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I. INTRODUCTION

The construction of new physics is among the most fascinating scientific activities, for it requires an extremely deli-
cate balance between conservatism and innovation. The new theory, of course, cannot start out “from scratch”, and
so, apart from demonstrating internal mathematical consistency it should, in general, conform to well-established
phenomenological principles and to current empirical data. But, arguably, explaining ‘old evidence’ should not be
its final goal, especially when rival contenders offer equally plausible explanations. In order to be counted as more
than a mere possibility proof—yet another consistent formalism that can reproduce all known predictions of earlier
theories—the new theory should also generate some predictions in the new domain it purports to describe, that
can—at least in principle—be experimentally confirmed.

Theoretical physicists often anticipate the final stage of this process and come up with heuristic arguments that
are sufficient to uncover the empirical consequences of new theories even before precise predictions can be stated.
For philosophers who defy Otto von Bismarck’s famous quip (“Laws are like sausages, it is better not to see them
being made”), this state of affairs allows an interesting glimpse into the actual practice of physics.

Such an opportunity presents itself today in the domain of quantum gravity (QG), where different theoretical
frameworks struggle to unify quantum mechanics with general relativity. In this paper I focus on one of the features
that many of these frameworks share, namely the notion of a minimal—or fundamental—length, and on the lively
debate that has ensued on the phenomenological consequences thereof. In particular, I shall examine two theses that
have emerged in this context: (a) the idea that minimal length ultimately entails deviations from exact Lorentz in-
variance, and (b) the idea that such deviations inevitably indicate a violation of the principle of relativity by singling
out a preferred frame. In recent years a possible surrogate has surfaced,1 which re–interprets the consequence of the
fundamental length in QG as a non–linear deformation of the action of the Lorentz group (hence the name, DSR, for
Deformed Special Relativity), and in so doing accepts (a) and rejects (b).

Modifying the standard energy–momentum dispersion relations to include an additional observer–independent
scale, DSR has been developed so far to little more than a speculative kinematical structure, a nontrivial Minkowski
limit of a hypothetical solution to the quantum gravity problem based on a discrete space(time) picture in which the
Planck length plays a fundamental role. As such it is highly controversial. First, the question of how such a structure
may fit as a research program within QG is still open. Second, although attempts have been made to translate it
into a consistent field–theoretic framework,2 no such generally accepted and unique translation exists, each attempt
leading to different phenomenological consequences. Finally, current experiments, in the highest energies we can
manage,3 show no sign of departure from exact Lorentz symmetry.

While so far there seems to be little physical motivation for deforming the standard energy–momentum dispersion
relations (apart from the fact that there are good reasons to think that a fundamental QG theory will involve spatial
discreteness), from the methodological perspective I am interested in here the attitude within the QG community
towards DSR exemplifies nicely the aforementioned delicate balance between conservatism and innovation. On
one hand one would like to establish “quantum gravity phenomenology”, and thus to transcend the old pessimistic

1 Amelino Camelia (2000; 2001); Magueijo & Smolin (2002); Smolin (2005).
2 Judes & Visser (2003); Kimberly et al. (2004); Hossenfelder (2007ab).
3 See, e.g., Adamson et al. (2008).
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dimensional argument,4 that says we would never be able to test quantum gravity effects, as the only physical regime
where these effects might be studied directly is in the immediate post big–bang era of the universe—not the easiest
thing to probe experimentally; on the other hand one would like to keep intact as much ‘old’ physics as possible,
Lorentz invariance being one of the pillars of quantum field theory. In this paper I flesh out this intriguing situation
by focusing on two challenges DSR faces: the first aims to undermine (a) by arguing for a compatibility between
discrete spatial geometry and Lorentz invariance;5 the second aims to establish (b) by arguing that any non–linear
energy–dependent deformation of the Lorentz symmetry group will single out a preferred frame.6

The plan of the paper is as follows. In the sections II and III I briefly set the stage, presenting the intuition that has
led to DSR. In section IV I analyze the two challenges DSR faces, pointing in section V at a methodological symptom
these challenges share that makes them unconvincing as arguments against DSR. Limited conclusions are given in
section VI.

