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Abstract

It is pointed out that recent cosmological findings seem to support the
view that the mass/energy distribution of the universe defines the New-
tonian inertial frames as originally suggested by Mach. The background
concepts of inertial frame, Newton’s second law, and fictitious forces are
clarified. A precise definition of Mach’s principle is suggested. Then an
approximation to general relativity discovered by Einstein, Infeld, and
Hoffmann is used and it is found that this precise formulation of Mach’s
principle is realized provided the mass/energy density of the universe has
a specific value. This value turns out to be twice the critical density. The
implications of this approximate result is put into context.

1 Introduction

In 2011 the final report from the Gravity probe B experiment was published
by Everitt et al. [1]. This satellite experiment verified for the first time the
frame dragging prediction of general relativity thereby corroborating one as-
pect of Mach’s principle. This principle states that the inertial frames of clas-
sical mechanics are defined as being those that do not accelerate with respect
to the average mass/energy distribution of the universe. Since the early work
on Mach’s principle by Bondi [2, 3], Sciama [4, 5, 6], Dicke [7], Lynden-Bell
[8], and others, cosmology has progressed considerably. The cosmic microwave
background radiation has been discovered and studied in detail. Dark matter
has been found to dominate over normal matter in the universe. The recent
discovery of the acceleration of the Hubble expansion by the groups of Perlmut-
ter and of Schmidt and Riess (Nobel prize 2011) has given new observational
information on the mass/energy distribution of the universe. In particular it
is now clear that matter, dark matter, and dark energy together represent a
mass/energy density close to the critical density of cosmology [9, 10]. It seems
appropriate to reassess the status of Mach’s principle in view of these empirical
advances of recent decades.
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After a brief survey of the most relevant literature I first discuss Newton’s
second law and its interpretation. The concept of inertial frame as well as the
related ideas about real and fictitious forces are elucidated. This part can be un-
derstood by undergraduates who have studied vector mechanics and tries to give
a deeper motivation for the various terms that appear in this law. Then I demon-
strate how this law arises by approximation from general relativistic equations
of motion, and how this seems to support Mach’s principle as a consequence.
This part relies on the Einstein-Infeld-Hoffmann Lagrangian formulation and
requires that the students have been exposed to analytical mechanics.

Mach’s principle has been subject to much discussion and speculation in
the literature. Some more recent studies can be found in the volume edited by
Barbour and Pfister [11], and in Mashhoon et al. [12] where the gravitomagnetic
analogy is studied in detail. Many points of view are of a philosophical and
metaphysical nature, but here I will concentrate on empirical aspects. There
are quite a few accounts also in the pedagogical literature, e.g. Zylbersztanj [13].
Interesting discussions can be found in the textbooks by Berry [14], Ciufolini and
Wheeler [15], Peacock [16], and, most recently, by Cheng [9]. Frame dragging
and its relation to Mach’s principle and general relativity has been discussed
by Grøn [17, 18], Grøn and Eriksen [19], Harris [20], Holstein [21], Hughes [22],
Lynden-Bell et al. [23], Mart́ın et al. [24], Nightingale [25, 26], and by Vető
[27, 28]. It has been pointed out that general relativity does not, in itself, imply
Mach’s principle, the counter example being Gödel’s solution [29] to Einstein’s
equations. In this solution, however, time travel is possible. There have been
speculations that banning time travel will restrict us to solutions that obey
Mach’s principle [30], but these matters are still far from clear.

2 Inertial frames, real and fictitious forces

Newton’s second law for a particle is nowadays normally written in the form

ma = F . (1)

Here m is (inertial) mass which is determined by means of a common balance
and a reference mass (unit of mass). The acceleration a is a purely kinematic
quantity which is determined by recording the positions with respect to time
relative to a chosen reference frame. This requires the choice of origin, axes,
measuring rods and clocks (reliable periodic phenomena). The force F then
turns out to be a quantity which is the cause of the acceleration. All known
forces decay at least as the inverse distance squared, so that forces have local
origin, i.e. they arise from local sources near the moving particle and they obey
Newton’s third law of action and reaction. The success of Newtonian mechanics
comes largely from the fact that there is a limited catalogue of forces. We have
very accurate mathematical models for electromagnetic and gravitational forces.
All other forces of macroscopic importance are material contact forces (normal
force, dry friction, pressure, viscosity, drag, force from elastic deformation, pull
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from a string, etc) for which there often are reasonably accurate mathematical
models, albeit of limited range of validity.

