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SUMMARY

Mach’s Principle is taken as a criterion for selecting cosmological solutions of
the Einstein field equations, in which, in a well-defined manner, the metric
arises from material sources alone. In such model universes inertial forces
are due to the gravitational interaction of matter, and there is a relativity of
accelerated motion. The problem of stating such a selection rule in general
relativity divides into two parts: an analysis of the relation of the metric to the
Riemann curvature, and of the curvature to the stress tensor, with associated
Machian criteria. From the first criterion we show that Mach’s Principle is
not satisfied in Minkowski space. It seems that asymptotically flat space-times
are also non-Machian, as required by the Machian philosophy. The second
criterion rules out vacuum solutions and spatially homogeneous cosmo-
logical models containing perfect fluids in which there is anisotropic expansion
or rotation. Mach’s Principle is found to be satisfied in Robertson—Walker
models and in a simple class of inhomogeneous solutions. These results lead
us to suggest that Mach’s Principle may play a role in explaining the observed
gross features of the Universe.

I. INTRODUCTION

Einstein gave the name  Mach’s Principle ’ to the following related ideas : that
only relative motion is observable, and hence that there should be no dynamically
privileged reference frames; that inertial forces should arise from a gravitational
interaction between matter only, and so from an observer-dependent splitting of
the total gravitational field ; that space-time is not an absolute element of physics,
but that its metric structure is totally dependent on the matter content of the
Universe.

These ideas are incorporated in general relativity (covariance, equivalence
principle, field equations), but in an incomplete way, as evidenced, for example, by
the empty space-time solutions of the field equations, in which there are inertial
forces relative to no matter. In order to incorporate Mach’s Principle fully into the
theory, it is natural to add a criterion for selecting as physically admissible global
solutions, only those general relativistic cosmological models in which Mach’s
Principle is satisfied. The purpose of this paper is to show that it is possible to set
up such a selection rule. As a consequence we shall be able to rule out asymptoti-
cally-flat space-times and empty space-times as possible cosmological models.
Amongst cosmologies with homogeneous spatial sections it will be found that only
the Robertson-Walker models satisfy the Mach conditions. Our formulation is
therefore in agreement with intuitive notions of Mach’s Principle in excluding the
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possibility of absolute rotation in homogeneous cosmologies. Finally, we shall
suggest that Mach’s Principle may play a fundamental role in providing an explana-
tion of the large-scale homogeneity and isotropy of the Universe.

The possibility of less than total dependence of the metric, and hence inertial
forces, on the matter content, arises through the boundary conditions to be imposed
on the field equations. The contribution of boundary values and sources to a
solution of a system of partial differential equations is most clearly displayed in an
integral representation. Following work of Al'tshuler (1967) and Lynden-Bell
(1967), Sciama, Waylen & Gilman (1969) were able to show that an integral
representation of the Einstein field equations could be obtained in the form

g (&) = —2k f GuF (', x)(Tw—3g»T)/ —g d4x+f GF g/ —g dS?,
v ov

in the case of zero cosmological constant. We call this the SWG integral representa-
tion. From it one sees how the metric of the Riemannian space-time (}M, g) at the
point P’(x') is constructed out of contributions from the energy-momentum tensor
at points P(x) in a normal neighbourhood V" of P’, and from the values of the
metric on the boundary V. These contributions are propagated through the space-
time by the retarded Green * function’, G5# (&', x), for the self-adjoint tensor wave
equation

O ¢# +2RA Yo pp” = —2KP,
This equation, and the gauge condition

(¢’W - %g “g pa¢pa); s = o

constitute the differential equations of the SWG theory. In the limit ¢# — g,
K — Tw 1w T, we recover the Einstein field equations, and the gauge condition
is automatically satisfied. Unlike the truly linear theory, the Green function here
depends on the metric in the representation of which it occurs. However, the
differential equations are constructed in such a way that the integral representation
possesses a certain stability property: a perturbation is propagated through the
space-time by the unperturbed Green function. This property makes it meaningful
to speak of the superposition of the contributions to the gravitational potential
from the matter fields in the given space-time, despite the non-linearity of the
underlying theory. The integral representation would therefore appear to provide
a suitable starting point for the imposition of Machian boundary conditions.

In a globally hyperbolic space-time, V" may be extended from a normal neigh-
bourhood to the whole manifold (Choquet-Bruhat 1968). A natural Mach condition
would then seem to be that in the limit V' — M, the boundary integral should
vanish (Gilman 1970). This rules out the possibility of a source-free contribution
to the metric. However, the coordinate invariance of the field equations of general
relativity, or of the SWG theory, implies the existence of constraints on the initial
data. In a Universe with particle horizons, the matter outside a horizon may
contribute to the potential at the field point through the constraint equations on a
global Cauchy surface containing the field point (Penrose 1964). This contribution
could not be contained in the completely causal four-volume integral. In such a
case, to demand the vanishing of the surface integral would involve the elimination
of contributions from matter. While such a demand is not self-inconsistent, we
believe it to be too strong a condition, not in the spirit of the original idea.
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The correct statement of the Mach criterion along these lines would involve the
separation of the constraint variables from the gauge variables and true dynamical
degrees of freedom in the metric. This problem has never been completely solved :
we therefore seek a way of avoiding a direct approach. Instead, we divide the
problem into two parts. The first involves the relation of the metric to the Riemann
tensor. Whereas the vanishing of T, in a region tells us little about the metric
there, the vanishing of the curvature means that space-time is flat. There is suffi-
cient locality in this situation that the problem of co-ordinate freedom can be dealt
with. The second step then relates the Riemann tensor to the matter content. Here,
there is no problem of gauge freedom since the curvature is physically observable,
and it turns out that one is left with a soluble constraint problem. At each stage we
are presented with a system of differential equations and a known solution. For a
solution to satisfy Mach’s Principle, we require that it be possible to represent it in
a particular, manifestly Machian, way. The two conditions which arise therefore
provide a natural statement of Mach’s Principle as a selection rule.

2. NOTATION

In this section we collect the notation to be used, and establish our sign conven-
tions.

By a Riemannian manifold, we mean a differentiable manifold with a Lorentz
metric having signature + 2. Greek indices will denote coordinate components and
range over o, I, 2, 3. Latin indices from the first part of the alphabet are used for
tetrad components and have the range o to 3; from the latter part of the alphabet
(¢4, ...), they range over 1, 2, 3, and denote either coordinate or tetrad com-
ponents as the context requires. The summation convention is used throughout.