II. WHY FUNDAMENTAL LENGTH?

Is there any theoretical reason to expect space to be discrete rather than continuous? Apart from the recent “compu-
tational” view of nature,7 that seems to require such a fundamental discreteness, in theoretical physics the view that
space, or geometry, are “quantized” can be found in some of the attempts to solve the quantum gravity problem.
Recall that this problem, at least in its scientific facet,8 is one of producing predictions, in a logically consistent way,
for situations in which both gravitational (general relativistic) effects and particle physics (quantum field–theoretic)
effects cannot be neglected.9

Early in the 1940s, when Heisenberg was developing his S–matrix theory, he observed that in order to avoid di-
vergences (e.g., infinite self–energy of the electron or infinite polarization of the vacuum), the theory of elementary
particles must contain a fundamental length scale.10 Heisenberg’s intuition was formulated more precisely by Mead
who, while elaborating on a famous thought experiment,11 showed that the source of the QFT divergences could be
traced to the twofold assumption that arbitrary small particles (or point particles) can exist “in principle”, and that
they can be localized with infinite precision and thus serve (via local interactions) as test bodies for measuring the
various field quantities. Yet if one assumes that no particle can be localized more closely than its Compton wave-
length (without losing its identity as a single particle), one could postulate that no elementary particle can exist with
a radius smaller than a certain fundamental length, which would lead to natural cutoff for the divergent integrals.
The introduction of a fundamental length scale amounts to, then, a limitation on the possibility of measurement. If
the mass of the particle is m, its position would be uncertain by ∆x ≥ 1/m , hence the fundamental length scale
(assuming an order of magnitude of the mass of the heaviest known baryon) would be l ∼ 10−16cm.12

The success of the renormalization program overshadowed the interest in fundamental length within QFT, but this
interest was revived when it was realized that fundamental length could also arise when one considers generaliza-
tions of general relativity from a quantum field–theoretic perspective.13 General relativity involves a characteristic
length, namely the Schwarzschild radius, that tells us (via Einstein’s field equations) when energy densities and

4 e.g., Isham (1995).
5 Rovelli & Speziale (2003).
6 Schützhold & Unruh (2003).
7 E.g., Wolfram (2001).
8 Since in the particle physics approach to this problem gravity is subsumed as just another gauge interaction, the above distinction between

particle physics and gravity may seem artificial. However, I take it that even in this approach, e.g., string theory, theoreticians are interested in
producing logically consistent predictions.

9 For reasons that would become clear below, in what follows I shall consciously ignore an opposite view, that has emerged since the early 1980?s,
according to which the problems of quantizing gravity within the experimentally accessible situations are similar to those which arise in a host
of other non–gravitational applications throughout physics where non–renormalizable theories are involved. On this view, namely effective
field theory (EFT), the ‘quantum gravity problem’ is defined differently, as the size of quantum corrections in gravitational effects is estimated
to be extremely small, practically negligible in most of the present experimental tests of gravity. For an exposition see, e.g., Burgess (2004).

10 Cushing (1982, 46); for more references on the notion of fundamental length in field theory see Prugovecki (1995, 9–12).
11 Bohr & Rosenfeld (1933).
12 Mead (1964, B849–B850).
13 E.g., Pauli, commenting on a talk by O. Klein (1956) in the 50th anniversary of relativity theory, is quoted as saying:

It is possible that this new situation [indeterminacy in space–time of the light cone — AH] so different from quantized theories
invariant with respect to the LORENTZ group only, may help to overcome the divergence difficulties which are so intimately
connected with a c–number for the light–cone in the latter theories.

I thank an anonymous referee for this reference. Other famous landmarks in this approach are Deser (1957) and Wheeler (1957).
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masses, concentrated in a given region, reach the point at which gravitational effects cannot be ignored. Funda-
mental length appears here when one considers, say, a massive particle whose Compton wavelength is near to its
Schwarzschild radius. To describe such a case one would require both general relativity and quantum field theory,
hence, presumably, quantum gravity. In such a theory where both QFT and gravitational interactions are taken into
account, or so the argument goes,14 the fundamental length would be operationally equivalent to fluctuations in the
gravitational field.