In the paragraph above I have emphasized the words reference frame and
local source. In order for the above theory to work the reference frame must be
so called inertial, or non-accelerated. We can use accelerated frames, however,
if we know their translational acceleration af and their angular velocity ω about
an axis through the origin. The appropriate equation of motion is then

ma∗ = F + F ∗, (2)

where,
F

∗ = −m[af + ω × (ω × r∗) + 2ω × v∗ + ω̇ × r∗]. (3)

Here r∗,v∗, and a∗ are position, velocity, and acceleration with respect to the
accelerating system, while ω̇ is the time derivative of the angular velocity vector.
The new force F ∗ on the right hand side of (2) is the vector sum of the so called
fictitious forces (3). These forces do not have local sources and Newton’s third
law does not apply to them. The crucial question is now: acceleration relative
to what? Which are the inertial frames? How are they found?

When it comes to rotation this question is fairly easy to answer. In a non-
rotating reference frame the fixed stars (or even better, the distant galaxies) have
fixed directions. Since Earth rotates with respect to such a frame the fictitious
forces containing the angular velocity ω are necessary to get the correct motion
of e.g. a Foucault pendulum. Also the fact that rotating astronomical bodies are
flattened is well accounted for by the fictitious centrifugal force −mω×(ω×r∗).
It is the tiny difference between the angular velocity of the Earth relative to
the fixed stars and the angular velocity appearing in these equations that was
discovered by Gravity Probe B [1]. The inertial frames near the Earth rotate
slightly because the Earth rotates, according to general relativity. Today there
is no observational evidence that our universe is a rotating Gödel universe [29].

The question is much more complicated when it comes to translational ac-
celeration. When studying motion in a laboratory on Earth we are used to
including the gravitational force mg arising from our planet. If we denote the
non-gravitational force on our particle by K we then normally write down the
equation of motion

ma = K +mg. (4)

A critical person may now note that the particle, in fact, must also be affected
by the gravitational forces from the Sun, the Moon, the Galaxy, and so on. Let
us denote the acceleration that these gravitational forces would impart to our
particle by gf(r) at position r. To get an accurate equation of motion mgf must
then be added on the right hand side of (4).

We now realize, however, that the reference frame at rest on the Earth is not
really inertial (even neglecting rotation). Earth is freely falling in the external
gravitational fields from bodies other than the Earth. This acceleration will vary
with position, but not that much. Let us choose the value at the origin and
put gf(0) = af . The true equation of motion for a particle on a ( non-rotating)

3



freely falling Earth is then,

ma∗ = K +mg +mgf(r)−maf ≈ K +mg. (5)

The approximation can be made since gf(r) ≈ af for r-values of interest. The
fact that there is exact equality only at a point gives rise to tidal effects. The
Earth falls freely in the field of the Sun and the Moon but since the Earth is
extended all points are not subject to the same acceleration af = gf(0).

To summarize, when working in a lab on Earth I am in fact working in
an accelerated reference frame that accelerates in such a way that gravitational
forces mgf(r) from other bodies than the Earth itself are transformed away by a
fictitious force F

∗ = −maf = −mgf(0). The usual equation of motion (4) thus
works quite well, but the a occurring in it is in fact relative to an accelerated
reference frame and is thus really an a∗.

The precise acceleration of the Earth relative to the universe as a whole is
quite difficult to measure. The phenomenon of Doppler shift, however, makes it
possible to find the velocity of the Earth with respect to the cosmic microwave
background (CMB) quite accurately. Such measurements reveal that constant
velocity with respect to the CMB seems to correspond to inertial frames. This
possibility of identifying the rest frame of the CMB (the frame in which the
radiation is as isotropic as possible) with the frame in which the mass/energy
of the universe as a whole is at rest, constitutes an observational verification of
Mach’s principle (see Cheng [9], Sec. 10.5.4).