Covariant differentiation is denoted by the operator V,, or by a semicolon, and
partial differentiation by 9, or a comma.

The Riemann tensor is defined by the Ricci identity

. uﬂ;pa_uﬂ;ap = - R'u)tpau/\
and is
A _aTn A T A
R npo 3011 .up+ apF ho r WI‘"M,+F pvr l'/Mr'
The Ricci tensor is R,, = R*,,, and the Einstein field equations are

R, — 18R = «T*-,

Round brackets denote symmetrization, u(,) = $(x,,+u

,u), and square brackets
antisymmetrization, with the convention that

Ululyplel = %(u/wpa' - upvlw' + Upopw— u,uo'pv) >

that is, antisymmetrization over [u, p] and [v, o].
The operator [] will always denote the covariant d’Alembertian, g#V,V,, and
the symbol z will denote the Lie derivative with respect to the vector field £.

The permutation symbols, €73, ¢y, satisfy, by definition,
€0123 = 41 = ¢q03.

We define a permutation tensor, 74,3, by

Napys = (_g)l/z €upyds 8 = det (g,uv)!
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and obtain the contravariant components by raising indices with the metric tensor ;
S0

Y = g ghrgr gty = —(—g)2 7,
In gaussian coordinates, we define
niik = —nOifk = (B)1/2 ¢k
Nijke = nok = (B)Y/2 eyr,

where A;; is the positive definite 3-space metric, and e the three-dimensional
permutation symbol.

The (left) dual of an antisymmetric tensor is defined by
*F af = lnaﬂyﬁF ”,

This establishes a sign convention.
The Weyl tensor is

Coawp = Rywp—2800R,u0p1F 38208018
In a gaussian coordinate system, or in tetrad components, we put
Ey = Cowjy By = —ineyCoitt = —*Cliy,
and construct the complex 3-tensor :
Vi = Ey+iBy;.

We use units in which ¢ = 1 and where convenient we also put x = 1.

3. THE GENERALIZED SWG EQUATION

In order to impose a Mach condition on the metric-curvature relation, we shall
need an analogue of the SWG integral representation with the Riemann tensor as
the source term. This will enable us to see how the effects of curvature are super-
imposed to generate a metric. It is not sufficient to quote the result (Hlavaty 1960)
that in general the Riemann tensor uniquely determines a metric, since such a
statement is not manifestly Machian.

We start from the definition
R, = g#R) @)

vpo

in a given Riemannian manifold. On making an arbitrary variation in the contra-
variant metric g® —> g# + eh®, where € is a small parameter, the Riemann tensor
becomes, to first order in €

1) 1)
RM  +eRM, = g""RA, 4+ eh R, +g"*R*, .. (2)

Defining

@ 1)
K/\,upo' = (Raﬂpa' + €Iemﬂpa') gar8 Bu + (Raﬂ/\,u + eRaﬂAﬂ) 8 apg fo
¢,uv — g,uv + eh,uv’

1)
we can use the linearity of R%, ,; in ¢ to obtain (2) in the form

PiaLps ule1 + Plolrsolul T 3P u1pe + 3B R 010, = $Kupe (3)
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where the antisymmetrization in ¢, ,;,],1 is over the pairs of indices [Au], [p, o].
We call (3) the generalized SWG equation. From the manner of its derivation (3)
is an identity, but we can regard it now as an equation for ¢#” in terms of a known
K, 4p0» With at least one known solution, namely g#’ + €h#?, in the given background.

On taking the trace of (3), one recovers the SWG equations in a general gauge.
Other forms of (3) could be obtained by choosing the covariant metric or a tensor
density as the basic variable, but these would not yield the SWG equations on
contraction. However, the results in this paper (examples 1, 2, 3, proposition 4)
are independent of the precise choice of the form of (3).

One obtains a more symmetrical system, and a closer analogy with electro-
dynamics, on introducing a ‘ superpotential > Z*, ,, related to ¢,, by

¢,uo‘ =Z A,u/lm (4)

and required to have the algebraic symmetries of the Riemann tensor. This super-
potential is then to be compared with the Lorentz invariant bivector of the Hertz
potential in electrodynamics. We can now write the generalized SWG equation
in the symbolic form

LZ =K. (5)

Since we have at least the freedom to make coordinate variations of order e,
the generalized SWG equations must be invariant to this order under the trans-
formations

qs/w - ¢,uv + Ze‘f(,u;v)
A A A
K ﬂﬂ" - K 'MPU +ng ﬂl’a'

with arbitrary £,. In terms of Z*,, , we have the gauge freedom
Z/\/Lpo’ - Z Aupo +2¢ [/\[/’A[tlo‘] + €€xp0

A/w = zeg(,uiv) - %g/weg/\;/l
KMy > KMo+ ZRM (6)

where ¢, ,,, is required to have the symmetries of the Weyl tensor, but is otherwise
arbitrary. This freedom may be used to impose a gauge condition.

. Proposition 1. Z*,,, may be restricted by imposing the ¢ Bianchi gauge condi-
tions ’
ZA/![V/J;O'] = 0. (7)

Proof. Suppose Z*,,, satisfies the generalized SWG equations but not the gauge
conditions (7). We show that (7) may be satisfied by a transformation of the form
(6). Indeed, let Z,,,, = Z),,0+2801,M 4101+ €€2,p0 a8 n (6), and let B, be the
trace-free part of Z,,,,. Then, in terms of the right dual, £*,, ,, the Bianchi
conditions read

V“G*/\ﬂpa = —V“E*/\/tpa-*-s/\/tp (8)

§% e = O. 7
'The second set of equations are inhomogeneous wave equations for §,, and deter-
mine the transformation of ¢, to the SWG gauge. Differentiation of the first set
then leads to inhomogeneous wave equations for ¢,,,, which can be solved subject

to the initial constraints imposed by (8).
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Note that the gauge conditions of the SWG theory (¢,,—3g,4)” = o, are
obviously the contracted Bianchi conditions. By algebraic manipulation of (3), (4),
(7), using the Ricci identities, one obtains :

Proposition 2. In the Bianchi gauge, the generalized SWG equation takes the form
[ Z}Lppcr +& ay8 ﬂBRa[/lﬂ[pZ 7,u]8¢7] + %(Rﬂ[/\Z #pps + Rﬂ[pZo’]ﬂA,u
~Z ﬂ[)LR,u]ﬂpo' -Z ﬂ[pRG']ﬂ/\/L) = ZK/\/Lpo" (9)

In particular, in Minkowski space-time, we have
O Z/\,up:r = ZK/\,MPG'; O= 7]“'/9 aa aﬂ. (IO)

Proposition 1 implies the compatibility of the Bianchi gauge conditions and the
wave equations (9). From (10), it is clear that in flat space-time the compatibility
conditions are the Bianchi identities for K,,,,. In general, one can show that:

Proposition 3. To first order in e, the compatibility conditions for (%) and (g) are
the varied Bianchi identities.

