development of ten metric coeficients uniquely. The development of a 
Hamiltonian formulation of field theories with constraints in a Poisson bracket formalism 
is due to Dirac (1958). This was simplified and given an action principle form by 
Arnowitt et a1 (1962). We shall briefly review this now well-known analysis (see, for 
example, Isenberg and Nester 1980) to the point at which it becomes clear why general 
relativity does not satisfy Mach’s principle. 

3.1. Parametrised dynamics 

We begin with a simple analogy (Kuchgr 1973). A covariant form for the motion of a 
particle in a fixed curved space-time specified by coordinates q” is 

where the primes denote differentiation with respect to the parameter A. This action 
principle is invariant under changes in parametrisation. To put it into first order 
(Hamiltonian) form, we define 

pa = a qaqv. (3 f 2) 

To obtain the correct equations of motion for a particle of mass m we have to vary 
subject to the constraint 

2 =gpvp ppv+ m2 = 0. (3 ’ 3) 
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If we adjoin this to the variational principle by means of a Lagrange multiplier, N, we 
obtain 

8/{p,q'a-N%) dh=O (3 .4 )  

with free variations. The meaning of N is obtained by variation with respect to PO, 
using the definition of proper time, s. This yields 

so N ,  called the lapse function, gives the rate of lapse of proper time with respect to an 
arbitrary parameter. 2 is sometimes called the superHainiltonian and (3 .3 )  the super- 
Hamiltonian constraint. 

The theory is deparametrised by choosing the coordinate time t=xO in place of A ;  
we obtain 

GJ{piQ"-H} dt=O 

where i= 1, 2, 3,  a dot denotes differentiation with respect to t ,  and 

H= (gijp ip-f + rn2)Ij2 

is the standard Hamiltonian expressed in terms of the dynamical variables ( p i ,  42). The 
superHamiltonian constraint (3 .3 )  has the form -po2 + H 2  = 0,  equivalent to -PO + H= 0. 

3.2. Parametrisedfield theorj 

A variational principle for Einstein's equations is 

s ~ { R +  -cz,,,> 4-g d4X=0 (3 .6)  

where =Pm is the matter Lagrangian. This too is a parametrised theory, since the action 
is invariant under arbitrary transformation of the space-time coordinates. The lapse of 
proper time and distance with respect to the parameters, (xp), is expressed in four func- 
tions called the lapse, N, and shift Ni (Wheeler 1962). Of course, coordinate displace- 
ments are related to changes in proper distances through the metric, so the N, Ni must 
be related to the metric coefficients. In fact, 

ds'=gij(dx'+N'dt) (dxj+ Nfdt) -(Ndt>' 

where gij is the metric of the t=constant hypersurfaces. We therefore expect that 
equation (3 .6 )  defines the Hamiltonian evolution of the geometry of three-dimensional 
hypersurfaces, that the lapse and shift should appear as the Lagrange multipliers of 
four constraints, and that time derivatives of N and Ni  should not appear. 

Discarding a total divergence Arnowitt et aZ(l962) (see also Misner et aZ 1973) find 
that equation ( 3 . 6 )  reduces to 

Gs{x"gij - N X  - Ni % i+Ndg=Ym} d 3 ~  d t  (3 .7)  
analogous to (3 .4) .  Here nij are momentum densities conjugate to the three-space 
metric coefficients, gij, g=det gtj, and the g, x and N and Ni  are to be varied freely. Of 
course, variation of the gij gives the definition of the nii as usual. Using explicit forms 
for 2 and %i given below, we obtain 

*if 4 g ( g U  K- KV) K=gtjKU =+g-ll2, (3 .8)  
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where K", the exterior curvature, is given by 

K~+ -3 D gtj=+N [ ~ ~ , ~ + ~ ~ , ~ - a g / a ~ ~ t ] .  
aiat 

Note that gij here is defined as the matrix inverse of gtj, not the spatial part of the 
space-time metric gkv. 

Thus, Einstein's equations take the Hamiltonian form 

where the Hamiltonian, H, is defined by 

H= d3~(NYf + N i  %f + &") s 
and Hm is the Hamiltonian constructed from the matter variables. Variation of the 
lapse and shift leads to four constraints: 

&'ngg-ll2{&.irgj - 5 . ~ 2 )  -g lPR = 2 ~ g 1 i 2 T ~ ~ i z ~ n ~  (3.10) 

(3.11) # i  E - 2&3 13 - - 2~g l i zTk in  I' ' 

Here R is the Ricci scalar of the metric g(j, and ~ ~ j l g  is the covariant divergence using the 
connection defined by the metric gij. 

Equation (3.7) is analogous to equation (3.4). Ideally we should like to proceed to 
deparametrise the theory to arrive at the true dynamical variables of the gravitational 
field. Geometrically, such a reduction of the variables is related to the choice of 
coordinates in an initial hypersurface and the location of that hypersurface in time 
(analogous to t = X above). We can view this alternatively as a solution of the constraint 
equations and the elimination of the solved-for variables (analogous to solving Y = 0 
for PO). Choice of coordinate conditions for all time defines the Lagrange multipliers as 
functions of time (t=X implies N=(1/2m) ds/dt in the particle example). Conversely, a 
choice of the multipliers determines how the coordinate conditions propagate. 

In general relativity it is not immediately apparent that these approaches mesh 
together in a simple way. In general, constraints might be non-integrable, preventing 
the explicit elimination of a particular variable ; equations inight not possess solutions, 
or stable ones; coordinate systems might break down, becoming singular. Thus the 
explicit elaboration of the dynamics of geometry requires some care and is as yet incom- 
plete. Nevertheless, it is easy to enumerate the number of degrees of freedom of the 
field. In the particle case, the one constraint leads to the elimination of one component 
of momentum and we say the particle has three degrees of freedom. In general relativity, 
the six momenta, T(!, are restricted by four constraints, (3,lO) and (3.1 l), leaving two 
components freely specifiable initially at each space point. By analogy with the relativistic 
particle, we say the field has two degrees of freedom at each point in space. 

The future development of the geometry of an initial hypersurface, CO, is governed 
by the evolution equations, (3.9), which leave free only the development of the coordinate 
system. However, it is clear that the existence of two free degrees of freedom of the field 
imply that the initial geometry of 20 is not entirely determined by the energy and 
momentum of matter. The future development of CO is therefore a space-time which 
does not satisfy Mach's principle, and this shows, in principle at least, how general 
relativity does not encompass Mach's principle. Of course, the data on 20 might be 
determined by matter at earlier times, and in practice, in realistic non-Machian space- 
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times one might require that an initial time be specified in some natural way. In fact, 
in most of the explicit solutions that exhibit non-Machian properties, the true degrees of 
freedom of the gravitational field vanish anyway, and it is therefore important to see that 
there is a further non-Machian aspect to the field equations. 

The further analysis of the dynamics of general relativity divides into two problems. 
These are the solution of the constraint equations for suitable initial data and the 
evolution of the data off of the initial hypersurface. For the existence and stability of 
solutions of the field equations it proves expeditious to use the harmonic coordinate 
condition : 

since this yields a form for the field equations which is hyperbolic and preserves the 
constraints and harmonic condition in the evolution (Choquet-Bruhat 1962, Choquet- 
Bruhat and York 1980). This choice of coordinates is not apparently useful for inter- 
pretation of the structure of the equations, since it does not appear to have a geometrical 
significance. 

In the 'thin sandwich' formulation one attempts to understand the space-time metric 
as a filling-in of the four-dimensional geometry between the three-geometry on two 
space-like hypersurfaces (Wheeler 1964b). In the h i t  of an infinitesimally thin sandwich 
the three-metric on an initial surface glj, and its time rate of change, agiplat, are regarded 
as given and the constraints solved for initial values of N and N i .  Subsequently the lapse 
and shift are regarded as freely specifiable and the three-metric determined by the 
evolution equations. However, regarded as initial value equations for N and Ni,  the 
constraints are not elliptic equations, so standard theorems cannot be used and there 
may be difficulties (Fischer and Marsden 1979a, b, Christodoulou and Francaviglia 1979). 
Thus the thin sandwich version is no longer popular. 

Note that the free choice of lapse and shift in the evolution is not in any case a good 
approach. The simplest choice N =  1, Nt=O leads to breakdown of the coordinate system 
by focusing. One can either fix coordinate conditions (analogous to q O =  t in $3.1) in the 
initial surface, and determine (N, N i )  by requiring that these conditions be preserved by 
the evolution to succeeding surfaces (Arnowitt et al 1962). Or one can impose an anti- 
focusing condition on the momenta which leaves the initial choice of coordinate system 
free but determines its development through the N and Ni (e.g. York 1979). A mixture 
of methods is, of course, also conceivable. The antifocusing condition T = 0 (Lichnerowicz 
1944, Dirac 1959, Choquet-Bruhat 1962) is possible in asymptotically flat spaces, but at  
most one hypersurface satisfying this condition exists in the case that X is compact and 
without boundary ('closed' universes). The condition I<= constant can be used in 
general. 

The field variable canonically conjugate to Kis g1/2 (where g=det gtj). By a canonical 
transformation we can interchange K and gl/z so g1/2 can play the role of a momentum 
variable to be solved from the Hamiltonian constraints (3 .  IO) (York 1972). With 
T = 2glizK fixed, the momentum constraint (3.11) is a condition on the longitudinal 
( = 'non-divergence-free') part of (TU - +g""n), the trace-free part of the momentum. 
This leaves the transverse (= divergence-free) components of the traceless momentum 
as the two freely specifiable components of momentum. 

In the non-compact case the solution of the constraints depends on the imposition 
of non-Machian boundary conditions, and even for compact initial slices there is no 
guarantee that the Hamiltonian constraints do not possess non-Machian solutions. In 
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fact, of course, Minkowski space-time arises as just such a non-Machian solution. It is 
difficult to see how one might impose Machian conditions directly on the constraints, 
since there is no natural way to separate a source-free component in the solution of a 
non-linear equation. Furthermore, from a practical point of view, the theory has been 
developed mainly for the compact and asymptotically flat cases and is therefore not 
appropriate to many of the cosmological models we want to discuss. We shall consider 
an alternative view of the structure of the dynamics of geometry in relation to Mach’s 
principle in $5. 