3 Newton’s second law and Einstein’s equations

Mach’s principle was one of the inspirations behind Einstein’s work on general
relativity but the precise connection is still not clear. Einstein discusses the
connection in his book The Meaning of Relativity [31] and outlines how the
cosmic mass/energy density influences the equations of motion of a particle (on
pages 100-102). A detailed derivation of these equations is given by Harris [20].

Let us make Mach’s principle more precise. Assume that the equation of
motion of a particle is of the form,

m(a − gu) = F , (6)

where gu is the acceleration of the universe as a whole. Then only the accel-
eration relative to the universe as a whole is what matters in the equation of
motion. I now proceed to show that this, at least is a possibility.

I will approach this problem from the point of view of the Einstein-Infeld-
Hoffmann (EIH) equations of motion [32, 33, 34]. Fock found the Lagrangian
that yields these equations [35] and this Lagrangian is also derived and discussed
in Landau and Lifshitz [36], Brumberg [37], and Kennedy [38]. The Lagrangian
is given by

L = L0 + L1 + L2, (7)
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where,

L0 = T0 − V0 =
∑

a

1

2
mav

2
a +

1

2

∑

a

∑

b6=a

Gmamb

rab
, (8)

and

L1 =
1

4c2

∑

a

∑

b6=a

Gmamb

rab

[

3(v2
a + v2

b)− 7va · vb −
(va · rab)(vb · rab)

r2ab

]

. (9)

L2 contains the first relativistic correction, ∼ (v/c)2, to the classical kinetic
energy T0, and higher order corrections to the gravitational interaction ∼ G2.
These terms are not of interest here since they will not influence the inertia of
a slow particle. Here rab = rb − ra is the vector from particle a to particle b,
and rab = |rab|.

The equation of motion for particle 1 is given by the Euler-Lagrange equation

d

dt

∂L

∂v1

=
∂L

∂r1
⇔ ṗ1 = F 1. (10)

All terms involving accelerations will occur on the left hand side here, so this is
what we need to calculate. Calculation gives,

∂L

∂v1

= m1v1 +
Gm1

2c2

N
∑

b=2

mb

r1b

[

6v1 − 7vb −
r1b(vb · r1b)

r21b

]

, (11)

for the, so called, generalized momentum p1 = ∂L/∂v1. Now assume that
particle 1 is at the origin in a homogeneous isotropic expanding universe of
density ρ, and with Hubble parameter H . The particles mb are then replaced
by mass elements ρ dV of position r and velocity v = Hr + u. Here u is an
overall velocity of the universe relative to the origin. We can then replace the
sum in (11) with an integral and get

p1 = m1v1 +
Gm1

2c2

∫

ρ

r

[

6v1 − 7(Hr + u)−
r(Hr2 + u · r)

r2

]

dV. (12)

We now calculate the integral on the right hand side.
We introduce spherical coordinates (r, ϕ, θ) and do the integration over the

visible universe. At the radius R of the visible universe the Hubble expansion
leads to recession at the speed of light,HR = c. The volume element in spherical
coordinates is dV = r2 sin θ dr dϕdθ. Without loss of generality we assume that
u = uez. Since r = r(sin θ eϕ + cos θ ez), where eϕ = cosϕex + sinϕey, the
scalar product term becomes

r(u · r) = r2u(sin θ eϕ + cos θ ez) cos θ. (13)

The integrations over the sphere of radius R will make the terms involving H
vanish for symmetry reasons, since these are multiplied by r. Nothing depends
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on the angle ϕ in the integral so the term multiplying eϕ also vanishes. Two
different integrals then remain to calculate, first

∫

ρ dV

r
= 4πρ

∫ R

0

rdr = 2πρR2, (14)

and then

∫

ρ cos2 θ dV

r
= 2πρ

∫ R

0

r dr

∫ π

0

cos2 θ sin θ dθ =
2

3
πρR2, (15)

due to the scalar product term.
This gives us the result

p1 = m1

[(

1 + 6
GπρR2

c2

)

v1 −

(

22

3

GπρR2

c2

)

u

]

. (16)

In order to understand this, the meaning of the quantity GπρR2/c2, which we
can rewrite,

σ ≡
GπρR2

c2
=

Gπ

H2
ρ, (17)

using R = c/H , must be investigated.
Studying cosmology using general relativity and the assumption of an ex-

panding homogeneous, isotropic universe one finds that there is a specific mass/
energy density ρc that makes (three dimensional) space flat [9, 10]. This density
is called the critical density and is given by

ρc =
3H2

8πG
. (18)

It is interesting to note that the critical density corresponds to the mass M
of the universe inside the Hubble radius R = c/H being such that the Hubble
radius is equal to the Schwarzschild radius R = 2GM/c2.

