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DISCUSSION OF RESULTS

How does our result compare with the accepted value?
Non-nuclear measurements (seismographic, air pressure,
earth displacement, etc.) performed at Trinity gave yield es-
timates which ranged from 5-15 kT.!° As previously stated
Anderson’s radiochemical analysis produced a figure of 18.6
kT. The currently accepted value is from 20-22 kT.” We
have done quite well, coming to within 35-40 % of the ac-
cepted value. We attribute this to two opposing sources of
error. It is very difficult to be quantitative in assigning un-
certainties to our assumptions—uniform distribution of fis-
sion products, and the deposition of 1% of the total *’Cs
activity within the 1200 yard radius of Ground Zero. The
first, uniform distribution almost certainly overestimates the
yield. Although we do not know its precise distance from
ground zero, the sample had to lie somewhere within the
roughly 400 yard “trinitite radius.” A distribution decreasing
with distance imPlies that the sample contains a larger frac-
tion of the total '*’Cs activity than we have calculated—we
should have used a larger “effective sample area” in our
calculation. On the other hand, the assumption of a 1200
yard cutoff almost certainly underestimates the yield—the
actual area over which the fission products were distributed
is larger, and the sample then represents a smaller fraction of
the total activity. The errors introduced here, then, tend to

cancel. (The 1% figure for the fraction of *’Cs left “in the
vicinity of the blast” could vary either way, but it probably is
good to within +0.5%. Its effect on our estimate cannot be
determined.)
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A simple model of a solid is created by use of a few charged point particles interacting only with
electromagnetic forces. Such a model cannot fix the size of the solid since the particles will be in
unstable equilibrium, but the shape will be determined by the requirement of equilibrium. It is then
easy to show that when this solid is in motion, it must Lorentz contract in the direction of the motion
(as compared with the transverse dimensions) in order for the charges to remain in equilibrium.

© 1995 American Association of Physics Teachers.

INTRODUCTION

From the earliest popular expositions’ to the present time,
students get the idea that rapidly moving bicycles and street-
cars “look” shorter. The Lorentz contraction is usually dis-
cussed in terms of the Lorentz transformation and not in
terms of atoms pulling and pushing on each other to create
the contraction. In fact, after the work by Terrell® students
(and professors) correctly believe that objects do not even
look shorter, but rather look as if they are rotated a bit. Thus
the connection between the contraction and the appearance
of an object is not so simple.

In an interesting paper by J. S. Bell on “How to teach
special relativity”” it is suggested that students would find
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relativity a less radical change from classical physics and
more easily understandable if the Lorentz contraction was
treated as a real physical effect due to motion dependent
forces acting on the body.

This is the paper in which Bell poses a little relativity quiz
supposedly failed by most physicists in the CERN lunch-
room. Two identical rocket ships, initially at rest one in front
of the other and connected by a string, accelerate with the
same acceleration program and thus retain the same front to
back separation that they started with (as seen from the origi-
nal rest frame). As they speed up, the string (as seen from the
original rest frame) wants to Lorentz contract. Since it is not
strong enough to pull the rocket ships closer together, the
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string breaks. True or false? The description is true: the mov-
ing string atoms pull on each other until the stress tension
breaks the string.

Bell then treats the shape change of a moving atom mod-
eled by classical motion under electromagnetic forces. This
part of the paper gets cumbersome and not very convincing.

It is the purpose of this note to demonstrate by a simple
model that the Lorentz contraction can be thought of as be-
ing due to required changes in the internal forces arising
from the motion. Although this point of view is not given
much attention today in most widely used textbooks, it was
the view of Lorentz himself prior to Einstein’s work.*

MODEL OF A SOLID SHAPE

In elementary physics courses a solid is often modeled by
a set of connected springs. This is not useful for the present
discussion since it would be necessary to postulate how the
spring forces and thus the shape would change with velocity.
Only for electromagnetic forces is their correct velocity de-
pendence well known. The difficulty in making a model in-
volving only electromagnetic forces acting on point charges
is the fact that there is no stable equilibrium state for such a
configuration. True stable systems require electromagnetism
and quantum mechanics, and a relativistic treatment would
be far beyond the comprehension of undergraduates.