The generalized SWG equation expresses the Riemann tensor in terms of a
linear operation on the metric (in a given background). In order to impose a Mach
condition we need to discover when this relation can be inverted to express the
metric as a linear functional (in the mathematical sense) of the Riemann tensor.
The standard procedure would be to construct a Green function for the non-
singular system (9), using the gauge conditions (7) to impose constraints on the
initial data This we wish to avoid, since we cannot solve the constraints explicitly.
It is possible to obtain an inverted form of (5) directly, by using the concept of a
generalized inverse (Penrose 1954; Petryshyn 1967).

Consider the system of linear equations in R”

Mz =k, detM = o, ke(ker M)L = %(M). (11)

A particular solution can be constructed by means of a generalized inverse matrix,
M+, defined by

MM+M = M, M+MM+ = M+, (12)

since z = M +k is then a solution. If M is symmetric an orthogonal transformation
will bring it to the form diag(A; . . . Ap, 0. .. 0), and the matrix diag(A;71. .. Ap71,
0...o0), referred to the original basis, is a generalized inverse of M. If M is not
symmetric we premultiply by its transpose, M 7, and diagonalize M "M to obtain
M+ = (M"M)* M". Equations (12) do not determine M+ uniquely. For any
generalized inverse, the general solution of (11) is

z=M%k+(1-M+*M)y (13)
where y is arbitrary.

A generalized inverse is essentially an extension to the whole of R” of the in-
verse of the non-singular map obtained by restricting the domain of M to the
orthogonal complement of its kernel. One therefore expects the procedure to work
for mappings between closed subspaces of Hilbert spaces (Desoer & Whalen 1963).
For the generalized SWG system, we want to regard (5) as the analogue of (11),
for an appropriate choice of Hilbert spaces. The analogy is not quite complete,
since the gauge arbitrariness in Z, given by (6), involves a transformation of K.
To restore the analogy, we can form equivalence classes of K’s under gauge
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transformations as in Appendix 1. Alternatively, we can drop the arbitrary term
in the solution of (13) in the general case. We shall show it can reappear for special
background metrics. In either case the non-singular form of the system, equations
(7) and (9), is used to generate an inverse on closed subspaces, and this inverse is
extended to a generalized inverse satisfying (12).

Theorem 1. Let U be a relatively compact open subset of a given Riemannian
manifold, and consider the generalized SWG equation LZ = K in U. Then there
exists a generalized inverse operator L+ to the singular differential operator L.

In Appendix 1 we elaborate the arguments leading to this result.

4. THE FIRST MACH CONDITION

Using the results of the preceding section, we can write a solution to the
generalized SWG equation (3) in the form

$ = rLHK]. (14)
If we are regarding K as a class of varied Riemann tensors, equivalent under gauge
transformations, then ¢ is arbitrary up to the addition of a gauge term. Otherwise,
there is no arbitrariness in ¢, given K, but many ¢’s will be related by a gauge
transformation. In general, if we now take the limit ¢ — o in (14), we obtain a
representation of the given metric, g#”, as a linear functional L*[R] of the Riemann
tensor. From the manner of its derivation, this representation has the same stability
property as that of the SWG theory (Section 1). It gives us a meaningful way of
stating that, in a given space-time, the metric is ‘ due to’ the curvature ; that is,
the metric, and hence inertial forces, are generated by physical sources (curvature)
only. This is the generic situation and it is manifestly Machian.

Now, this is certainly the situation if there is no arbitrariness in the limit
€ —> 0, which will be the case if the arbitrariness in ¢ is of order ¢, or if all ¢’s
related by gauge transformations represent variations away from the same back-
ground metric. However, it may happen, for particular metrics, that there exists
a vector field ¢ such that -?R"l‘p, = O(e€) or, equivalently, .gR"ﬂp, = O(e?). We are

then free to choose whether or not we add Lgw = 2V@#&) = O(1) to ¢ in (14).
§

The limit € - o will then not yield the background metric for at least one choice.
If the solution of the generalized SWG equation is not unique for some given
curvature (up to choice of coordinates), it no longer makes sense to say that a
solution is generated by physical sources only. In these circumstances it would
not be sensible to regard the background metric as a linear functional of the
curvature. Such a situation is manifestly non-Machian.

With this distinction in mind, we summarize :

The first Mach condition. We shall say a space-time satisfies the first Mach condition
if the metric is locally a generalized inverse functional of the Riemann tensor.
Some examples should make this clear.
Example 1. Minkowski space-time. In this case {R"l‘p, = o for an arbitrary &*

since RM,, = o. We expect L*[R] = o so that the physical metric is given solely
in terms of the arbitrary addition to ¢# as € - o. If §,, is the metric of flat space-
time in arbitrary coordinates, there exists at least one vector field £# such that

g/w = 2§(y;v)'
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Indeed, the necessary and sufficient integrability conditions

Eluliplel = ©

are just the generalized SWG equations in a flat background, and are trivially
satisfied. The non-zero physical solution is therefore not dictated by the curvature,
but arises from an arbitrary choice of gauge. We conclude that Minkowski space-
time is non-Machian.

Example 2. Asymptotically flat space-time. As we go to infinity, we have
RM . = O(e), and there exist vector fields £# such that .,E?R"/‘pg = O(e). Itis not

possible to distinguish the addition of 2V®*¢”) to ¢# from an SWG gauge trans-
formation, so we expect LH[R] = O(¢) and that the Minkowski part of the metric
arises only if we arbitrarily make an addition to L*[R] of the allowed form. Indeed,
if we choose Minkowski coordinates at infinity, we can use the weak field limit

gﬂV ~ 77/"’-[— 4

1)
R®,, & eR™ ,,,

which is a good approximation in the asymptotic region. The generalized SWG
equations then yield

Mulpwle]l = o
(1)
hiutolel = Ryppors
the second of which is the usual expression for the weak field Riemann tensor,
while the first is the integrability condition for

Nw = gﬂ,y'}'gv,lu,,

which, since it satisfies a homogeneous equation, is clearly not generated by
physical sources. Modulo the usual difficulties of making precise statements about
asymptotic behaviour in asymptotically flat space-times, it would seem to follow
that such space-times are non-Machian.