4. The observational status of Mach’s principle 

Since, according to the preceding section, Mach’s principle is not incorporated in general 
relativity we are led to ask two questions. First, whether general relativity is the correct 
theory of gravity, and second, whether Mach’s principle is really supported by observa- 
tions. I shall briefly review the tests of general relativity under two headings : tests of the 
equivalence principle, and tests of the field equations. Since there are excellent recent 
reviews available I shall simply note some of the best results taken mainly from Will 
(1979). Observational support for Mach’s principle is provided by limitations on cos- 
mological models imposed by the isotropy of the microwave background. 

4.1. Tests of the equivalence principle 

The best result claimed for an Eotvos type test of the weak equivalence principle is by 
Braginsky and Panov (1972) who give a relative composition-dependent acceleration 
Sa/a < 10-12. An interesting extension of the test to the microscopic level is Sa/a < 3 x 10-4 
for an anomalous acceleration of neutrons (Koester 1976). 

High precision tests of the strong equivalence principle were initiated by Pound and 
Rebka (1960) with an experiment to measure the effect of gravity on the frequency of 
light. This experiment measures the relative acceleration, Sala, between a freely falling 
frame and a frame in which the electrodynamic laws take their special relativistic form. 
Pound and Snider (1965) found Sa/as  10-2. Using a rocket-borne hydrogen maser 
Vessot and Levine (1976) obtained 8a/a5 2 x 10-4. 

An even stronger version of the equivalence principle, sometimes called the ‘super- 
strong principle of equivalence’ and sometimes the ‘Einstein equivalence principle’ 
because it holds in general relativity but not in many other metric theories (Dicke 1964), 
states that all laws of physics, including the theory of gravitation, must be the same in 
any freely falling frame of reference. An example of the way in which this can be violated 
is the Nordtvedt effect (Nordtvedt 1971) according to which massive bodies, for which 
self-gravity is important, may fall with accelerations that depend on their gravitational 
self-energy. Shapiro et a2 (1976) using lunar laser ranging have shown that a limit to 
such violations of the universality of free fall for self-gravitating bodies is Sa/a 51.4 x 10-13. 

4.2. The PPN formalism 

For weak gravitational fields the space-time metric can be expanded about the Minkowski 
form. The idea of treating the coefficients of the terms in such an expansion as para- 
meters, to be fixed in any specified metric theory, in order to understand what it is that 
tests of gravity theories test, first occurs, in embryonic form, in Eddington (1922). For 

74 
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the exterior static spherically symmetric metric of a mass M we have 
a3 

ds2=-[l- z b f l  (2$)"] d i 2 + [ l +  c a n  (%)"I dr2+r2dQ2 
n=l n = l  

where b, and an = 1 in general relativity. In the parametrised-post-Newtonian (PPN) 
formalism developed by Nordtvedt, Will and others (Will and Nordtvedt 1972) the expres- 
sion for the metric is generalised to accommodate as source either self-gravitating particles 
or a fluid, and for comparison with observations the motion of non-test bodies is discussed. 

Possible forms for the PPN metric are restricted by coordinate conditions which 
require the metric coefficients to fall off as l / r  or faster as r+m, and by stationarity 
(invariance under t-t - t ) .  The order parameter ~2 -- GM/Rc2 is supplemented by a 
velocity vjc N E ,  so both even and odd powers of E occur in the expansion. The Newtonian 
potential GM/r  is replaced by an integral over the matter distribution 

U 2  1 dM. __ 
c2 r 

At each order in the expansion quantities in addition to the potential which fall off 
faster than l / r  can be constructed from the matter density and velocity, and these are 
included with further unknown coefficients. If preferred velocities or locations are 
assumed to exist these can be used to generate additional parametrised terms. In the 
equations of motion the expansion to 84 for goo, ~3 for go6 and 82 for gtj yield terms of the 
same order. The PPN coefficients are the metric parameters occurring up to this order. 
Higher orders include radiation, and the stationarity condition then breaks down. 

In the absence of preferred frame and preferred location effects, and considering 
only the motion of test bodies, only the parameters y and /3 appear: we have 

-goo = 1 - 2 u +  2pu2 

gar = ( 1  + 2y U) aaj. 

These parameters are determined by the classical tests and have the value unity in 
general relativity. For comparison, in the Brans-Dicke theory (45. l ) ,  p= 1, y = ( 1  + U )  

(2 + w)-1. 

4.3. The classical tests of general relativity 

Amongst the three classical tests of general relativity, the red-shift of spectral lines emitted 
from a potential well is best considered as a test of the strong equivalence principle (44.1). 
To the remaining two tests, the bending of light by the Sun and the perihelion precession 
of Mercury, there can be added the time delay of radio waves propagating in the solar 
gravitational field. These have now been developed into high precision tests of gravity 
theories. 

The de3ection of radio waves by the Sun is observable with precision using very long 
baseline interferometry on groups of quasars. The bending due to the solar corona is 
frequency-dependent in contrast to the gravitational effect, so can be factored out by 
multi-frequency observations (Fomalont and Sramek 1977). Fomalont and Sramek 
(1976) obtain y= 1.014k0.018. 

The general relativistic effect of solar gravity on the propagation time of radio pulses 
can be separated by its dependence on orbital position (Weinberg 1972). Radar ranging 
of the Viking spacecraft has yielded y= 1.000 & 0.002 (Reasenberg et a1 1979). 
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The perihelion shift of Mercury is known to 0.5 % after subtraction of the perturba- 
tions due to other planets. The residue could have a significant contribution from the 
quadrupole moment of the Sun, which is difficult to measure directly. If the Sun is 
assumed to rotate uniformly, with its observed angular velocity, its resulting oblateness 
gives a quadrupole moment which contributes N 3 x 10-4 of the general relativistic pre- 
cession. On this assumption, the results of Shapiro et aZ(1976) yield ,8=0.991$0.011. 
Direct observation of the solar oblateness (Dicke and Goldenberg 1974) gave a contribu- 
tion of N 10% from this effect. However, this was not confirmed by Hill et a1 (1974) 
who found the effect to be -30 times smaller, within the observational errors in /3. 
Observations of the binary pulsar (54.5) rule in favour of the lower value. 

4.4. Preferred frames and locations 

In metric theories one cannot have fields in addition to the metric coupling directly to 
test bodies. Further support for this is provided by the Hughes-Drever experiment 
(Hughes et all960, Drever 1961) which shows that the level splitting of two spin states of 
the 7Li nucleus is independent of orientation. This effectively rules out a second sym- 
metric tensor field coupling directly to matter, since such a coupling must be some 1023 

times weaker than gravity (Dicke 1964). Since a symmetric tensor field is equivalent to a 
preferred frame of reference in space-time, namely the frame in which the tensor is 
diagonal, the experiment rules out preferred frame effects acting directly. Aether drift 
experiments, such as that of Turner and Hill (1964), rule out the direct action of a 
preferred velocity. 

On the other hand, alternative gravity theories have been proposed, some no doubt 
by Devil’s advocates, in which extra geometrical structures are introduced which act 
indirectly through their contribution to the space-time metric (see $5.2). The PPN 
parameters (011, 012, 013) have been introduced to measure the effect of a velocity field 
relative to a preferred frame, and the parameter 6 measures the effect of a preferred 
location in space-time. These structures give anomalous contributions to the standard 
tests such as perihelion precession (but not light deflection or time delay) and one can 
think of the parameters as measuring the ratio of these contributions to the general 
relativistic values. However, limits on the parameters are best set by looking for effects 
which do not occur in general relativity. Thus, for example, variations in the Earth’s 
sidereal rotation suggest that preferred frame effects are less than 2%, if our preferred 
velocity is taken to be our motion relative to the microwave background (54.6). Like- 
wise, limits on variations in the locally measured Newtonian gravitational constant 
yield 161 5 10-3 (Warburton and Goodkind 1976). 

4.5. The binary pulsar 

At orders of approximation higher than the PPN level, metric theories predict the existence 
of gravitational radiation carrying off energy from time-dependent systems. Attempts to 
detect such radiation directly have so far not been successful, but the next best thing is 
to detect the damping effect of the loss of energy on a radiating system. This has now 
been done by observations of pulse times of a pulsar in the binary system PSR 1913 + 16 
(Taylor et a1 1979). Furthermore, these observations provide an accurate check on the 
PPN parameters. 

The binary system contains a pulsar in orbit about what is probably another neutron 
star. The PPN order parameter 8~ here, and the ellipticity is of the order e-0.617, 
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significantly greater than the corresponding values for Mercury (- 3 x 10-4 and 0.206). 
The system parameters are highly overdetermined by the pulsar timing observations. 
There is no evidence for a periastron advance different from the general relativistic value 
(03 - 4.2” yr-1); the measurements yield self-consistent estimates of the stellar masses 
(both- 1.4 M O )  and quantitative confirmation of the existence of gravitational radiation 
as predicted by general relativity to within a factor 1.3 & 0.3. The importance of this last 
result is enhanced by the fact that competing theories of gravity predict significantly more 
radiation. It is perhaps not too much of an exaggeration to think of these results as 
playing for general relativity the role of Hertz’s experiments in Maxwellian electro- 
dynamics. 

4.6. Mach’s principle and cosmology 

According to Mach’s principle the matter distribution in the universe should determine 
a local inertial frame, a result that was, of course, suggested by crude observations. Thus 
the rotation of the plane of the Foucault pendulum and the flattening of the poles of the 
Earth indicate that the Earth rotates relative to the stars which therefore determine the 
local inertial frame; likewise, the laws of planetary dynamics and the flattening of the 
galaxy are determined relative to the fixed distant stars, hence the bulk of matter in the 
universe (Sciama 1971). Our task here is to show that this crude qualitative agreement 
can be refined to a detailed quantitative law. 

Evidence for the large-scale distribution of matter comes from the galaxy correlation 
function. (For an introductory survey see Raine (1981) or Davis (1976); for detailed 
analysis see Peebles (1980).) This measures the tendency for pairs of galaxies to cluster 
together in associations which have a mean separation less than the average. This cluster- 
ing tendency is quite marked on small scales. The probability of finding two galaxies 
1 Mpc apart is 20 times that which one would expect for a purely random distribution 
of galaxies. On larger scales the correlations exhibit two features. The first is that there 
are no preferred correlation lengths, so that one cannot, for example, think of the universe 
as composed of randomly distributed clusters of galaxies. More important for us is that 
the degree of correlation tends to zero as the length scale increases, and is effectively zero 
on scales much less than the size of the visible universe. This indicates a trend to uni- 
formity on sufficiently large scales. Furthermore, the correlations scale with the distance 
of the galaxy sample under investigation in the way one would expect for a homogeneous 
universe. These results from optical data are confirmed for analysis of radio sources 
(Webster 1976). 