These theoretical considerations introduce the fundamental length into quantum gravity as both a consistency
requirement (i.e., divergences cutoffs) and as an operational restriction on measurements of spatio–temporal rela-
tions (when Planck’s length is regarded as an absolute lower limit for the operational distinguishability of spacetime
locations). Remarkably, many contenders to the solution of the quantum gravity problem do, in fact, involve this
notion.15 One such theory is Loop Quantum Gravity (LQG): combining the two fundamental principles of general
relativity—background independence and diffeomorphism invariance—with the standard techniques of quantum
mechanics, LQG derives spatial discreteness by predicting that some operators representing geometrical quantities
have discrete spectra.16 These operators are not themselves gauge–invariant,17 but it has been argued that under
plausible assumptions their spectra provide evidence for physical discreteness of space.18

Given the tiny order of magnitude of this feature,19 and the fact that current experiments are known not to provide
anywhere near the correct resolution to reveal it, the obvious question is whether such a prediction has any observ-
able consequences. It is one thing (and a truly admirable one at that) to give a consistency proof for a putative theory
of quantum gravity by reproducing classical general relativity as an approximation,20 or by precisely calculating
Bekenstein’s and Hawking’s results for black hole entropy and radiation, respectively;21 it is quite another to point
at novel empirical tests that would lend support to the ontological claim regarding discrete spatial geometry, over
and above the mere plausibility of such a claim in a consistent theory. This is just another way of saying that spatial
discreteness is, on final account, a contingent matter of fact, and not a matter of methodological predilections, in this
case, a predilection about the unification of quantum mechanics with general relativity and an urge to quantize the
gravitational field.22

Whence the idea, explored next, that discrete spatial geometry might entail a departure from exact Lorentz invari-
ance at energy regimes close to the Planck scale, that may be indirectly probed in cosmological contexts.

III. DOES PHYSICAL DISCRETENESS BREAK LOCAL LORENTZ INVARIANCE?

A. The basic intuition

As everybody knows, “[m]oving clocks run slowly; moving sticks shrink”.23 What happens, however, when a stick
has the minimal length, hence it cannot shrink any further when set in motion relative to an observer? Put differently,
does local Lorentz invariance break down when space becomes discrete?

Prima facie, a lattice breaks continuous rotational and translational symmetries. To see this think of a cube. It has
many rotational symmetries. It can be rotated by 90 degrees, 180 degrees, or 270 degrees about any of the three axes
passing through the faces. It can be rotated by 120 degrees or 240 degrees about the corners, and by 180 degrees
about an axis passing from the center through the midpoint of any of the 12 edges. Now think of a sphere. it can be
rotated by any angle. In this sense the sphere respects rotational invariance: all directions are on a par. The cube, on
the other hand, is an object which breaks rotational invariance: once the cube is there, some directions are more equal

14 See, e.g., Mead (1964, B857–B860). Note that the putative fundamental length need not be necessarily the Planck length (Lp ≡
p

~G/c3 ∼
1.6·10−33cm). However, by combining the two characteristic lengths of quantum field theory and general relativity one obtains the fundamen-
tal length at that order. See, e.g., Calmet et al. (2004); Calmet (2008).

15 Garay (1995).
16 Rovelli & Smolin (1995); Rovelli (2004, 249–259).
17 For a recent debate on this issue see Dittrich & Theimann (2007) vs. Rovelli (2007).
18 Rovelli (1993); Smolin (1994); Rovelli (2007, 4–5). Let me emphasize that for the purpose of this paper (which is to highlight a specific methodolog-

ical practice), it is immaterial whether, on final account, these geometrical operators are truly physical. What’s important is that some physicists
who believe so come up with heuristic arguments the aim of which is to uncover the phenomenological consequences of this prediction.

19 The smallest possible nonzero volume being about a cube of the Planck length, i.e., 10−99cm3).
20 Binachi et al. (2006).
21 Ashtekar et al. (1998); Rovelli (2004, 308–312).
22 See, e.g., Rosenfeld (1963) and Callender & Huggett (1999, 5–13).
23 Mermin (2005, ch. 6).



4

than others. In a similar vein, a lattice breaks translation invariance: it’s easy to tell if a lattice is shifted sideways,
unless one shifts it by a whole number of lattice units.

This intuition seems to imply that the introduction of a fundamental lattice structure to space will result in vi-
olations of local Lorentz symmetry, as any particular choice of lattice would favor the spatio–temporal directions
directed by the adopted lattice points. For example, we would expect Lorentz boost symmetry violations to be
manifest in small–scale corrections (or deformation) of dispersion relations E2 = c2p2 + m2c4, just as the atomic
structure of matter modifies continuum dispersion relations once the wavelength becomes comparable to the lattice
size. From a phenomenological perspective, under such deformed dispersion relations the velocity of light might
become energy (or energy–density) dependent.