Example 3. Plane-wave space-times. These space-times admit a vector field ¢+
such that ZR* . = o. It is known that the Riemann tensor of such a space-time

does not uniquely determine a metric: g,, and g, +2§(,;,) are two metrics with the
same Riemann tensor (Hlavaty 1960; Collinson 1970). We therefore have the
freedom to add 2£(,;,) to L*[R] which implies the metrics are not generated solely
by physical sources, and the space-times are non-Machian.

The results of these examples have no bearing on the local validity of the space-
times concerned as solutions of the Einstein field equations, but they imply that
as global, cosmological solutions such manifolds are incompatible with a natural
interpretation of the Machian philosophy.

Most space-times will satisfy the first Mach condition. As an example we have :
Proposition 4. The Robertson-Walker space-times satisfy the first Mach condition.

This result is obtained by noting that the symmetries imposed on the space-
times lead to a unique functional form for a non-degenerate line-element up to
coordinate transformations.t Indeed, we expect any metric derived in this way to
satisfy the first Mach condition.

+ Any ¢ for which Z?RMM = o is also a Killing vector and so does not change g#*,
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5. THE SECOND MACH CONDITION

The dynamical aspect of the problem consists in finding a Mach condition on
the relation between the Riemann tensor and the stress tensor of a given cosmo-
logical model. The Ricci part of the Riemann tensor is given by the Einstein field
equations with zero cosmological constant. While a cosmological term could be
allowed formally, it would appear classically as an obviously non-Machian source
term for the gravitational-inertial field. Such a term would represent a field which
acted on everything, but was not in turn acted upon (Ellis 1971), and so would be
an absolute element in the sense of Einstein (1954). For the Weyl part of the
Riemann tensor, we have the identities :

C/\/J,por;a_ — Rp[/\m] — %gﬂ[/\Riﬂ] (I 5)

equivalent to the Bianchi identities. The Weyl tensor is therefore a solution of the
linear system
¢.MW;U = K(Tp[/\;ﬂ]_%gp[)t]‘m]) = gJro (16)

in the given curved background. In general it will be the only solution. If the system
could be integrated by means of a Green function, an integral representation of the
Wey! tensor would be obtained. A condition to be satisfied by a Machian space-time
would then be that this representation should give the Weyl tensor as a linear
functional of the currents, JA##,

In Appendix 2 we show how this condition can be stated formally for a general
globally-hyperbolic space-time. The condition is somewhat complicated and is
incomplete in that it refers to a limiting process which is not well defined in general.
The importance of the formal statement is to show that the Mach problem can be
reduced to a well-defined problem on the nature of singularities in general relativity,
and so is in principle rigorously soluble. For applications to simple cosmological
models we shall use ad hoc methods coupled with the following informal statement
of the second condition.

The second Mach condition (informal statement). A space-time will be said to
satisfy the second Mach condition if the Weyl tensor is a linear functional of the
matter currents JA when regarded as a solution of the linear system (16) in the
given space-time.

Proposition 5. All empty space-times are non-Machian.

Proof. In empty space-times we have J*## = o. Then the only possible candi-
date for a Machian solution to (16) is *#/* = o, since only in this case is the field
a linear functional of the sources. But this gives Minkowski space-time which fails
to satisfy the first Mach condition.

If this were false our theory would be untenable. It is possible to have J*** = o
in non-empty space-times. Indeed, if the matter is a perfect fluid, these are just the
Robertson-Walker solutions. The next theorem gives the only J = o Machian
solutions.

Proposition 6. All conformally flat, non-flat, space-times satisfy the second Mach
condition.
Proof. From the Bianchi identities

C/\.“PO';O_ = wJAuP

we see that the vanishing of the Weyl tensor implies the vanishing of the matter
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currents. The candidate for a Machian solution of
pwory = o

is yA#r7 = o, which gives the stated result.
Combining this with Proposition 4, we obtain :

Corollary. All Robertson—-Walker space-times are Machian.

In the next section we study the Bianchi cosmological models, which contain
perfect fluids undergoing spatially homogeneous but anisotropic expansion. With
a reasonable equation of state the matter content in most of these models is un-
important for the dynamical behaviour near the singular origin, so one would
expect the solutions to be non-Machian. This turns out to be the case even for the
exceptional models in which the matter dominates initially. A kinematical argument
for expecting spatially homogeneous models with shear to be non-Machian is given
by Bondi (1952).

Spatially homogeneous models with rotation are particularly important for the
Mach programme. Here the matter rotates relative to the dynamical inertial frame
provided by a Fermi-propagated tetrad. The homogeneity of the three-spaces
implies that the kinematical inertial frame is precisely that which rotates with the
matter at each point. Accordingly, such models are excluded by the Machian
philosophy, and our task is to show that they are ruled out by our Mach conditions.

Finally, we ask whether there can be Machian solutions other than Robertson—
Walker models ; in particular, and of empirical importance, whether there are any
inhomogeneous cosmological models. An investigation of the Bondi spherically
symmetric solutions shows that indeed there are.

6. BIANCHI COSMOLOGIES

Our notation follows that of Ellis & MacCallum (1969). We assume a perfect
fluid stress tensor

T/w = (:u'+.p) u,uuv+.pg/w (17)
and equation of state
p=@-1p (18)

In general the rate of change of fluid velocity u, can be expressed in terms of the
expansion 0, the shear ¢, the vorticity w,,, and the acceleration a,, of the flow
congruence as

w

Uy = Opy + %o(g,uv + u,uuv) + @y — 0,

(19)

a‘w,u” =0 = wlwu”; GI/‘ = 0; O[,] = 0 = w(,)

We introduce an orthonormal tetrad basis e,, with ‘structure functions’ y2ye
defined by

[ea,, eb] = -g’ €p = YCap€e.
a
The Jacobi identities are

[€a, [en, €c]]+ [en, [ec, €a]]+[ec, [ea, €b]] = o.
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Spatial homogeneity is defined by the requirement that there exists a family of
space-like hypersurfaces which are surfaces of transitivity of a group of motions.
The principal tool is the choice of an orthonormal tetrad basis in which the
geometrical quantities are functions of time only. The fluid flow vector u = 9/0¢
is chosen as the time-like basis vector ep, and taken to be normal to the surfaces of
homogeneity. This restricts the fluid congruence to have zero rotation and accelera-
tion, which in turn implies

Yo = 0 = 0y.