The relative rates of expansion of the universe in different directions gives a measure 
of its anisotropy. Peebles (1971) quotes an upper limit of anisotropy of 30% for relative 
variations, AHIH, in the Hubble constant with direction. More detailed investigations 
have given contradictory results. Rubin et a1 (1973) find an unexplained anisotropy in 
the distribution of Sc galaxies out to - 100 Mpc, while Stenning and Hartwick (1980) 
have detected a different anisotropy in agreement with the results from the microwave 
background, which we discuss next. 

The cosmic microwave background is uniform over the sky to temperature fluctua- 
tions A T / T S  10-3 on all scales. One can think of the radiation as coming to us from a 
‘surface of last scattering’, a surface located at the red-shift at which a typical microwave 
photon was last scattered by matter. In the absence of an intergalactic medium this is, 
at the time of matter recombination, at a red-shift Z N  1000. In the more likely case of a 
reheated intergalactic plasma the last scattering surface is at lower red-shifts (Z-7 in the 



Mach’s principle and space-time structure 1171 

Einstein-de Sitter marginally open model). In any case, the observation that the micro- 
wave sky is at a uniform temperature restricts the possible systematic motion of matter 
at last scattering, since any large-scale motion would induce Doppler shifts in the 
scattered radiation, which would appear as temperature variations. 

We assume first that the universe is homogeneous on a large scale and use the micro- 
wave data to limit possible anisotropies. In this way, Hawking (1969) and Collins and 
Hawking (1973a) found limits on the possible rotation (local vorticity) of the universe in 
the sense of a rotation of a local dynamical inertial frame at each point relative to the 
bulk of matter. The precise result for the allowed rotation at the present epoch depends 
on the evolution of the model since last scattering, and hence on the type of anisotropy 
assumed. An upper limit for an open model, density Qpc, less than the critical density, 
pc = 1.2 x 10-26 kg m-3, is a rotation 

seconds of arc per century. 

The important point here is that this is much less than that corresponding to the 
speed of light at the edge of the visible universe, c (c/H0)-1-2 x 10-3 seconds of arc per 
century. One cannot therefore argue that the rotation of the universe seems to be small 
because it cannot in any case be any bigger than the limit imposed by the velocity of light 
(McCrea 1971). Furthermore, Collins and Hawking follow the evolution of the rotation 
back in time to show that it must always have been significantly less than the velocity of 
light limit. This aspect of Mach’s principle is therefore verified to a high precision. 

Easier to deal with from a theoretical point of view than rotating universes are 
anisotropically expanding non-rotating ones. Indeed, no exact expanding and rotating 
non-empty solutions of Einstein’s equations are known explicitly. One would expect 
anisotropically expanding universes not to satisfy Mach‘s principle because locally the 
shearing motions mimic a rotation of the matter relative to a dynamical inertial frame 
(Bondi 1960). Likewise, Einstein’s equations give a relation between the shear, U, 
expansion, 8, and energy density, p, of matter in the simplest case of a Bianchi type I 
model (see Ellis 1971, MacCallum 1973): 

+ e 2  = + 8 . r r ~ p / c 2 .  (4.1) 

As t+O at the initial singularity, we find p/u2+0 and 8-a (see appendix 4). Thus, 
‘matter does not matter’ at early times and the model behaves essentially as a vacuum, 
hence non-Machian, solution. 

Limits on U at the present epoch from the microwave observations again depend on 
the model. A natural measure of the importance of shear is the ratio of the shear, 0, 
to the mean Hubble expansion, 8, In the worst case Collins and Hawking (1973a) find 

and in the best 

In many cases stronger limits are imposed by the condition that the influence of the shear 
on the rate of expansion implied by equation (4.1) should not alter the cosmological 
production of helium significantly (Barrow 1976). The conclusion again is that Mach’s 
principle is satisfied to a high precision. 

Now, the universe is not exactly homogeneous. Departures from homogeneity on 
small scales induce local velocities, such as that of the solar system in the galaxy and the 
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Local Group in the Virgo Supercluster. We are therefore not stationary relative to the 
last scattering surface, so we expect a large-scale (360") anisotropy in the microwave 
temperature of the order of the largest of these velocities ( N 300 km s-1). Such a dipole 
anisotropy has been reported by a number of groups (Smoot and Lubin 1979, Fabbri 
et a1 1980, Boughn et aZl981) with the general consensus that our velocity relative to the 
background is N 350 km s-l in the direction O I N  113 h, - 20" 5 6 5 20". The observations 
also place upper limits on a quadrupole variation of temperature. 

The result gives the Local Group a net velocity of 600 km s-1. This is rather high for 
a random velocity in the Virgo Supercluster (White and Silk 1979). Wilson and Silk 
(1981) and Peebles (1981) have suggested that the motion induced by the clustering of 
matter revealed by the correlation function analysis could be responsible for both the 
dipole and quadrupole variation. Raine and Thomas (1981a) have investigated the 
possibility that it is due to the shear induced by a very large-scale density enhancement in 
a low-density universe with a reheated intergalactic medium (see also Warwick et a1 
1980). 

In the present context one can ask what limits this observation places on the presence 
of inhomogeneous source-free shear in the universe, i.e. shear which is introduced as an 
arbitrary initial condition and not induced by local enhancements of the matter density. 
Limits to intermediate-scale inhomogeneous shear have been considered by Barrow (1976) 
with results similar to those in the spatially homogeneous cases. For large scales the 
Bondi models (Bondi 1947) provide a useful class of exact solutions. These contain a 
spherically symmetric expanding distribution of zero pressure fluid, the source-free 
shear of which is determined by a function to(r). This is the proper time delay of the big 
bang at each point, which therefore occurs at time t - to@) in the past at each co-moving 
radius r (Eardely et aZ 1972). The source-free shear is related to to'(r). 

Detailed results depend on the choice of to(r) (Raine and Thomas 1981b). In summary, 
for a smooth distribution of shear on scales greater than a few thousand Mpc, the con- 
straints from helium production provide limits comparable to those in the homogeneous 
models. On the other hand, localised regions of large shear are possible. These would 
correspond to a 'contemporaneous' big bang in one part of the sky. For example, if 
qo=O.l  the shear could reach its limiting value, a/0-+1/2/3, over regions of sky 
5 400 Mpc at z w  3 and have no presently detectable influence on the microwave back- 
ground. However, even this contrived situation contains significant amounts of shear 
over only 5 0.1 % of the volume of the universe sampled by the observations. 

We conclude that the case for Mach's principle, like that for general relativity itself, 
no longer rests on a few semi-quantitative remarks, but is based on observations of high 
precision. 

5. Pathways to Mach's principle 

In the previous two sections we have seen that both Mach's principle and the general 
theory of relativity are well substantiated by observations, but the principle is not 
incorporated in the theory. It follows that either there are other reasons why Mach's 
principle is valid, or we need a different theory of gravity. We shall return to the first 
alternative in 56. The latter view meets increasing resistance as the ability of observa- 
tions to rule out theories develops. At the very least, one must be clear what assumption 
in general relativity is being broken. Some of the suggested alternatives will be discussed 
here. 
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5.1. The role of inertial mass 

An alternative approach to Mach’s principle is clearly illustrated in an argument due to 
Narlikar. To obtain a relativity of motion a necessary condition is that the motion of a 
single body in an otherwise empty universe should be undetermined. This will be the 
case if in an empty universe the inertial mass of the test body is zero. For then an 
arbitrary acceleration is consistent with zero force, so inertial motion is undetermined. 
In general relativity inertial mass is an atomic property independent of the environment. 
Several alternative theories have been proposed which break this assumption. 

Jennison and Drinkwater (1977) have attempted to show how inertial mass can be 
generated locally in a purely electromagnetic model of massive particles. The details of 
the model are unimportant. The claim is that the ‘particle’ responds to an external force 
by generating an inertial resistance dependent on the electromagnetic energy content, E, 
with, indeed, an effective inertial mass of E/$. In the Newtonian approximation, at 
least, this certainly yields the affine structure for particle dynamics (i.e. ‘explains’ the 
first law) as is claimed. But in order to do so, it is necessary to employ the equations of 
electrodynamics, hence the affine structure for electromagnetic theory (that the equations 
are valid in freely falling frames described by the appropriate connection). That the two 
connections turn out to be the same yields an example of Schiff‘s conjecture ($2.3) that 
violation of the strong equivalence principle entails violation of the universality of free 
fall, and has nothing to do with any standard view of Mach’s principle (which in this 
case would require a demonstration that the electrodynamic connection is determined by 
matter in the universe). 

Hoyle and Narlikar (1974) have attempted to formulate a theory of gravity in which 
particle masses are generated by a space-time metric which is itself determined by the 
motion and masses of particles. Formally, the mass mA of a particle A is the sum of 
contributions from other particles B, 

mA =E X 2  8(a, b) db 
B s 

where the integration is over particle paths with elements of proper length db, and the 
integrand is a Green function for the conformally invariant scalar wave equation 

The field equations determining the metric are then obtained rather elegantly from an 
action principle having an action-at-a-distance form 

by variation of the metric and particle paths. The inertial mass in equation (5.1) appears 
to depend on location. But a conformal rescaling of the metric, gpv+$-zgpv gives 8-t $9, 
in-+ t,bm so an appropriate choice of conformal rescaling, $=m-l, can be made to obtain 
constant particle masses. With this choice of conformal factor one obtains field equations 
which agree with those of general relativity. 