Comparing (18) with (17) we see that

σ =
3

8

ρ

ρc
≡

3

8
Ω, (19)

where Ω is standard notation in cosmology for the ratio of the density to the
critical density. The generalized momentum (16) of particle 1 now becomes,

p1 = m1

[(

1 +
9

4
Ω

)

v1 −

(

11

4
Ω

)

u

]

. (20)

Returning to my formulation of Mach’s principle in (6) it is seen to be real-
ized with this ṗ1 if Ω = 2. For this value of the density ratio the generalized
momentum is

p1 = m1

11

2
(v1 − u) ⇒ ṗ1 = m1

11

2
(a1 − gu). (21)
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I.e. for Ω = 2 the acceleration in Newton’s second law is relative to the acceler-
ation u̇ = gu of the universe as a whole. One also notes that the ”bare” mass
m1 has been ”renormalized” to1 m = 11m1/2.

4 Conclusions

We see that while forces, arising from F 1 = ∂L/∂r1 in (10), decrease at least
as r−2, the inertial terms in p1 decrease only as r−1. Consequently inertia has
an intrinsic non-local nature. It is thus difficult to investigate by local mea-
surements – the main reason that these matters remain obscure and intimately
connected to cosmology. This should be an important insight of these investi-
gations.

In reference [28] Vető has found that the fictitious Coriolis force −2mω×v∗

can be understood as due to the gravitomagnetic field from the rest of the
universe if Ω = 1. Support for such a standpoint comes also from investiga-
tions by Mart́ın et al. [24] where numerical Ω-values near 1 are found. Both
these references, however, use linearized forms of general relativity that neglect
the gravitational back-reaction of the accelerating particle on the background
universe, whereas the EIH formalism used here retains back-reaction effects to
linear order in the mass m1. This makes the results of [24, 28] comparatively
unreliable.

In conclusion I have elucidated Mach’s principle and found that a precise for-
mulation of the principle can be consistent with the Einstein-Infeld-Hoffmann
approximation to general relativity if the density of the universe is twice the crit-
ical density. This is in qualitative agreement with other investigations that find
that Mach’s principle requires the density parameter to be of order of magnitude
unity. Already Berry ([14], page 39) in his 1976 book found that simple estimates
required that the density of the Universe should be ρBerry = H2/(2πG) = 4ρc/3
to obey Mach’s principle. At that time the observed and inferred amount of
galactic matter was only 4 percent of this value. Nowadays we definitely know
that the order of magnitude of the mass/energy density of the Universe is such
that Mach’s principle is physically viable.
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1If this renormalization is not permissible one can interpret Eq. (20) as requiring that all
of the kinetic energy is due to interaction. Then the the m1v1-term in p

1
vanishes and one

concludes that the actual mass is m = m19Ω/4. Mach’s principle would then require that the
second term also has a factor 9/4 instead of the 11/4 obtained here.
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[24] J. Mart́ın, Antonio F. Rañada, and A. Tiemblo. On Machs principle: In-
ertia as gravitation. E-print arXiv:gr-qc/0703141v1, March 2007.

[25] J. David Nightingale. Specific physical consequences of Mach’s principle.
Am. J. Phys., 45:376–379, 1977.

[26] J. David Nightingale and John R. Ray. Comment on ”Specific physical
consequences of Mach’s principle”. Am. J. Phys., 46:586–586, 1978.
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[28] B. Vető. Gravitomagnetic field of the universe and Coriolis force on the
rotating Earth. Eur. J. Phys., 32:1323–1329, 2011.
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