For any choice of the triad e; at a point of a surface of homogeneity #, we obtain
a basis at all points of # by dragging along under the action of the group. With this
choice of tetrad, the Jacobi identities can be used to show that the structure func-
tions depend on the cosmic time ¢ only.

The yi05 are split into symmetric and antisymmetric parts

vioy= — (035 +30450) +7pin (20)

where Q; = }eipmjx is the angular velocity of the triad e; with respect to a set of
axes Fermi-propagated along u.

The group types are classified by examining the functions y%;;, which we write
as

Yk = ejrnt+ 8txa;— 84ay.
with n;; symmetric. Class A models are defined to have a¢; = y%; = o, and Class B
models have a; # o; type I solutions are characterized by y%j; = o. We do not
require any further details of the classification.

The Jacobi identities applied to (eo, €;, €;) yield evolution equations for the
structure functions, which are, in a matrix notation

da+oat+ifat+an =o (21)

21

oon+[n, r]—no—on+1i0n = o,

where the bracket notation is used for the matrix commutator. Applied to (e;, €5, ex)
the Jacobi identities yield

na = o. (22)

The Ricci tensor of the homogeneous three-spaces is found from the Gauss-
Codacci equations to be

R,;j = — Zem(inj)kal -+ zniknkj - nij(tm) — 8¢j(2aka’0 + ngnkl — %(trn)z). (23)

The Einstein field equations determine the dynamics ; the (o, 0) equation is

0+302+tr(0?)+iu+3p = o, (24)
the trace-free part of the (7, j) equations are
200+ 0o +[o, 7]+ R—1(trR) 1 = o, (25)
and the trace,
1602 = 3tr(o?) — }r(R) + (26)

is a first integral of (24). Finally, the (o, #) equations are

3oa—vec [o, 7] = o, (27)
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where, for any matrix f,

(vec B)i = ¥ e (28)

To illustrate the line of argument we consider first the simplest case of the type I
solutions with metric

ds? = —di2+ X (f) dx2+ Y () dy2+ Z(¢) d=2.

Theorem 2. Bianchi Type I cosmologies are non-Machian.

Proof. In type 1 we have n = o, and we can choose a frame with o diagonal.
The evolution equations for z (21), show that Q is arbitrary, so can be chosen to
be zero. A length scale, J, is defined by

and used as the independent variable.
The field equations (25) can be integrated to give the evolution of the shear,
o = diag(a;),
oy = 173%;, X; = constant.
The matter conservation equation, which for a perfect fluid reads
it (utp) 6 = o (29)
integrates to
p = pwol™37, po = constant,

and (26) then defines / as a function of cosmic time.
We now compute the field equations (16) in these models. The equations

€4V JOI0T = (cJOO, 'V Wik — 0 (30)
reduce to algebraic constraints which are satisfied by taking

Wi = oo — derippoi

to be diagonal. The remaining field equations determine the evolution of
(‘Fﬁ) = diag(‘P‘i):

¥, 20—o0;1 —o3—%0 —o2—10\ /Y1 o1
G| VYo )+ | —o3—%0 30-02 —o1—30 || Vo ]=3(u+p)|o2) (31)
Y3 —o03—30 —01—40 %0—o03 Y3 o3

The known Weyl tensor is

V1 — 31001+ 012+ }040t
Va | = | —31002+ 022+ %040t |.
Vs —1003+ 032+ %a’:,;oi

Expanding this in inverse powers of /, one obtains
Vi=1"8{—3(Z2+ 3+ Z3)+ Z— 1/v/6 Zy(X2+ T2+ ZHV2+ 1-37{. . J+...

It is straightforward to check that the term in /=8 is a homogeneous solution of
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the evolution equations (31) to this order. If the shear is non-zero, this term
cannot vanish, so the Weyl tensor contains a part which is not a linear functional
of the matter currents, and the models are non-Machian.

Corollary. There exist non-Machian non-empty solutions with closed spatial
sections.

Proof. The homogeneous three-spaces in Bianchi type I models are flat (R = o)
and can be given the topology of a torus by suitable identifications.

As a result of theorem 3 it will follow that there exist non-empty non-Machian
solutions with closed three-spaces without identifications of points (Type IX
Bianchi models).

'The method of proof of Theorem 2 requires a knowledge of the asymptotic
form of the solution of the Einstein field equations. In general this is not available
and a proof which depends only on the structure of the equations is required.

Theorem 3. The perfect fluid non-rotating Bianchi models are non-Machian.

Proof. The field equations (16) for /2bcd yield a set of algebraic constraints (30),
which can be solved for the off-diagonal elements of W's; = 00— Siexijihoi®?, and
a set of evolution equations. For two matrices A, B, we define

[4AZ]y = eumesemAreBmn.
The evolution equations can then be written
— 00V +[r+1a, Y]+ [(o— 3in) A V] + Ho—in) ¥+ 1V (0 —in)— OF

= —ip+p)o  (32)
where vec(a) = a (equation (28)). The known Weyl tensor is

V = —300—R+1@rR—tr(o2) 1+ 0241 {tr(on) 1+ §(trn) o— $(on+no)—4[o, a]}.

This is not explicitly a function of time, but depends on time only through p, 6,
£2, a, o and n. If we choose a frame with n = diag(n;), then 6 and & can be solved
for algebraically from the (o, 0) field equation (26) and the Jacobi identities (21).
The off-diagonal components of o are determined algebraically by the (o, 7)
field equations (27). The Weyl tensor can therefore be regarded as a function of
{, @, 0; and ny, with the time dependence of these quantities given by the conserva-
tion equation (29), and the remaining Jacobi identities and field equations.
We now make the scale transformation

pn—> Aﬁ,.

Regarded as functions of an independent time variable our quantities will be
complicated functions of A. However, we can write

Wy = (30;1,) 3/}1}-}- Z [(3003' 30‘,-) ¥+ (307” 37&1) ¥4 (3061,; 30”) 1F],

and substitute for the time derivatives to obtain from (32) a partial differential
system with coefficients analytic in A. Since the known Weyl tensor is analytic in A,
as a function of i, ¢, #, a, we expand V as a power series in A:

V=2Y3 V(io na)ar

2=0(p)
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It is straightforward to see that
= —1/4/6 (tr(0?)—trR)1/2 6 — R+ o2+ }(trR— tr(c?)) 1
0)
+i{tr(on) 1+ 3tr(n) o— $(on+no)—§[o, al}

is a solution of the homogeneous evolution equations to zero order in A.