To justify this use of a conformal rescaling Hoyle and Narlikar argue that there is 
no way of comparing masses except by reference to other masses, and therefore no way 
of checking whether particles have the same mass at different points (as long as they all 
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change together). Likewise with lengths and times, only ratios are measured, and so the 
length scale in the metric must be arbitrary. They conclude that there is no reason to 
prefer the general relativistic metric and propose to treat the whole conformal class as 
equivalent. Note that even if this argument were correct one cannot use the rescaling 
proposed by Hoyle (1975) to continue big bang models through the initial singularity, 
since in no case is a scaling of the units to zero permitted. In any case, while the premise 
of the argument is correct, the conclusion is false. For, if the superstrong equivalence 
principle holds, that the laws of physics, including gravity, are the same in all freely 
falling frames, then the fundamental constants are independent of location. One can 
therefore measure particle masses in terms of the dimensionless ratio m/(hc/G)l/2. The 
connection and space-time metric are defined by the free falls. Of course, the theory can 
be made to look more complicated by rescaling m and G keeping these dimensionless 
ratios constant. But unless the scaling factor drops out of all equations, so that one has 
genuine conformal invariance and the conformal factor is not determined by the theory, 
one does not get anything new. Since the metric controls the free falls this is only possible 
if one can extend the class of free falls to a larger equivalence class defined by a 'conformal 
connection'. The standard way of doing this is to postulate a theory involving only zero- 
mass particles, the paths of which determine the metric only up to a conformal factor, 
and conformally invariant field equations. Unfortunately, the inclusion of massive 
particles breaks this conformal invariance. 

Since the superstrong principle of equivalence is valid in the Hoyle-Narlikar theory 
as in general relativity, the most the theory could achieve is a reformulation of general 
relativity (with the possible interest in early versions of the theory (Hoyle and Narlikar 
1966) that the reformulation works only for universes having large numbers of par- 
ticles). Furthermore, the appearance of a long-range generation of inertial mass is 
spurious, for the formulation of the theory is appropriate only for a universe containing 
one type (mass) of particle. For additional particle types separate X must be introduced 
to express the coupling. Hence A2 is an intrinsic inertial mass in heavy disguise. In 
addition, since only h2 and not h itself appears there is no reason for X to be real and the 
claim that gravity is attractive in this theory appears to be false, since the opposite is 
true if X 2  < 0. 

To express the generation of inertial mass by interactions successfully, one requires 
at least a long-range force generated by a new field. This can break the superstrong 
equivalence principle, since in view of its generation by distant matter the new field can 
be regarded as an aspect of gravity, the action of which in freely falling frames thereby 
becomes dependent on the proximity of masses in the environment. In this way one can 
obtain a theory which differs from general relativity. 

The Brans-Dicke theory (Dicke 1964) is the best known of a class of such theories 
which couple a scalar field, 'p, to matter through a coupling U(?) (Bergmann 1968, 
Wagoner 1970, Nordtvedt 1970, Bekenstein 1977). In the Brans-Dicke theory w is a 
constant to be specified, and w+co is the general relativity limit. In these theories the 
dimensionless ratio (G/hc)1/2m is not constant. This variation can be attributed either 
to a varying G, or, by a conformal rescaling of the metric, to a variation of mass, m =  
m(?). The underlying idea is that if there is no matter we have 'p+O and m+O, and there- 
fore a test particle would have no inertia, as required. However, the theory is not con- 
formally invariant ; the non-gravitational laws have to satisfy the strong equivalence 
principle and this again defines a physically preferred connection and metric. In order 
to avoid violating the equivalence principle the matter responds to the 'p field only via 
the metric (i.e. we have a metric theory). The effect of the additional scalar field is 
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therefore to act as a source of gravity through the field equations 

Unfortunately, one also avoids incorporating Mach’s principle for this reason. The 
most one could achieve is that the absence of matter entails y=O and that there should 
be no solution to the remaining field equations in this case. What actually transpires is 
that in the absence of matter one obtains, at least, the vacuum solutions of general, 
relativity. 

5.2. Alternative field equations 

Attempts to satisfy Mach’s principle by modification of the field equations within the 
context of a metric theory have, of course, a noble ancestry, dating to Einstein’s proposal 
for a cosmological term Ag,” in the field equations. (For an early history of the A term 
see North (1965).) The idea is to obtain field equations which do not possess non- 
Machian solutions; in particular, do not admit vacuum solutions. As is well known, 
de Sitter (1917) showed that Einstein’s modified field equations possess solutions even in 
the absence of matter. Other direct modifications of the field equations are forbidden 
if one requires a Hamiltonian formulation (Kuchir 1974b) or a formal Newtonian limit, 
unless extra fields are introduced. 

In metric theories matter cannot respond directly to any additional fields, but only 
indirectly through a metric which is generated in part by these fields. Several theories 
of this type exist with additional dynamical fields, i.e. fields determined by their own 
field equations, not necessarily constructed with Mach’s prinaiple in mind. The Brans- 
Diske theory (95.1) is an example of an additional scalar field and the Will-Nordtvedt 
(1972) theory contains an extra vector field. Alternatively, one may add additional non- 
dynamical fields. For a recent brief review see Will (1979). For Machian theories a 
favourite non-dynamical field is provided by the background cosmology, either through 
a background metric or a cosmic time. Gursey (1963) appears to have initiated the study 
of Machian effects relative to an expanding substratum (see Reinhardt 1973), and other 
early discussions include Honl and Dehnen (1963, 1964; see also Ehlers and Schiicking 
1967). The idea has been taken up by Goldoni (1976, 1980), unfortunately, it seems, 
without regard to the relation of the theory to the PPN formalism. 

In the search for an alternative justification of Mach’s principle, Jones (1981) has 
pointed out that general relativity must necessarily be modified to accommodate quantum 
theory, and that one might therefore see whether Mach‘s principle can be incorporated 
at this stage. His idea is that only Machian universes would appear as classical limits, 
i.e. as wave packets of quantum universes. This is an appealing suggestion, but its 
elucidation presents considerable difficulties. 

5.3. Alternative theories 

A b  initio, non-metric theories of Mach’s principle are now of little interest unless they 
contain a discussion of how one gets round the equivalence principle. For example, 
Sciama’s (1953) theory of inertia referred to in $1, in which a vector model of gravity 
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was used to indicate how a long-range l/r addition to the gravitational field could induce 
inertial forces, is now of historical interest only. 

A radical alternative to general relativity has been suggested by Barbour (1974) and 
developed by Barbour and Bertotti (1977) and Bertotti and Easthope (1978). This 
overcomes the initial objection to ab initio theories by seeking first to rewrite the Newton- 
ian analysis of dynamics and space-time structure. The idea is then to extend the theory 
to be compatible with relativity by making the local validity of special relativity a func- 
tion of the actual matter distribution of our universe. This neatly avoids the equation: 
special relativity plus equivalence principle leads to general relativity, by incorporating 
a thorough-going Machian phenomenalism according to which our physical laws are not 
necessarily general laws at  all, but relations of the appearances in the universe in which 
we happen to find ourselves. 

To begin with, one attempts to construct a dynamical theory consistent with Leibnitz’s 
view of a relational space-time. In this only relative distances, and hence velocities, can 
be measured, so absolute acceleration is impossible, Such a dynamics must do without 
privileged vector fields on the space-time manifold, or the frame bundle (or any higher- 
order bundle). It must therefore be constructed from a Lagrangian invariant under the 
Leibnitz group of transformations between frames of reference in arbitrary relative motion. 
In the original version of the theory Barbour (1974) achieves this by means of a product 
Lagrangian constructed in terms of the relative distances of particles, rg5, 

where the prime denotes a derivative with respect to a parameter A. Note that the space- 
time still has an absolute time, albeit arbitrarily parametrised in the theory, and a 
Euclidean metric on simultaneity sections. In a later version Barbour and Bertotti 
(1977, 1981) claim to reproduce Newtonian dynamics in a many-particle universe, thereby 
satisfying Mach’s principle. They also suggest generalisations in which relativity is 
incorporated for suitable cosmological models with a derivation of the velocity of light 
in terms of observable global properties of the models. 

The theory certainly provides a dynamics appropriate to Leibnitzian space-time. 
Two possible problems might be mentioned in considering whether it does any more. 
First, to get back to Newtonian dynamics one chooses a frame in which certain quantities, 
the momentum and angular momentum of the whole universe, are put equal to zero. 
These quantities are supposed to be conserved as a result of symmetry under the Euclidean 
group (translations and rotations) on each space slice. But their conservation requires 
that the group should act in the same way on each simultaneity slice, for otherwise one 
has an infinite dimensional Lie group of symmetries and Noether’s theorem yields 
identities, not conservation laws. Defining the same action on each slice is equivalent 
to introducing the Newtonian connection (or the Aristotelian one!). Put another way, 
one can only have a conserved total momentum and angular momentum if there is 
a Newtonian connection ; it is arbitrary whether the vanishing of these quantities corre- 
sponds to the non-acceleration of the stars, since in a Leibnitzian theory this statement 
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has no invariant meaning. It is not clear whether this is merely a problem of presentation 
(or a misinterpretation!) since the conclusion clearly contradicts the initial intentions : 
namely, that by using only relative configurations an appropriate choice of Lagrangian 
should lead automatically to Newton’s laws relative to the fixed stars. 

The second problem arises because the incorporation of forces into the product 
Lagrangian works because one can have an action-at-a-distance interaction in this 
formulation of the theory. In a relativistic theory one would expect to introduce a field 
to represent this interaction, and the free degrees of freedom of this field then, in general, 
yield non-Machian solutions. Indeed, there is the possibility that one returns eventually 
to the equivalent of a selection rule for solutions of general relativity, namely that the 
theory selects just those general relativistic cosmologies in which Mach’s principle is 
valid. 

Finally, we should mention other approaches to Mach‘s principle which are beyond 
the scope of this review. For example, Tipler (1978) has recently proved a version of 
Pirani’s conjecture (Pirani 1956) to  the effect that the only non-singular vacuum solution 
of the Einstein field equations is essentially Minkowski space. Such considerations, while 
both valid and interesting, have at most a semantic link with the scope of this review. 

5.4. Selection rules for Machian space-times 

The final approach to Mach‘s principle, to be treated in the remainder of this review, 
again goes back to Einstein. The non-Machian aspect of general relativity, Einstein 
noted, could be traced to the boundary conditions to be imposed on the field equations 
(see Grunbaum 1957). He suggested that there would be no need for these conditions in 
space-times with closed spatial sections, and that Mach‘s principle should therefore be 
regarded as selecting such ‘physical’ solutions from amongst all possible solutions. This 
is incorporated into Wheeler’s geometrodynamics (Wheeler 1964b), according to which 
Mach’s principle is expressed through the plan of general relativity as a dynamics of the 
evolution of three-space geometry ($3). By itself, the closure postulate is insufficient, 
since it allows empty spatially closed space-times obtained by identifications of points 
(‘cutting and pasting’) in Minkowski space-time. As part of the plan of geometro- 
dynamics such solutions can be ruled out (Isenberg 1974). 