Does this mean a return to the notion of a preferred frame? Does LQG take us back to the 19th century ether?
Early calculations of such deviations from Lorentz symmetry indeed endorsed such a notion.24 It was also admitted
that the predicted deviation was mediated through the breaking of CPT symmetry.25

Since the predicted modifications of the dispersion relations depend on (energy/length) scale, current experi-
ments, which confirm exact Lorentz invariance and CPT symmetry and give no clue to deviation therefrom, are
insufficient to rule them out.26 However, there is an ongoing attempt within the framework of effective field theory
(EFT), to derive possible constraints that can be imposed on violations of Lorentz invariance and CPT symmetry.27

One argument that seems to emerge in this context is that if there were some deviations from exact Lorentz in-
variance and CPT symmetry, they should have appeared in energy levels much lower than those predicted.28 In
particular, or so this argument goes, the calculations of the deviations from exact Lorentz invariance in theories
that predict its breakdown, that locate the observational window for these effects beyond current accessible data
are erroneous and misleading as they are dealing only with free particles and neglecting standard interaction terms.
However, the argument continues, once one includes known elementary interactions in the calculation, and in par-
ticular self–energy, the predicted violations are enormously amplified to levels which have already been probed, and
in which Lorentz invariance was found to be exact. Since we have seen no departure from exact Lorentz invariance
in those low energy regimes, the argument concludes, theories that predict the breakdown of Lorentz invariance and
CPT symmetry have either been already falsified, or require an ad hoc fine–tuning that makes them methodologi-
cally suspect. Other constraints that are cited as sufficient to dampen enthusiasm for improved searches for Lorentz
invariance violations and that purport to lend support to the claim that the existing unsuccessful searches suffice
by many orders of magnitude come from astrophysics.29 Combined with the above EFT–based constraints, these
considerations seem to suggest that Lorentz invariance and CPT violations suppressed by the ratio E/Ep (where Ep

is Planck energy) are already ruled out by experiments.30

The thrust of these considerations, however, is still under dispute. First, as we shall see below, interaction is a
vastly open issue in QG; it is hard to see how one can make a decisive argument based on it. Second, while it should
conform to the predictions of EFT in the low energy regime, any theory of QG also purports to describe nature in a
particularly confined scale of extremely high energy, exactly where EFT is inapplicable:31

None of the renormalizable versions of [electrodynamics, the electroweak theory, quantum chromo-
dynamics and even General Relativity] really describes nature at very high energy, where the non–
renormalizable terms in the theory are not suppressed . . . All of these theories lose their predictive power
at a sufficiently high energy. The challenge for the future is to find the final underlying theory, to which
the effective field theories of the standard model and General Relativity are low–energy approximations.

Finally, even more important is the fact that the two central features of this interesting debate on the appropriate
energy scale for probing QG effects are unacceptable from the perspective of LQG. As a background independent
theory, LQG admits no frames, preferred or otherwise. Moreover, if the goal is to point at an empirical test of an
underlying discrete space, then one should look for signatures of this feature that are not masked by additional
mechanisms such as CPT violations.32

24 See, e.g., Gambini & Pullin (1999).
25 Recall that the CPT theorem says that violations of CPT symmetry imply violations of Lorentz invariance, but not vice versa. See, e.g., Bell

(1955).
26 Analogously, one would not think of ruling out special relativity simply because one’s bare eyes fail to detect time–dilation.
27 See, e.g., Myers & Pospelov (2003).
28 Collins et al. (2004).
29 Jacobson et al. (2003).
30 Quadratic modifications, however, are not yet ruled out by these considerations. See, e.g., Amelino Camelia (2003b) for a proposal.
31 Weinberg (2009). See also Mattingly (2008, 5-6).
32 Jacobson et al. (2003, 1021); Smolin (2005).
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B. Deformed special relativity

Enter DSR.33 At its base lies the premise that special relativity (characterized by Minkowski spacetime, or equiva-
lently, by the Lorentz covariance of the fundamental non–gravitational interactions) is only an approximate theory
and may not be applicable when (quantum) gravitational interactions are present. What DSR offers is a modification
of special relativity that is not committed to a preferred frame, and links deviations from exact Lorentz invariance to
the existence of a fundamental length by introducing the latter as an additional observer–independent scale in the
kinematical structure, over and above c (the velocity of light).