Finally we have to show that V' cannot be identically zero. To do this, observe
that 7' = o is invariant under théO)scaling o> ag, n—> an, a -> aa, but that the evolu-
tion ((()e)quations are not so invariant if the shear is non-zero. It follows that I = o
would imply a functional relationship incompatible with the evolution(oc)>f the

system. This completes the proof.

7. SPATIALLY HOMOGENEOUS ROTATING MODELS

If the matter content of a Bianchi model is allowed to possess vorticity there
are two natural time-like congruences associated with the normals to the surfaces
of homogeneity and with the fluid flow. We choose an orthonormal tetrad associated
with the normal congruence as in Section 6, and use Zg;, © to denote the shear and
expansion. The shear, expansion and vorticity of the fluid congruence are denoted
by oap, 0 and wap. By substituting for the structure functions in the definition of
these quantities (19), one finds a relation between the two sets of variables involving
the fluid velocity vector (u3) = (u9, u).

The Jacobi identities (21) are unchanged except that they must be written to
refer to the normal congruence. The Einstein equations are modified by additional
source terms ; in particular the (o, 7) equations become

vec [n, Z]+32a = (u+p) 10u. (33)
There is an additional conservation equation
(n+p) W'V, ut+ @V, p)u = o. (34)

We choose a frame in which u = (v, o, 0) and 733 = o. In flat space-time this would
be a frame which rotated with matter. This choice simplifies the (non-linear)
conservation equations at the expense of complicating the (linear) Jacobi identities.
The conservation equations (34) now give Qp, Qg algebraically in terms of v, X, »,
a, u, 0. The (2, 3) Jacobi identities (21) give Q. The (o, 7) field equations yield the
off-diagonal components of X in terms of those of #. Substituting in the (1, 2),
(2, 3), (3, 1) field equations and eliminating the derivatives of 719, 713 through the
Jacobi identities gives algebraic equations for nj2, 713. © is given algebraically by
the first integral of the (o, o) field equation (26). Thus v, u and a, and the diagonal
components of X and n are subject to the conditions X3+ X2+ X33 = o and
na = o, and all the remaining variables are expressed algebraically in terms of
these basic variables.

We can now proceed as in Theorem 3: the constraint equations (30) can be
solved for the off-diagonal components of ¥, and the evolution equations (32) can
be regarded as partial differential equations for ¥(Z;, ny, a, v, u), the known Weyl
tensor, V, being formally unchanged by the introduction of vorticity when ex-
pressed in terms of the normal congruence. We introduce again the scaling p—> Ag
to obtain a system of differential equations analytic in A, and expand V as a power
series in A. The term independent of A, V, is a solution of the homogeneous system

©

to zero order in A.
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Finally, the (o,7) field equations (33) show that non-zero vorticity implies

3 # o, so, as in Theorem 3, V cannot be identically zero. We have therefore
(0)
outlined a proof of :

Theorem 4. The perfect fluid Bianchi cosmologies with vorticity are non-
Machian.

This result states not only that the vorticity vanishes on average in a spatially
homogeneous Machian solution, but that zero spatial gradients at a point require
zero vorticity there. This means we cannot compensate for non-zero rotation
within a particle horizon by the motion of matter outside the horizon. It is not
unreasonable to assume that small departures from homogeneity in a Machian
universe would imply small vorticities. The observed isotropy of the microwave
background shows that at no time in its history can the Universe have been rotating
on a time scale shorter than the expansion time scale (Collins & Hawking 1973a;
Sciama 1973). The precise number is model dependent, but it appears that the
small vorticity cannot be accounted for by dissipative processes. Since the absence
of significant vorticity would seem to be explained in terms of Mach’s Principle,
this provides us with the strongest observational evidence in favour of the Principle.

8. BONDI MODELS

Finally, we consider Bondi spherically symmetric models (Bondi 1947) as the
simplest examples of inhomogeneous cosmologies. While they are not realistic
models of the actual Universe, they show interesting features which may be
expected to be present in more complex situations.

We follow the discussion of Eardley, Liang & Sachs (1972). The matter content
is taken to be a pressure-free perfect fluid with density u(7, f). The general
spherically symmetric metric is written

ds? = —di2+ A%(r, t) dQ+B%(r, t) dr?; dQ = d62+sin2 6 dg2.
From the field equations we obtain

A" =[1+p(n] B, Br)>—1

244+ A4%2-8 = o,
where A’ denotes 24/or and A denotes 24/ét. The second equation is integrated
to give

A(A2—B) = Xp),
where, from the Bianchi identities,

N = s+ B2
with

po = A2Bp. (35)
The functions B(r) (or A(r)) and pu(r) are the arbitrary initial data.

From considerations of symmetry we expect the first Mach condition to be
satisfied and we assume this to be the case. We expect no radiation field owing to
the spherical symmetry, so it is the constraint equations (30) that are relevant to a
discussion of the second Mach condition.

Eardley et al. (1972) show how to assign a positive definite three-metric to the
¢ initial > singularity present in these models by expanding the space-time metric

35
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in terms of a cosmic time, ¢— o#(r), relative to a shifted origin ¢ = ¢#(r) on each
world-line, and taking the coefficient of the leading term. Three types of singularity
are found to occur, labelled as Heckmann-Schiicking, Robertson-Walker, or
Kasner, according to the exact solution which coincides with the first approxima-
tion for a suitable choice of certain integration functions. In order to satisfy the
second Mach condition it is necessary that the leading term in the known Weyl
tensor should solve to this order the Bianchi identities with the dominant term in
the matter density as source function. Further terms are obtained by iteration
with no new parameters. It follows that the Machian behaviour of the leading
term is also a sufficient Mach condition.

Theorem 5. Pressure free, perfect fluid Bondi models with Robertson-Walker
type singularities are Machian; those with Heckmann-Schiicking or Kasner
types are non-Machian.