The implementation of this approach requires theorems that evolve appropriate 
initial data into space-times, with or without the closure postulate. This formalises the 
idea that the distribution of matter and gravitational energy at  one time determines the 
future evolution of the three-geometry. Isenberg labels such solutions Wheeler-Einstein- 
Mach space-times. Included here, in addition to the standard cosmological models, are 
asymptotically flat space-times (if one agrees to drop the closure postulate), certain 
space-times devoid of matter, and rotating cosmologies, on the grounds that in these 
cases the gravitational energy provides the source of inertia. A particular case is 
Wheeler’s gravitational geon (Hartle 1960, Komar 1965). Isaacson (1968) has shown 
how a high-frequency gravitational wave can be separated from a slowly varying back- 
ground geometry to appear as a source on the right-hand side of Einstein’s equations. 
From this point of view the gravitational energy of the geon appears as a material 
particle to an outside observer (but not to  an inside one!). 

However, the question naturally arises as to whether one can go further and express 
Mach‘s principle in the spirit of its original presentation as a condition that the gravita- 
tional wave modes be initially unexcited. As we saw in $3, for open three-geometries the 
specification of appropriate initial conditions for this is an unsolved question. For, 
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not only must the dynamical degrees of freedom vanish, but the constraints must be 
solved in a Machian way. Even in the case of closed three-spaces, it is not clear that one 
can rule out homogeneous solutions not determined directly by matter. 

The basic difficulty arises from the ambiguity in the meaning of ‘determined by’ in 
expressing the idea that geometry is determined by matter in non-linear theories in which 
there is no superposition principle. Following earlier work of Lynden-Bell (1967) and 
Al’tschuler (1967), and an idea of Hoyle and Narlikar that the influence of each element 
of matter propagates through that space-time geometry to which the whole matter 
distribution gives rise, Sciama et a2 (1969) were able to exhibit a solution of this problem 
for the field equations of general relativity. This takes us to the theory of the next 
section. 

6. The integral formulation of general relativity 

6. I .  The Sciama- Waylen-Gilnian theory 

This remarkable property of general relativity, that it gives rise to a self-consistent 
representation of the metric as a linear superposition of contributions which are propa- 
gated from their sources through the space-time having the given metric, arises from the 
homogeneity of the Lagrangian in the field variables. D Lynden-Bell (1969 private 
communication) has given a symbolic derivation as follows. 

Let L(p, V,p)-Jp be a Lagrange function for the field F. In the application, rp will 
be the metric g,, (and J essentially the energy-momentum tensor), but we shall suppress 
indices here. Let L be homogeneous of degree n in rp. Then Euler’s theorem gives, 
symbolically, 

SL 
~- cp=nL. 
69, 

Varying this equation with respect to rp, we obtain 

which expresses the homogeneity of degree (n  - 1) of 6L/6rp and where the final equality 
follows from the field equations, 6L/6v=J.  Variation of the field equations gives the 
propagation equation for small disturbances 

From equations (6.1) and (6.2) there follows 

S2L 
- ( ~ + 6 q ) = ( n -  1) J+ 6J. 

For n = 2 we obtain a propagation equation for small disturbances 69, (equation (6.2)) 
of the same form, containing the same differential operator, as that for the field cp 
(equation (6.1)). In this sense, the equations are said to be stable. 

In fact, to obtain the stability condition it suffices that SL/Sy be homogeneous of 
degree one. This much can be achieved in general relativity by taking the basic variable 
to  be cp =gap with indices raised, and the field equations in the form 

Rf = K( T: - 4ggt”T). (6.4) 
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Variation of (6 .4)  with respect to grv leads to the Sciama-Waylen-Gilman equation of 
theform(6.3) for$Py=gpv+Sgflv: 

L P V  ' P O -  "PV-2RP V gPu+ 2V(P$v)=2KKP' z g p ( v [  T$)+ 6 Tc) - 46:) ( T +  6 T)] (6.5) p u g  =g  

where 
gc = Vv($fi" - +gpv$). 

For an explicit derivation see Sciama et aZ(l969). Other choices of basic variable, such 
as g,,, or of forms for the field equations lead to either a loss of the stability property, 
that the operator Lg: be also the propagator of small disturbances, or to non-self- 
adjoint equations (see below, equations (6.7) and (6.9)). The Sciama-Waylen-Gilman 
equation (6 .5)  uniquely satisfies these requirements (Gilman 1969). Of course, once the 
equation has been obtained indices are raised and lowered in the usual way. 

Passing to the limit $pv-+gpv we obtain the Einstein field equations, since the covariant 
derivatives of the metric vanish. It is rather more interesting to integrate the equations 
first and then pass to the limit, when we obtain an integral representation of the metric. 
We cannot proceed directly with equations (6 .5 )  since as they stand the equations are 
underdetermined and do not possess a unique solution. This indeterminacy arises from 
the invariance of the equations under a gauge transformation 

gpv-f&?yv + p p v  
Kpv+Kpv +$Kpv 

where L is a Lie derivative along the vector field, f A ,  which represents an infinitesimal 
coordinate transformation generated by and reflects the freedom to make such purely 
coordinate variations in gPY. 

To fix the gauge we impose a covariant analogue of the Hilbert-de Donder harmonic 
condition 

€ 

g p  = 0. 

Note that this restricts the variation of the coordinates in the process of varying the metric, 
but not the original choice of coordinates, since for 6gfiv-+O it becomes an identity. The 
analysis is therefore manifestly covariant. The gauge condition is compatible with the 
evolution equations since it follows from equation (6.5) and the varied Bianchi ,identities 
that 

(6 * 6) 

$ngv - q R v & a - ~ @ v  = - 2 ~ 6 {  V,(K~lv-~g~vK)} 0. 

Hence if gr =O on an initial surface then ~ P E  0 to first order in Sgr' for all time. 
In this gauge, and assuming as always that the space-time is globally hyperbolic, we 

obtain a system of the hyperbolic equations for the ten field variables g p p  which can be 
inverted by means of a Green function, GZ! (x ,  x') satisfying 

(DeWitt and Brehme 1960), where we have defined the operator to be L$ in the 
gauge 61r=0. Here gt is the parallel propagator introduced by Synge (1964) and is 
defined such that a vector Ac(x) as x is propagated parallel to the vector A"@')= 

A"(x) at x' along the free fall joining x and x'. The integral representation for 
gBV can be obtained following the standard procedure, and the Sciama-Waylen-Gilman 
representation is obtained in the limit &?,,,+g,,. More simply in this case we can proceed 
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directly: multiply (6.7) by gpV(x) and integrate over a neighbourhood Q(x' )  of x' to 
obtain 

g"' P'(x') = 2s  G"' pu 8' Rpu d-8 d4x+ Jan G$& gp" nT dS 

where niu is a unit normal to the boundary aa, surface element ncdS. From now on we 
choose the retarded Green function. For boundary conditions on an initial hypersurface 
C, and using Einstein's equations, we obtain the Sciama-Waylen-Gilman representation : 

s a '  P'(x') = 2K Jn (G;;"' - &g g p V &  pLy 0' ) Tp" 2/? d4x+lX G$fr gp" d T n T d C .  (6.8) 

From the self-adjoint property of the operator L i u , , p ~  

in uflvLhvpu vp,, d G  d4x= s VSV ~ p v p ~  up,, 4-8 d4x (6.9) 

for differentiable functions u p v ,  upv, with compact support, it can be shown that the 
surface integral over C in equation (6.8) is a homogeneous solution (complementary 
function) of (6.5) in the gauge (6.6) and so represents the contribution to ga' fi'(x') from 
matter not in Q. 

From the stability property, that LhvP" is also the propagator of small disturbances, 
we have 

6g"'8' (x')=2KS(G:/-$g PO gpvG"'p) PV 6TpaZ/Z-i d4x+/G~&B7SgP"n' dC (6.10) 

since the terms that would involve varistions of the Green function must integrate to 
zero. This exhibits explicitly how an element of matter, 6 TPU, generates an infinitesimal 
contribution to ga' B'(x') by propagation through the space-time described by the full 
metric. As an application of the theory Clarke and Sciama (1971) have shown how the 
multipole moments at infinity of a stationary gravitational field can be related to the 
moments of the source distribution. 

6.2. Application to Mach's principle 

It would appear that Mach's principle can now be readily expressed as the condition 

lim Ix Gf&B: gpu nr dC = 0 (6.11) 

in the limit that i2 becomes the whole space-time manifold, A, since from equation 
(6.8) it then follows that at any point x' in A, the metric is determined by the matter 
in a well-defined way (Gilman 1970). Since not all (globally hyperbolic) space-times 
would be expected to satisfy this condition it defines a selection rule for Machian space- 
times. Indeed, one might regard the integral equations 

gar fi'(x') = 2 ~ s  (G$/ -tgiuygP" G$@') TBY drg d4x (6.12) 

with G";YB' defined by equation ( 6 . 7 )  as a reformulation of the field equations of 
general relativity such that all solutions satisfy Mach's principle. Note that the selection 
criterion is 'globally local' in the sense that while it is required to hold everywhere in & 
it need only be checked in a neighbourhood of the initial hypersurface E. 
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Two important results follow. First, vacuum space-times are not Machian since 
from equation (6.12) Tp,, = 0 would imply ga’ B’ = 0. In particular, this rules out Minkowski 
space-time. It is also reasonable to suppose that asymptotically flat space-times do not 
satisfy condition (6.1 I), since they differ arbitrarily little from Minkowski space-time 
as one approaches infinity. Second, Gilman (1970) has shown that Robertson-Walker 
space-times are Machian. A simplified proof is given in appendix 1. 