However, there are configurations of static equilibrium for
charges under Coulomb forces, which can define a shape in
space. Two charges can never be in equilibrium, but three
charges can. If two equal (unit) charges are placed with a
third charge g midway between them, all three charges will
feel zero force if g=—0.25. The central charge feels no force
by symmetry and the attractive and repulsive forces on each
end unit charge exactly cancel. Three particles of charges
g=1, 1, —0.25 will be in equilibrium only if they are in a
straight line with the negative charge symmetrically in the
middle. Although the shape (symmetrical straight line) is de-
fined by requiring equilibrium, the size is not. The equilib-
rium is clearly unstable as the energy would be lowered if
one of the unit charges moves close to the negative charge
and the other unit charge moves off to large distance.

For four or more particles more interesting shapes can be
defined by requiring equilibrium. For example, n unit
charges on the n vertices of a regular polygon can have their
repulsive Coulomb forces exactly balanced by an appropriate
negative charge located at the center. If n=3 the required
charge at the center of the equilateral triangle is g=—1/3;
for n=4, the required central charge is ¢g=—(1/4+1/,2). We
will model a solid as a square of four unit charges with the
fifth central charge g=—(1/4+1/,2).

If the four unit charges are constrained to a circle of fixed
radius, the square configuration has stable equilibrium. With
no constraint, a change of size of the square involves no
energy change (neutral equilibrium) just like the case of the
three charges on a line. The square is clearly unstable since
the energy can be lowered, e.g., by bringing one of the unit
charges close to the negative central charge with the other
three going out to large distance.

For five point charges with g=1, 1, 1, 1, —(1/4+1/,/2), the
only static equilibrium shape is the square and not a rect-
angle or any other shape.
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THE MODEL SOLID IN MOTION

The shape of the model solid is defined by the condition of
equilibrium, that the force on each of the five point charges
vanishes. For the charges at rest, the force on each point is
the vector sum of the Coulomb forces due to the other four
charges, where

F=(qq'4mey)r/r’. (1)

This leads to the central g value above required for equilib-
rium.

For the same five charges in uniform motion with velocity
v in the x direction the forces will be different. At the loca-
tion of each charge there will be an E field due to the modi-
fied Coulomb interaction with each of the other charges, and
a B field due to their currents since the charges are moving.
Both fields will produce forces on the charge since it is also
moving. The form of these fields and forces was first calcu-
lated in the 19th century and can be understood by an under-
graduate physics student. A new derivation has been pre-
sented recently.’

The standard derivation as presented in the widely used
textbook by Resnick® uses the transformation of the fields in
a moving coordinate system to show that the Coulomb field
of a moving charge is

E=gq/4meyX(1— B*)(1— B2 sin® 9)3>xr/r?, (2

where 0 is the angle between r and the velocity v, and 8=v/
c. The charge and field points are taken at the same (not
retarded) time. This field is radial but not spherically sym-
metric, being modified from the usual Coulomb force by the
factors of B and sin 6.

The magnetic field is

B=¢,vXE. 3
The Lorentz force on each moving charge g’ is given by
F=q'(E+vXB). )

an expression valid in any coordinate system.

THE LORENTZ CONTRACTION SHAPE CHANGE

First repeat the force calculation for the case that the five
charges form a square as before, with two of the sides par-
allel to the velocity. The E field at the center due to the
charges on the corners of the square will vanish as before by
symmetry. However, at each corner the E field contributions
due to the charge —g at the center and due to the three other
corner charges will not add to zero as they did in the station-
ary case. It is the factor sin? @ in Eq. (2) that causes the
problem. This produces a net force on each of the corner
charges that is not canceled out by the magnetic force which
is also present. Thus the square shape is not in static equilib-
rium and the shape would change with time and cannot
model a solid.

Is there a shape for these five charges that is in equilibrium
when all are moving with velocity v? Of course the answer is
yes. Instead of a square let the four unit charges be arranged
in a rectangular shape with the side transverse to the motion
of unit length and the longitudinal side of length (1— .
That is, let it be a Lorentz contracted square with the nega-
tive charge still at the center.

The E field at the center of the rectangle will vanish as
before because of the symmetry of the rectangular figure and
of Eq. (2). The calculation of the E field at each corner of the
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rectangle with the help of Eq. (2) is completely elementary.
Use rectangular, x, y components and calculate the field at
the lower right-hand corner of the square. The field due to
the adjacent corner in the direction of motion has sin =0,
r?=1—, the Lorentz contracted length, and g=1. That E
vector has an x component only. The field due to the adjacent
corner transverse to the motion has sin #=1, r*=1, g=1 and
only a y component.