A historical analogy might prove instructive here.34 One could describe the transition from Galilean spacetime
to Minkowski spacetime as a consequence of the introduction of an observer–independent velocity scale, namely c.
Once we accept c as such (“the light postulate”), the kinematical structure employed by the theory changes, and with
it the symmetry group that characterizes this structure. Consequently, the simple velocity addition law in Galilean
relativity (which involves no velocity scale) v′ = v0 +v is “deformed” and is replaced with the velocity addition law
that takes c into account: v′ = (v0+v)/(1+v0v/c2). Clearly, what this means is that even if the mathematical structure
that best characterizes our spacetime is Minkowskian, in small enough velocities we could still approximate it as
Galilean, while keeping in mind, of course, that there are no preferred frames (i.e., that simultaneity is still relative).

DSR involves a similar kinematical shift. It introduces yet another observer–independent scale, namely a fun-
damental length scale of the order of Planck length.35 By accepting this length scale, we could still maintain the
principle of relativity (i.e., that the laws of physics take the same form in all inertial frames) and just modify the
transformation rules between frames to preserve the new scale (as we did in the shift from Galilean to Lorentz in-
variance). Once more, this means that while the mathematical structure that best describes our space is discrete, in
low enough energies (or large enough wavelengths) we could still approximate it as continuous. In order to accom-
modate a fundamental length (or, equivalently, a maximum energy) as an observer–independent scale in the theory,
DSR suggests a non–linear modification of the action of the Lorentz group on the momentum space. As one would
expect, the consequences of this deformation for conservation and composition laws are highly non–trivial.36

At this stage there are several strategies to translate the kinematical structure of DSR into a consistent field–
theoretic framework that can generate testable predictions. While all these strategies agree on the starting point,
namely a Planck scale modification of the dispersion relation between energy and momentum, they disagree on the
possible consequences of these modifications, e.g., possible variations in the velocities of massless particles, and, if
so, whether these variations depend on energy or energy–density.37 While both these approaches lead to in–principle
falsifiable predictions, in forthcoming experiments with gamma–ray bursts (GLAST) the former proves testable in
practice while the latter doesn’t. Be that as it may, since these predictions are different from a straightforward break-
down of Lorentz invariance (and at least in the former case, also from exactness thereof), proponents of DSR see it
as a promising route to the much sought for “quantum gravity phenomenology”.38

From a broader perspective, one may ask what role DSR should play in the QG research program. One way to
answer this question is, again, with the analogy to special relativity. The latter may be described as a kinemat-
ical constraint on the non–gravitational interactions, quantum–field–theoretic laws being Lorenz covariant. It is
thus plausible to assign DSR a similar role in constraining the dynamics of future QG theories which extend QFT–
interactions to include gravity. Such an analogy fits well with one of the major requirements of DSR, namely the
requirement to approximate special relativity (and the Lorentz group) in regimes where gravitational interactions
can be neglected. Compelling as it may seem, however, this analogy must be handled with care; while not fatal to the
project, there is an important disanalogy here which should be pointed out. Since all observers agree on the physics
once the fundamental length scale is factored into their measurements, DSR establishes a deformation of special
relativity without giving up the principle of relativity itself. But how, in the framework of this theory, can we probe
the ontological claim that space is fundamentally discrete, or that the Planck length is physically meaningful? After
all, the fact that by combining other physical scales we can construct Lp with dimensions of a length is immaterial
to its meaningfulness. In particular, while c enjoys a robust body of data suggesting its physical interpretation as the
speed of light, so far we have no hint on the physical interpretation of Lp.