Unfortunately, this theory cannot be quite correct. It provides too restrictive a 
criterion in the case of cosmological models having particle horizons, i.e. limits to the 
region of the universe causally connected to a given observer. This is important because 
most cosmologies proposed as realistic models for our universe are not exact Robertson- 
Walker solutions, do have particle horizons, and would probably be non-Machian 
according to Gilman’s condition. Roughly expressed, the condition rules out space- 
times in which the metric at an observer is generated in part by the general relativistic 
ghost of the instantaneous l/r2 contribution to the gravitational field from matter beyond 
the particle horizon of the observer. Imagine, for example, a perturbation in which an 
extra atom is added to an otherwise Robertson-Walker model. The universe is pulled 
towards the atom even where this is beyond the particle horizon (Ellis and Sciama 1972). 
This instantaneous action does not violate causality: the conservation laws prevent the 
spontaneous creation of an atom, which must therefore be imagined as always in exist- 
ence. The influence of the atom beyond a particle horizon cannot be attributed to the 
volume term in equation (6. lo), since 6 T ~ v - 0  in the domain of integration by hypothesis. 
It must be transmitted through the surface integral, which must therefore be admitted in 
a Machian solution. In appendix 2 we demonstrate this explicitly, and show that in the 
Robertson-Walker solutions the high symmetry implies a cancellation of contributions 
to the surface integral from matter beyond the horizon. 

Of course, this result is a restatement of the fact that the initial data are not free, 
hence not freely zero, but subject to constraints depending on the matter content. In 
the present context, the gauge condition (6.6) can be used to eliminate time derivatives 
of SOP from the evolution equations (6.5), giving four constraint equations on the initial 
data. We should like to analyse these constraints in a systematic way, for which the 
standard procedure would be to pass to a first-order formalism (coordinates and momenta 
instead of coordinates and velocities). Unfortunately, the Sciama-Waylen-Gilman equa- 
tions (6.5) are not the Euler-Lagrange equations of any variational principle, since such 
equations are necessarily self-adjoint, which equations (6.5) are not. In sufficiently simple 
theories (flat space electrodynamics is an example) one can proceed directly to define the 
analogue of a Green function for an underdetermined set of equations by using a suitably 
modified 6 function satisfying the same conservation laws as the sources. The Green 
function so defined is no longer hyperbolic and propagates the effects of all distant 
sources correctly. However, this cannot be employed here, essentially for the physical 
reason that the scattering of g waves by the curvature in equation (6.5) mixes the degrees 
of freedom in the evolution. One might try to proceed on the basis of an ad hoc non- 
covariant splitting of the dynamical degrees of freedom, but it is difficult to see how this 
could be guaranteed to produce physically significant results (Raine 1971). 

In order to overcome this problem I proposed an indirect method (Raine (1975a); 
an introductory sketch may be found in Raine (1975b)). This approach divides the prob- 
lem into two parts, which might be regarded as kinematical and dynamical, each of which 
leads to a condition to be satisfied by a Machian space-time. 

Along the worldline of a freely falling observer one can introduce Fermi coordinates 
appropriate to his local frame of reference. In these coordinates the metric differs 
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locally from Minkowski space-time only at second order: 

ds2=-(1+Rolorr,XlX~+. . .) dt2-($RoljmX'Xm+. . .) dt dx3 

+(&j-+Rtljmx'xm+ . . .) dx' dxl 

(Misner et a1 1973). This fixes the coordinate freedom along a free fall and shows that the 
dynamical part of the metric is contained in the Riemannian curvature, RA!,,,,. Conse- 
quently, the metric will be determined by matter if (i) g A p  can be uniquely reconstructed 
from RApYP and (ii) the curvature is determined by the energy-momentum density, TIL,. 

The first condition will be satisfied if Fermi coordinates are uniquely determined by 
the Riemannian curvature to second order at  each point. This will not be the case if 
and only if the space-time admits a curvature collineation 

+RApvp = 0 

(Hlavaty 1960, Collinson 1970). In fact, this leaves too vague what is meant by 'deter- 
mined by'. A consequence is that Minkowski space-time appears to be admitted as 
Machian. Again, what is required is a stable linear representation of the potential gp, as 
a function of the curvature in the given metric space-time. 

Rather remarkably? the Sciama-Waylen-Gilman equations (6 .5)  turn out to be the 
trace of just such a generalised relation between $"!'=gpy + Ggpy and RAp,,,+ 8RApvP. This 
generalisation is obtained by variation of the identity 

g ~ p ~ ~ ~ ~ ~  = R ~ P ~ ~  

and yields a wave equation for gpp  

where 
$lh[p; plul +&p[h;ulpl f$&?v[hRvplpu + ~ $ ~ r p ~ ~ u l A p = $ ~ A p p u  (6.13) 

Knppu= (Raflpu+ 8Rff@prJ) gangpp + (R%p + 8Rff@hp> gupgflu. 

Since equations (6.13) are invariant under a further infinitesimal coordinate trans- 
formation, they are underdetermined and cannot be integrated immediately using a 
Green function. We do not want to introduce gauge conditions and constraints? since 
this would take us back to the problem from which we started. The essential point to 
note is that in contrast to equations (6 .5)  we now have 20 equations for 10 unknown 
functions so homogeneous solutions of (6.13) should be rather hard to find. In any case 
a putative homogeneous solution to (6.13) represents a part in the metric which does not 
contribute to the curvature so is not physically manifested in tidal forces. In general, 
we should be able to discard such contributions. 

The discussion can be made precise through the introduction of a generalised inverse 
for partial differential operators and is developed in Raine (1975a). In the limit of 
g f i* -+gpv  we obtain thefirst Mach condition, that the metric must be a generalised inverse 
function of the curvature. 

In general this condition is satisfied. Exceptions occur when L RApvo=O, in which 
case g,, is determined up to the addition of a finite contribution of the form c(p;,),  since 
this is then a homogeneous solution of (6.13). These are probably the only exceptions. 
Included here are Minkowski space-time, for which RApYP = 0 and 

T p v =  &p: Y) (6.14) 

the generalised system (6.13) being in this case the integrability condition for (6.14), 

e 
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and plane-wave space-times (Ehlers and Kundt 1962). It is also reasonable to suppose 
that asymptotically flat space-times would be rigorously excluded. 

The dynamical part of the problem involves the relation between RAflvp and TflY. The 
Ricci tensor part of the curvature is given directly by the Einstein equations. The 
Bianchi identities can be rearranged to provide linear field equations on the given back- 
ground space-time for the remaining Weyl curvature (trace-free) part of RApvp 

(6.15) 

The essential point here is that a homogeneous solution of equations (6.15) represents 
a contribution to CAflvp from distant matter and not merely gauge freedom, either wholly 
or in part. As a consequence it turns out that constrained variables can be explicitly 
extracted from the initial data and a Machian condition imposed on the remaining con- 
tribution of the unconstrained data to a homogeneous solution. 

This leads to the result that Robertson-Walker solutions are Machian, in agreement 
with the previous discussion. On the other hand, it enables us to rule out as non-Machian 
shearing or rotating spatially homogeneous cosmologies, and all vacuum space-times. 
As stated in 84.6, Bondi models which do not have vanishing shear as t+O are also 
non-Machian. 

The principal objection to this theory is that it is too ungainly to be true! In the next 
subsection I shall outline a new approach which provides Machian field equations for 
general relativity directly and is the subject of current research. Whether the two theories 
are equivalent is not established, but where the Machian classification of a space-time 
has been calculated in the two theories the results agree. 

6.3. A new version of Mach’s principle in general relativity 

The inelegant apparatus of the preceding subsection is unnecessary in space-times in 
which there are no particle horizons, since for these the Gilman criterion is correct. The 
first key point to extending this to space’times with horizons is that there is no uniquely 
defined retarded solution in these cases. Consider, for example, a regular manifold 
C x R, not necessarily a solution of Einstein’s equations for the moment, the part t > 0 
of which is taken as a cosmological model. This certainly has horizons. To the unique 
retarded Green function of a wave equation on I; x R we can add any solution with 
sources in C x (0, - CO) and obtain many ‘retarded’ Green functions on 

Note next that the reason for the difficulty in the particle horizon case is that the 
integral in equation (6.12) does not necessarily satisfy the gauge conditions (6.6) on the 
basis of which it was constructed. The constraints which arise from the gauge conditions 
provide the contribution to the surface integral necessary to satisfy the conditions. The 
key to the solution of the problem is therefore to use the freedom afforded by the choice 
of retarded solutions to construct an integral representation in which the gauge conditions 
are identically satisfied by the volume and surface terms separately. 

Now we have already noted in 86.2 that one cannot construct a Green function which 
satisfies a divergence condition for all time. But we can find a Green function that 
satisfies this condition initially. The volume integral analogous to (6.12) but constructed 
using this function satisfies the gauge condition initially, and hence satisfies the constraints. 
But the preservation of the gauge condition then implies that even though the Green 
function itself does not evolve to satisfy the divergence condition, the volume integral 
as a whole must do so. 

x [0, CO). 

15 
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We call a solution of (6.7) 
a’ 8’ = M$@’ - + g , , g ~ ~ ~ $ o O ’  

G,V 

satisfying the gauge conditions 

V,, M$/ = 0 VPMzv:’,B’ = 0 

on the initial surface, a Mach-Green function. In appendix 3, we show formally how to 
construct a Mach-Green function, M$/ ,  such that 

(6.16) 

are Machian field equations for general relativity. 
Flat and asymptotically-flat space-times are clearly ruled out by condition (6.16). 

Indeed, in these cases the condition coincides with Gilman’s criterion. For the Robertson- 
Walker solutions the Gilman Green function is also already a Mach-Green function, 
so the result that these spacetimes satisfy Mach’s principle is unchanged. In appendix 4 
we show that the Bianchi type I spatially homogeneous anisotropic models are non- 
Machian. It is then reasonable to conjecture that all rotating or shearing spatially homo- 
geneous models are non-Machian. For (a) the Mach condition is globally local ($6.2) 
so the global topology of the space-like hypersurfaces in these models is not important, 
and (b) no model near a type I model in the sense that the defining parameters a, nl, n2, 
n3, a, w 2 ~ 0  (MacCallum 1973, Ellis and MacCallum 1969) but not near a Robertson- 
Walker model, 0290, can be Machian. For otherwise a small variation in parameters 
would produce a large variation in the surface integral in contradiction to the stability of 
the representation. In principle, large contributions to the surface integral from large 
values of one or more of these parameters could cancel the large contribution from the 
shear implied by the result for type I models. It is difficult to see why some solutions 
should be picked out in this way, but the problem clearly requires further investigation. 