The E field at the corner due to the diagonally opposite
corner charge has r?=d? where d 1s the length of the dlag-
onal of the rectangle, d>=2— 2. Also sin’ §=1/d> and
again g=1. This E field is in the direction of the diagonal
and must be resolved into x and y components with the
factors cos @ and sin 6, respectively. The E field components
due to the charge at the center are of the opposite sign since
the central charge is ¢=—(1/4+1/{2). The r from the center
is half that from the diagonally opposite corner and 6 is the
same.

When the E fields at a corner due to the four other charges
are added together, the result is E=0. Thus the moving rect-
angle of point charges has no electric force acting at any of
the charges. Then from Eq. (3) it is seen that there are no B
fields acting either and thus there is no force on any part of
the moving rectangle of charges; they are in static equilib-
rium and will all continue to move with constant velocity v.

To be in equilibrium and thus act like a solid (of fixed
shape) the five charges must have this rectangular shape,
shortened in the dimension of the direction of motion by the
Lorentz contraction as compared to the transverse direction.
The forces change, due to the motion, in just such a way that
the only stress free state for the moving square is one in
which it is Lorentz contracted into a rectangle.

This is no surprise. The same result would follow from
application of the Lorentz transformation to the positions
(and times) of the five charges and to the strength and direc-
tions of the electromagnetic fields.

CONCLUSIONS

The simple static equilibrium model for a solid discussed
here defines the shape, but not the size of the object. Thus,
the elementary calculation presented does not show that the
string in Bell’s quiz must try to get shorter . and thus must
break—from this little model it might stay the same length
and just get a little fatter instead. However, the model does
give a simple physical explanation why a moving solid must
change its shape due to the Lorentz contraction. The internal
electromagnetic forces acting upon it change with motion in
just the right way to push and pull the object into the new
shape.

This calculation makes a suitable problem for an under-
graduate relativity course.

1G. Gamow, Mr. Tompkins in Wonderland (Macmillan, New York, 1940).

2J, Terrell, “Invisibility of the Lorentz contraction,” Phys. Rev. 116, 1041—
1045 (1959).

3). 8. Bell, “Collected papers on quantum philosophy,” Speakable and
Unspeakable in Quantum Mechanics (Cambridge University, Cambridge,
1987), pp. 67-80.

“D. Bohm, The Special Theory of Relativity (Benjamin, New York, 1965),
pp. 23-25.

%0. D. Jefimenko, “Direct calculation of the electric and magnetic fields of
an electric point charge moving with constant velocity,” Am. J. Phys. 62,
79-85 (1994).

®R. Resnick, Introduction to Special Relativity (Wiley, New York, 1968).

Entangled quantum systems and the Schmidt decomposition

Artur Ekert

Merton College and Physics Department, Oxford University, Oxford, OX1 3PU, United Kingdom

Peter L. Knight®

Fakultat fur Physik, Universitat Konstanz, D-7750 Konstanz, Germany

(Received 20 June 1994; accepted 31 October 1994)

Quantum systems comprised of interacting subsystems become highly correlated and their
individual identities become entangled. This entanglement can be described using the Schmidt
decomposition, in which a pair of preferred orthonormal bases can be constructed to emphasize the
tight correlations between two quantum subsystems. Examples are given of how the Schmidt basis
can be exploited to shed new light on entangled subsystems in quantum optics, paying special
attention to two-mode squeezed states and to atom—field interaction. © 1995 American Association

of Physics Teachers.
I. ENTANGLEMENT

A composite quantum system, i.e., one that includes sev-
eral quantum objects which are denoted subsystems, can be
prepared in a so-called entangled state.’ The consequences of
this fact are anything but trivial and lead to various formu-
lations of Bell’s theorem.” In this paper we are not concerned
with the widely publicized philosophical implications of
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Bell’s theorem and concentrate, instead, on a mathematical
formulation known as the Schmidt decomposition, which
apart from being a convenient mathematical tool also pro-
vides addltlonal insights into the nature of quantum
entanglement.’

Imagine two subsystems %4 and 2, with which the state
spaces #, and #, are associated. As usual, we associate the
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