Proof. We define an orthonormal tetrad e} by

9
op

€ = —a—, ey = Bl 'aa—r’ ey = A1 ° e3 = (A sin 6)~1

ot o8
with respect to which the field equations (30) have the explicit form
B-Y¥11) +24' A 1B ¥ + A1 cot 12— A’A7 1B (V2 +¥33) = 3B~/
BY(¥10) +3A4' A 1B-1¥19+i(B-1B— A14) ¥13+ A1 cot (¥as—T'33) = 0
B-Y(¥13) —i(B1B—A14) V124 34’ A7 1B 1¥13+ 2471 cot 6'¥23 = o.
Define
Yio = Voot 201%Wa3— Va3
Vi = Ve ti¥is
Yo = V1.
Using W11+ W22+ ¥3s = o, the spin-o constraint is
BY(¥) +34'A 1B Wy + 341 cot H(¥ 11+ V1) = 1B 1. (36)

We take W12 = o since the spherical symmetry implies the free dynamical modes
of the Weyl tensor must vanish. The Machian solution of the spin-1 constraint is
then W41 = o so (36) becomes

(A%%Fo)" = 343 (37)

with p given by (35).
From the Ricci identities applied to eq, we calculate the Weyl tensor :

(Ey) = diag(~3(B1B—A414), —}(A4-B-1B), —Y(414-B1B)
(Hy) = o. (38)

We investigate in detail the case B = o, the other cases (8>0; —1<B<0) being
analogous.

(i) o#'(r) = o (Robertson-Walker type singularity) : writing 7 for £— ot(r), we
have

A = Ay 3, B = B(r) 2.
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Suppose ¥ = Fo(r) 7*; then the left-hand side of (37) is
(4A3%¥0) = (42T)’ =2,
and the right-hand side becomes
A% = (uoA—2B-1Y.

It follows that the Machian solution is « = —2, and this is just the dependence
found for the known Weyl tensor (38).
(ii) o'(r) # o (Heckmann-Schiicking singularity) : we have

A = A(r) %3, B = B(r)+13
from which
A3y = Ao A1BLY 7— A2ueB-14t".
If ¥o = To(r) 7% then
(43Y) = Fo'ret2+ ot' 72+ (a+ 2) To.

A Machian solution would require « = —1, but for the known Weyl tensor we
calculate « = —2. Hence the leading term satisfies the homogeneous equation to
this order and the model is non-Machian.

This example shows how a central condensation may be detected by the
¢ Coulomb ’ part of the Weyl tensor, even though the major part of the condensation
may be beyond the particle horizon of the observer. It is difficult to see how any
such solutions could satisfy Gilman’s Mach condition (Section 1).

9. CONCLUSION

The preceding results show that Mach’s Principle rules out anisotropic ex-
pansion (Theorem 3) or rotation (Theorem 4) in spatially homogeneous perfect
fluid cosmologies, and restricts the type of singularity in a simple class of in-
homogeneous models (Theorem 5). This leads one to propose that Mach’s
Principle, fully incorporated into general relativity, requires our model of the
Universe to be a Robertson—Walker solution with local irregularities. This would
provide an alternative to ¢ chaotic cosmology ’ (Misner 1968) or the  Dicke—Carter
philosophy ’ (Collins & Hawking 1973b) as an explanation of the observed isotropy
of the Universe, and, if true, would take us a considerable way towards an under-
standing of its large-scale structure.
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APPENDIX 1
THE EXISTENCE OF THE GENERALIZED INVERSE

Relative to an arbitrarily chosen positive definite metric on M, select an ortho-
normal vector basis E;, and hence a basis for tensor fields:

El;=En®... QE4 QFE; Q... QEy,.
Given a tensor field W, with components W!y = W(E1;), define
\W| = |WIE|.
If Q is an open set of M, with compact closure, and

DEW
|ET=k

is the sum of partial derivatives of W of order %, then
y
Wi ={[ 5 1pewedo]”,
Q |E|<p

where do is the volume element on Q induced by the chosen metric, is a norm if
the integral exists. The Sobolev spaces W4,(Q) are the completions of spaces of
tensor ficlds of type (7, s), for fixed r and s, having gth power integrable derivatives
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of order p over Q. The Banach structure of these spaces is independent of the
choice of positive definite metric and basis vector fields (Hawking & Ellis 1973),
but the Hilbert space structure of Hy,(Q) = W2,(Q) is not. The choice of Hilbert
structure is equivalent to a choice of gauge. We shall denote by H, the Hilbert
spaces of tensors of type (2, 2).

We symbolize the generalized SWG equations (4, 5) as

2(Z) = K, (Ar.1)

and the consistency conditions (the varied Bianchi identities) as DK = o. In the
following we shall understand K to stand for an equivalence class of sources, two
sources belonging to the same class if they are related by a gauge transformation (6).
This enables us to write ker(Z) for the set of gauge transformations of the super-
potential Z.
In the Bianchi gauge, DZ = o (Proposition 1), we obtain the hyperbolic system
(9), which we write as
L(Z) = K. (A1.2)

From the general theory of hyperbolic equations it is known that with certain
restrictions on the domain €, on the coefficients and initial conditions, and for
sufficiently large p (> 4), this equation has a solution Z € H; for any K € Hp;
(see Hawking & Ellis (1973) Proposition 7.4.7). We restate this as:

Proposition A1. L maps a dense subset of H, on to Hp;.

The usual method of obtaining a solution of (Ax1.1) is essentially to show that
the gauge conditions DZ = o can be satisfied by the addition of an element of
ker(L) to a solution of (A1.2), with K restricted by DK = o. Lemma A1 is a
restatement of this. The essence of the generalized inverse is to achieve this instead
by a projection (and hence linear) map.

Lemma Ax. The range space of & : Hp—> H,y, isthe kernel of D : Hp 1> W1 _,.

Proof. If Ke Hy_; and Ke#(¥%) then DK = o so #(¥) < kerD. Con-
versely, if K € Hj_; then there exists a Z € H) satisfying (A1.2) by Proposition
A1 If we restrict K by DK = o and restrict the initial conditions by DZ = o,
then we obtain a solution Z’ (say). Propositions 2 and 3 imply that Z' satisfies
(Ar.1) and Proposition 1 ensures that Z’ € kerD.

Lemma Az. The kernel of D: Hy_y - W1 _, is closed.

Proof. Ker(D) is the inverse image of o € W}_, by a continuous map.

Similarly, since & : Hp - W},_, is continuous, ker(Z) is closed.

Thus we can write Hy = (ker(£)) @ (ker(£))L, where L1 denotes orthogonal
complement, and Hp 1 = (ker(D)) @ (ker(D))*: = #(%) ® (#(%))L. Therefore,
we have the analogue of proposition Ax :

Proposition A2. £ maps a dense subset of (ker(£))+ in Hy to kerD in Hp_;.