Finally note that this formulation (6.16) of Mach’s principle justifies the claim that 
a small matter inhomogeneity in a Robertson-Walker space-time should produce a small 
perturbation in the metric in a Machian solution. For if a small perturbation does pro- 
duce a solution, i.e. if the space-time is linearisation-stable (D’Eath 1976, Fischer and 
Marsden 1979b), and if the result is Machian, then the stability of the Mach-Green func- 
tion implies 

gu‘fif+Sg”’8’=s Mz/  ( T c v + 6 T ~ )  1 / y g  d4x. 

It follows that a small inhomogeneity in a Machian universe should induce small aniso- 
tropies in broad agreement with observation. 

7. Holy Grail versus snare and delusion 

The spherical symmetry of a sphere means that one cannot tell whether it has been 
rotated. It is easy to slip from this tautology to this profundity: that one should not be 
able to tell if it is rotating. This expresses the psychological appeal of Mach’s principle, 
that it is at base a symmetry principle: a symmetry with respect to acceleration as deep 
as the symmetry with respect to velocity of the principle of relativity and to be as deeply 
cherished and as valiantly sought for (Raine 1979). On the other hand, to some tastes 
the principle of Mach offers only a misplaced nostalgia for an age when a universe might 
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be construed in a page of algebra, an era that is now vanished in the pall of history. The 
title of this section juxtaposes two remarks on the subject made by distinguished relativists 
of those contrary persuasions. 

How then is one to conclude? Certainly Mach’s principle is part of classical physics. 
That would not be a problem were it not that Mach’s principle purports to relate to 
regions of space-time where classical physics cannot be valid. For, near the big bang 
one expects the quantum aspects of gravity to become important. Mach’s principle 
appears to require that free quantum oscillations of the gravitational field are not 
initially excited, although one cannot be precise in the absence of a quantum theory of 
gravity. This is obviously not the case for the quantum fields describing matter. One 
might more reasonably expect an initial black-body distribution of gravitational radiation 
by analogy with the electromagnetic background, although if this background is made 
as a result of non-time-reversible processes at early times, as in the grand unified theories 
(Turner and Shramm 1979, Weinberg 1979)’ this argument is less compelling. However, 
unless one accepts a semi-classical quantisation of gravity as the final theory, the gravita- 
tional field cannot be quantised on the basis of the integral representation (6.16) as 
field equations; one has to go back to the differential form of the original Einstein equa- 
tions. On this view then Mach’s principle may have been the holy grail, but the old 
order changeth. 

The problem may however be even more fundamental. We have seen, rather sur- 
prisingly perhaps, that Mach’s principle plays a well-defined role in the structure of 
space-time with regard to the relation between the affine connection and the matter con- 
tent. In general relativity it receives remarkable expression in terms of the ‘correct’ 
field equations (6.16). One can then explain the absence of large shearing motions or 
rotation in the universe in accordance with observation. If it cannot quite explain why 
the universe must be approximately homogeneous, Mach’s principle does at least imply 
that approximate homogeneity leads to approximate isotropy. Other theories have been 
proposed to account for these observations. They include the chaotic cosmology pro- 
gramme (Misner 1969), in which non-Machian anisotropies are supposed to be dissipated 
by viscous effects in universes without effective horizons, and an alternative mode of 
dissipation by quantum processes (Zeldovich 1972, Hartle and Hu 1980). These dissipa- 
tion schemes produce entropy and are therefore limited by the observed radiation entropy 
density (Barrow and Matzner 1977). A rather different approach is through the anthropic 
principle (Carter 1974, Collins and Hawking 197313). According to this scheme the 
universe has to have its observed symmetry in order to produce intelligent (or even 
unintelligent) observers. 

How do we know which, if any, of these theories is true? How can we test a theory 
which has no effect on local physics, but which predicts that the universe is as it is because 
it forbids the occurrence of universes that are different? Here an intriguing possibility 
presents itself. An important aspect of current trends in the philosophy of science con- 
cerns the idea of an underdetermination of theories by data, an idea initiated by Duhem 
and argued perhaps most influentially by Quine (1969). At one level this thesis is obvi- 
ously true, although it tends to raise the hackles of most physicists, who would argue 
that we do not even have one theory, let alone an underdetermined host. As far as I am 
aware, satisfactory examples of complete theories that would be undetermined by data 
have not been given. Mach‘s principle seems to present itself as a good candidate. Thus, 
it may explain why the compass of inertia rotates with the fixed stars and how inertia 
arises as a result of acceleration relative to the large-scale material universe-but we might 
never know it. In the context of Mach’s phenomenalist thesis, it would be a savage 
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irony indeed if this were the consequence of our ‘glance, . . into the depths’ of the 
matter! 

Appendices 

Appendix 1. The Machian character of Robertson-Walker models 

Gilman (1970) has shown that Robertson-Walker models with equation of state 

P=(Y-  1 )  El. l < y < 2  (AI. 1) 

satisfy his Mach condition. We present here a simpler proof. This exploits the homo- 
geneity and isotropy of the models which allows us to write the Sciania-Waylen-Gilman 
system of partial differential equations ( 6 . 5 )  in the gauge ( 6 . 6 )  as a pair of ordinary 
differential equations before passing to the integral representation. Recall that for 
Robertson-Walker models the three-geometry (k= 1,O) is uniquely related to the 
dynamics (p? pcrit, p = p d .  

Define first an orthonormal tetrad of vectors e(a) (a=O, 1, 2, 3)’ with e&).=6( 
tangent to the fluid flow lines and such that the Robertson-Walker metric coefficients 
are given by 

g p = e ,  ev T a b  

where qab is the Minkowski metric. Then, as in 82.2 and appendix 5 ,  we have 

(a )  ( b )  

for a vector ua=ef )  up, where the Ricci rotation coefficients are 

I?& = eY@) e(c),; pe&). 

With these definitions the Sciama-Waylen-Gilman equations ( 6 . 5 )  in the gauge ( 6 . 6 )  
become 

qcdQcVd cpab+2Racbd qFd=2~Kab (AI .2 )  

and yield an integral representation for qab in the limit Sgpy+O. 

For Robertson-Walker metrices the coefficients in equation (AI .2 )  depend only on 
cosmic time t, so we may assume also cpab=qPa(t). For simplicity we consider the 
k=O model only. The other cases can be treated similarly, but in fact our result will 
hold generally since all models approach the k=O case as t+O where we check the 
Mach condition. 

The non-zero Ricci rotation coefficients are 

= +oszj = rjt0 
where e= 3&/R is the expansion in a model with scale factor R( t ) .  Equations (AI , 2 )  
become 

-+o- e + o + ~ e ~ c p o - ~ ~ c p l = 2 K ~ o  

-+jl - e+l + 3 e 2 c p l - 3 2 8 ~ 0 = 2 ~ ~ 1  
( A l .  3 )  

where the dot denotes differentiation with respect to t ,  and 

Yab = diag (Fa) 911 ”912 = 913 

Putting cpo = - 1, 91 = 1 and KO = $ ( p  + 3 p ) ,  K1= $ ( p  - p ) ,  we regain the field equations 

Kab = diag (Ka). 
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from (AI. 3) as required. For completeness we state the gauge condition (equation 
(6.6)), the non-vanishing zero component of which is 

+o ++l ++e(,, + 9 1 )  = 0. 

f i+  6(p+p>=O 
The conservation equation 

yields 
p = po R-37 po =constant (AI, 4) 

using equation (Al .  1) and the definition of 6. From equations (Al .  3) we can write 
decoupled equations for yk = TO ? 2/3qa : 

(Al .  5) 
where the prime denotes differentiation with respect to R. Note that in the general 
relativity limit we have 

R37/2-4 (R4-37/2~+’>’-(1/R2) (6 5 3 4 3 )  v*=S* 

R2Sk - R2 x constant x R3Y-2 p - constant 
so y+=constant is a particular integral of (Al .  5) and there is no need to add a comple- 
mentary function in order to obtain a representation of the metric. This suggests that the 
models are Machian. 

Explicitly we construct a vector Green function (G+, G-) from homogeneous solu- 
tions of equations (Al .  5) U*, U* which are of the form RP for suitable values o f p .  Set 

U+(@ = RPi - RoPi-Pz RPa 
v+(R) = RPa - (pz/pl) RoPa-Pi RPi 

so u+(R~)=O=U+‘(RO), with similar expressions for U-, U - .  Since y*’+O at the initial 
time R=Ro in the general relativity limit, the analogue of the Gilman surface integral 
(equation (6.11)) is 

where WI(R) is the Wronskian. Choosing p l >  0, which is possible in the stated range 
of y, we obtain 

as required. 

lim $*(R, Ro) =O 
R a 4  

Appendix 2. Perturbations of Robertson-Walker space-times and the Mach condition 

In this appendix we show how a perturbation to a Robertson-Walker space-time 
contributes to the metric beyond a particle horizon. It will follow that the Gilman surface 
integral is zero in these models by virtue of cancellations resulting from their symmetry. 

Since the Weyl tensor is zero in Robertson-Walker models, its first-order perturba- 
tion, CWO, satisfies 

V p ~ I L V P V = J V P ~  (A2.1) 

as a consequence of the perturbed Bianchi identities. An explicit form for J V P ~  is given 
in 86.2. The tildes denote quantities relating to the Robertson-Walker metric gpu. 
This is conformally related to the Minkowski metric 

where Q= Q(r, t )  (Infeld and Schild 1945). 
g p v  = Q277pv 
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We define the untilded quantities C W P ,  J P V P  by 
CJwP = Q7&.P JPVP = Q7J”P.P 

which allows us to write equations (A2.1) as 

V p c , ~ P ~  Jvpa (A2.2) 

where V, is a Minkowski space covariant derivative. Note that this transformation is 
not a conformal rescaling but merely a convenient definition. The aim now is to write 
these equations in a form in which they can be explicitly integrated. To do this we separ- 
ate out the angular dependence using spin-weighted functions on the unit sphere, S2 
(Newman and Penrose 1966). First we need some technology. 