It is now possible to construct a generalized inverse as in Desoer & Whalen
(1963), the only difference being that the domain of our mapping is a dense subset
of (ker(£))-L rather than the whole of it.

If K € ker(D) in Hp-; then there exists a Z in (ker(£))L such that #(Z) = K,
and we put #+(K) = Z. Itis easy to see that Z is unique ; if K € (ker(D))L, then we
define #+(K) to be o(e Hp). £+ is a generalized inverse in the sense of Moore and
Penrose (see Desoer & Whalen 1963). This proves Theorem 1. The inverse obtained
depends on the Hilbert space structure of Hp; but a second inverse can differ
from £+(K) by an element of (ker(£))L only, which is a gauge transformation.
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APPENDIX 2

THE SECOND MACH CONDITION

By differentiating equation (16) and re-arranging terms we obtain
O ‘l’/\ppa’ + ZRM[Aﬂ[p‘pﬂ]a']aﬂ + Ra[/\‘l’ﬂ]apa' + Ra(p‘)[’o']a]t,u

= ZK{J[A/L] [psel T VvJv[a[,ugp]A] + J[pa'] ul T Vi, [,u[agk]p]} = KJAM)U'

The initial value problem for this system is solved locally by means of a retarded
Green function G52 having the algebraic symmetries of the Riemann tensor to

give (DeWitt & Brehme 1960).
by = o [ Gy gmem/=gates [ (prniGi”

— GBYY Vo) /—g dS* (Az.1)

uvpa

Equations (16) now represent constraints on the data on the initial surface S. In
general the constraints will not be consistent with the evolution equations unless
Yaup0 18 the Weyl tensor, so that in general the constraints will not be preserved.
Of course, we are interested in this representation only when i,,,, s the Weyl
tensor.

We introduce a gaussian coordinate system based on S which then has intrinsic
metric hy = gi; and the second fundamental form Ky = }(9gy/ot). With the
definition W5 = $oi05— Simrisbio®? the constraints which do not involve derivatives
out of S can be written

Wel)j+ iKY Y7% = k(Joso+7 4 0i0) (A2.2)

where the vertical bar denotes covariant differentiation in the # = constant three-
spaces. We want to decompose ¥ covariantly with respect to coordinate trans-
formations in .S into constraint variables to be eliminated by solving (A2.2) and
dynamical variables which will be freely specifiable data. The following method
leads to a self-adjoint form for the constraints (Az.2), involving only the constraint
variables.

We introduce the notation Aty = 3Kjymm, and define a ‘ covariant deriva-
tive ’, 9y, by means of the (symmetric) ¢ connection ’ T+ Aty : for a scalar field
&, D1 = Ord and for a contravariant vector field V%,

DVt = xVi+ (Digy+ Aigy) V9,

with the usual extension to general tensor fields, using 2y(ViU;) = 0x(ViU;).
Since 2yhi; # o care must be exercised in raising and lowering indices. However,
we do have 2;hi = o, so we can define 2/ = h*9; and write 2;V7 = 2iV;. The
constraints (A2.2) now read

¥y = kJt (A2.3)

which suggests the decomposition (compare Deser 1967):
T
Wiy = W+ DiEs+ Ds6t — 284D ppém

T T
2V = o0 = VY.
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Substituting in (Az.3) we obtain an elliptic system for the constraint variables £7:
(25D*8%;+ 32i2;) ¢1 4 Rigk = wJi (A2.4)

where Rj; is the Ricci contraction of the  curvature tensor’ R¥; formed from the
¢ connection * I+ Afy. Explicit calculation shows that Ry; is symmetric, so the
system is formally self-adjoint.*

By means of a (complex) vector Green function HY («, ), were present the
solution of (A2.4) as

£ (x') = f HY Ji\/h d3x+ f (EDLHY + &2 HY — HY 96
s o

—$H{ 2k dS%. (A2.5)

In a globally hyperbolic space-time (Geroch 1970) having S as a global Cauchy
surface, a necessary Mach condition will be that the integral over 4S should
vanish. This cannot be applied directly if S is not closed, since the boundary values
for £ or its derivatives are unknown. Instead, we aim to formulate the condition
that the surface term in (A2.1) should be a linear function of the matter currents.
Thus we put

L
Vi, = 9ig;+ DIg;— 304Dtk (A2.6)

with ¢ now defined by the inhomogeneous term in (A2.5):

g = f HbpJ¥/h do. (Az.7)
With the notation 8
UY = Gy + b Gy
and using (16), we can write the integrand of the surface integral in (A2.1) as
8% e{lp'if(ao U{; —2KY; Ull;.’) + ,’Ug’njkl 2.8 +k U};'(J(m + Yokt Jkli)}.

L

By substituting ¥%; from (Az2.6) and (A2.7) in place of ¥%; in this expression, we
omit the contribution from free dynamical modes and the contributions to the
constraint variables independent of the matter. Since y*#7 is to be the known Weyl
tensor, this gives:

The second Mach condition (formal statement). A globally hyperbolic solution
of the Einstein field equations (with zero cosmological constant) will satisfy the
second Mach condition if
Sl_l,r?w { f (CeoV (G EYY — G5BV OV o CAep7)2 /B dSO—8

DH(Seo)=M
L ’ r 4 L
« B f (FH(aUY — 2KYU )+ iU S0,
&
+ KUiI]:'(Joij_{_ %nklijlZ)}\/ZdSO} =0

* It is not self-adjoint with respect to the hermitian conjugate, since Rj; is not hermitian.
A hermitian system can be obtained using a derivative Ay (instead of Zy) defined by

T
AkVi = qu—%iKl[mki]le and Writing (A2.3) as Ak‘Fkt = «Ji. Note also that kug‘ij is
not symmetric.
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where the limit refers to a sequence of Cauchy surfaces S the limit of whose future
Cauchy developments D+(S) is the whole space-time.

Further knowledge on the structure of singularities would be required for this
limiting process to be made a well-defined operation in physically reasonable
(singular) cosmological models, although for the known exact solutions there is a
natural choice of a family of surfaces with respect to which the limit may be taken.
The methods of investigation of the Machian character of particular models in
Sections 6, 7 and 8 are essentially equivalent to a study of certain analyticity

properties of the Green function G52%% for those cases.
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