A complex basis in the tangent space to S2 is 

- a  i a  m=--- - a i a  
ae  sin e av a0 sin 0 aF* 

m=-+T--- - 

Any three-space symmetric Cartesian tensor, Vij, may be separated into spin-weighted 
components, V,, defined by 

VZ = Vi;”$ mj VI = VajmtFj vo = V t W ,  v-1= ViJfiii.I?j v-2 = V”lrTit@ 

where i is a unit radius vector. We choose V j k  to be the complex tensor 

VJk = CoJok + (i/2) elmk CJolm ‘ 

where s i jk  is the standard permutation tensor. We need also the spin-weighted sources 
ps(s = - 1, 0, 1) constructed likewise from J O j O +  (i/2) d k l  JOkl and J,( - 2 < s < 2) con- 
structed from Jojk+idkz Jooz. Finally, we define the operator 9 (‘thop’) acting on a 
quantity q of spin-weight s by 

and the operator 3, 
$7 = -(sin 0)s (alae + i  cosec e a/av) (sin e)-s 7 

$T= -(sin e)-, (alae-i cosec 0 alae) (sin 0)s 7. 

eo= a p t  el = a/& ez=(l/r> alae e3 =(I /r sin e) a/aF 

Collecting these definitions, and employing the ‘natural’ basis in Minkowski space, 

we can write equations (A2.2) as 

2 (a - !) (r4V1) + (l/r)$Vz = J1- p l  r4 at ar 

(r4Vo)-(l/r)8V1=Jo-po 

(r4Vo) + (l/r)9 V-I = JO + PO 

(A2.3) 
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We now define the spin-weighted spherical harmonics Y;JB, rp) by 

y;m= Yznl 
Ygy=(Z--s)-1/2 (Z+s+ 1)- dYim 

Y p =  -(Z+s)-1/2 (l-s+1)-1/2 8Yfm. 

The field and its sources in equations (A2.3) are expanded in series of spin-weighted 
harmonics, as 

In particular, we find 

and therefore a radial field 

where 

Ts=ZTim (r,  t )  Yi,(B, rp). 

(llr4> (alar) (r4GO) = P& 

Vto(r, t )  = Q/47rr4 

Q = 4 r  IptOr4 dr. 

We have therefore obtained an analogue of Gauss’s theorem on a Robertson- 
Walker space-time background. It follows that a perturbation gives rise to an instan- 
taneous component of the gravitational field and substantiates our claim that the influ- 
ence of a perturbation extends beyond the particle horizon for the case of a spherically 
symmetric perturbation. For the Robertson-Walker model itself we regard each element 
of matter beyond the particle horizon as a perturbation which contributes a non-zero 
field, the total effect summing to zero by symmetry. 

Appendix 3. General relativistic Machian field equations 

We outline an integral formulation of general relativity constructed to circumvent the 
problem of particle horizons in a direct manner. 

Suppose &” is a solution of the Sciama-Waylen-Gilman equation ( 6 . 5 )  with zero 
boundary conditions on a regular initial surface 20. If v!$” satisfies the gauge conditions 
(equation (6.6)) for all choices of 20, we can proceed to the limit that CO tends to the 
initial boundary to the whole space-time, and the GiIman Mach condition is y$”+g@”. 
If F!$” does not satisfy the gauge conditions as EO tends to the initial boundary, we 
construct a new solution which does. Thus we put 

$p $c”+ A@* 

where $flu= p v -  $gwp, and require 
( Y A ) P ~  = 0 (A3.1) 

where 9 is the Sciama-Waylen-Gilman operator defined by equation (6.5). Equation 
(A3.1) is to be solved subject to initial conditions on 20: 

V,A,v= - O,#!j?‘~p. 

By hypothesis, fr depends linearly on Tau + 6 TP.  
The initial conditions do not uniquely determine APY. We may add the conditions 

Aij=O, AOs=O on 20, which are consistent with (S’A)fj=O, whence (A3.1) is replaced 
by four equations 

(S’A)Q = 0 (A3.2) 
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subject to the initial conditions 

AOP = 0 VOAOP = f P (A3.3) 

on CO, Formally we obtain a hyperbolic initial value problem, with solution a linear 
function of TPV + 6 TPV. 

Thus formally we have 

@' fl' = - 21cj M$/ (Tfiv+ 6 TPv) d? d4x 

where !2 = EO x [to, CO). Of course, on regular hypersurfaces CO, $a',' still satisfies zero 
boundary conditions. But M$@' satisfies the gauge conditions in x' as X'JXO'ECO; 
hence, $a'@' satisfies the gauge conditions on EO (and therefore for all time) for all 
choices of BO. In the limit G g P V + O ,  S2-t  A the whole space-time, we obtain an integral 
representation for a Machian solution 

ga'@' = 2 ~ 1 ~  M";yB' TPV d q  d 4 ~ .  (A3.4) 

Equivalently, equations (A3.4) can be regarded as integral field equations, all the solu- 
tions of which satisfy both the Einstein equations and Mach's principle. 

hl 

Appendix 4. The non-Machian character of Bianchi type I cosmologies 

I shall show that Bianchi I models with perfect fluid equations of state (equation ( A l .  1)) 
do not satisfy Mach's principle. This conclusion is independent of whether one uses the 
Gilman criterion or that outlined in 56.3 and appendix 3 and agrees with the result in 
Raine (1975a). 

We again start from the Sciama-Waylen-Gilman equations in the form (Al .  2) but 
with the basis tetrad chosen to be appropriate to the Bianchi I metric 

ds2 = - dt + X12(t) dX12+ Xz2(t)  dxz2 + Xz2(t)  d~3'. 

The non-zero Ricci rotation coefficients are 

where 

is the expansion tensor given by 

ru0 = etj = - rozj 
etl = aaj +wu 

etj = o i#j ell = zllxl etc. 

It follows that equations (Al.2) can be written explicitly as 

-+o+ e9;0-2(efie,) p o - 2 ~ x p f i = 2 K ~ ~  
- +$ + 6+ - 284 @qk) - 2&p,o= 2 ~ K t  

et, = diag (et) 

where 
ytj = diag (4)  Kgj = diag (Kt). 

Introducing an average scale factor l ( t )  by 

e=3 i l r=*~lx~+l~z lx~+z~1~~ 
we can again integrate the conservation equation to obtain 

po = constant. p = pol-37' 

(A4.1) 
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The Einstein field equations give 

from which 
ktj + eg6j = o 

ut = i / 1 x 3  CI =constant. 

The remaining field equations are 

+ e 2 = + ( u 1 2 + u 2 2 + a 3 2 ) + p  

e + s e 2 + u 1 2 + u 2 2 + u 3 2 =  - 3 ( p + 3 p ) .  

Provided p/92+0 as l+O, which is the consistent assumption for yc 2, we find, asym- 
ptotically as l+O,  

Equation (A4.1)  becomes, as l+O, 

e 1-3 B w 1-6. 

( - ~ o ' l ) ' +  181-'y0+62/61-' Zk(Z2) - ' /2  yk-61-I (?1+~2+y3)=(6/Z' )  l5So 

(-yi' l) '+ 121-I [&(Z2)-li2+ 1 / 4 6 ]  [1/2/6 (Tl+CpZ+T3)+ c k ( Z 2 ) - 1 i z  yk] 

- 6 1 - l { ( 4 3 / 4 2 )  &[( C2)l/' - l]-'}yo = (6/C2) l5S6 

where Z 2 = Z k U .  Since the source terms are of the asymptotic form 19-37, it is clear 
that as l+O, TO= - 1, vi= 1 is an asymptotic solution of the homogeneous systems, and 
we expect the models to be nowMachian. 

Somewhat more explicitly, we construct a Green function from homogeneous solu- 
tions, 1% For completeness, the non-vanishing constraint (equation (6 .6) )  is 

a /a t { i z [y0+3(T1+y2+y3)1}+ uivt=o. 

However, since this is to be satisfied by adding solutions, u(l), u( l ) ,  of the homogeneous 
system this merely alters the coefficients in the Green function without affecting the 
following argument. Thus, the particular integral of (A4.2)  is a sum of terms of the form 

1' 1 l . t p f 5 4 - 4 - 3 ~  j'p' 
dl 

which is vanishingly small for 1' near zero. Therefore the integral representation of 
p ' b ' ( 1 ' )  must contain a 'surface' term, and the solution is non-Machian. 

1' i u(i) u(ry5s(r) - d l w /  ______. s, w(0 lo 1' lPfP'-l 

Appendix 5. Notation and conventions 

We use the MTW conventions (Misner et a1 1973), so the metric has signature (- 1, + 1, 
+ 1, + I), the Ricci tensor is 

and the Einstein equations are 
R,v = RhpAv 

R,, - !&,R = KTpv 

where R=g,,Rpv is the Ricci scalar, and we have arbitrarily set the cosmological constant 
to be zero. Greek indices, . . . ,U, V, . . . range over the values (0, 1,2 ,3)  and indicate 
coordinate components, latin indices a, b, . . . take the same range for tetrad com- 
ponents, while latin indices i,j, . , , take the values (1 ,2 ,  3). 
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Other notation is entirely standard and is collected here for convenience. The tetrad 
basis e&, is related to the metric through the dual I-forms, e t )  dx, by 

The commutators are 
ds2 =Tab@) dxaetb) dxv. 

L e b  = yCabec  
e. 

from which we construct the Ricci rotation coefficients 

r a b c  = +(Yabc + Ycab  - ybca) .  

Tetrad indices, (a, b, . . .), are raised and lowered using T a b .  The covariant derivative 
Va is defined by its action on a vector l i b :  

V a u b  = aaub  + rbacuC 

where 8, =e&@, and 8, denotes a/8xp. Covariant differentiation in a coordinate basis 
is also symbolised by a semicolon, V , U V ~ U ~ ; ~ ,  and for a connection defined by a three- 
space metric by a bar, u$j. 

The Riemann tensor is given explicitly by 

Rabcd= a c r a d b -  a d r a c b +  r a c o r Z d b -  r a d e r C c b +  r a e b y c d c  

and the Weyl tensor by 

Cabcd= Rabcd + g a [ c R d ] b - g b [ c R d ] a  +*&a[&d]b 

where the square bracket denotes anti-symmetrisation : 

A [ab]  = q ( A a b  -Aha). 
Symmetrisation is denoted by 

A(u,b) = $ ( A a b + A b a ) .  

For geodesic flow orthogonal to a surface of homogeneity the shear upv and expansion 
6 of the fluid velocity up are defined by 

2.46; j = w+ 38gw 

In numerical results the Hubble constant is taken as Ho= 100 km s-1 Mpc-1. 
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