This disanalogy underlines what some see as the main problem with DSR, namely the lack of physical motivation
for deforming special relativity over and above the theoretical intuition regarding spatial discreteness and the hope

33 Amelino Camelia (2000; 2001); Maguiejo & Smolin (2002; 2003).
34 Amelino Camelia (2000).
35 Thus some interpret DSR to read Doubly Special Relativity.
36 Magueijo & Smolin (2003); Judes & Visser (2003); Girelli & Livine (2005).
37 See Amelino Camelia (2006) for the former, and Hossenfender (2007) for the latter.
38 Smolin (2005).
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to turn QG testable. Here one should note that in its early days DSR did in fact enjoy such a motivation, namely
anomalous observations in energy thresholds of cosmic rays.39 However, discouragingly for its followers, it is now
acknowledged that DSR cannot (and doesn’t) predict these anomalies.40 Other try to motivate the theory from
cosmological considerations,41 but these attempts also lack an empirical underpinning. On the other hand, special
relativity has been tested again and again, and still remains “in remarkably rude health”.42

Note, however, that the absence of empirical motivation is not unique to DSR; in fact all competing QG programs
currently share this problem. Neutral with respect this issue as I am, my sole intention in what follows is to defend
DSR against a different type of criticism, one which relies not on (missing) empirical grounds but rather on a priori
reasoning.

IV. CONSERVATISM VS. INNOVATION

Taking stock, a number of theoretical considerations from relativistic quantum mechanics and general relativity
seem to indicate that a consistent theory of quantum gravity should involve a fundamental length scale, either as
an operational limit on the distinguishability of spacetime locations, or as a physically meaningful feature arising
from the spatial discreteness. One possible and highly controversial consequence of this feature is a non–linear
deformation of the action of the symmetry group of the special theory of relativity, allowing Lorentz invariance to
emerge as an exact symmetry in the low energy limit. By keeping the additional length scale introduced into the
theory observer–independent, such a deformation is still consistent with the principle of relativity: it doesn’t single
out a preferred frame. Nevertheless, it still has phenomenological consequences, such as energy (or energy–density)
dependence of the velocity of massless particles. The more enthusiastic theoreticians believe the situation serves to
demonstrate that the field of quantum gravity has matured to the point it can make contact with experiments.43

Since its conception, DSR has generated a heated debate within the QG community, that can be nicely characterized
according to the following two theses: (a) minimal length implies deformation of Lorentz invariance, and (b) these
deformations single out a preferred frame hence imply a violation of the principle of relativity. As explained, DSR
accepts (a) and rejects (b). In what follows we shall discuss two arguments to the contrary: the first rejects (a);
the second aims to demonstrate that if one accepts (a) then (b) must follow. The claim I would like to defend here
is that these two arguments are unconvincing as they both tacitly assume what DSR denies, namely the universal
applicability of QFT, and in particular its applicability in a regime that has not yet been tested.

A. Violations of Lorentz invariance are not implied by LQG

There are several options open for one who would like to reject thesis (a). For example, one might agree with
the general intuition about the incompatibility of a lattice structure with a continuous symmetry but argue that
this intuition fails for some specific cases, supplying a counterexample; or one might try to undercut this intuition
altogether, arguing that violations of Lorentz invariance are simply uncalled for in a theory like LQG, hence not to
be expected.

Taking the first route there exists at least one candidate for a solution of the quantum gravity problem, namely the
causal set approach,44 that predicts a lattice structure of spacetime but nevertheless entails no observable violations of
Lorentz invariance. Such peaceful coexistence is achieved with the help of the familiar maneuver of coarse graining:
violations of Lorentz invariance are deemed possible but also highly improbable in suitable limits. Philosophers
of science conversant in the foundations of statistical mechanics would recognize this strategy, that goes back to the
founding fathers of the kinetic theory of gases who argued for the compatibility of time–reversal–invariant dynamics
with macroscopic irreversibility.45

The second route leads to a direct attack on the basic intuition underlying thesis (a). Taking it one may argue that
LQG, while predicting spatial discreteness, doesn’t imply violations of Lorentz invariance, hence these will not be

39 The anomaly, known as ultra–high–energy cosmic ray, was first observed by Linsley (1963).
40 Amelino Camelia (2007a).
41 Magueijo (2003).
42 Amelino Camelia (2007b, 802).
43 Smolin (2006).
44 Dowker et al. (2004).
45 Hagar (2005).
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observed if the theory is true. An argument to this end is defended in great length and detail in (Rovelli & Speziale
2003). A shorter version of this argument reappears in Rovelli’s monograph Quantum Gravity (2004, 316–318).

The argument begins by recalling the apparent inconsistency between discrete geometry and exact Lorentz in-
variance (see section III.A above): since length transforms continuously under a Lorentz transformation, a minimal
length such as Lp (or a minimal area Ap ≈ L2

p, which is the corresponding measure in LQG) is going to get Lorentz
contracted. If an observer at rest measures the minimal length Lp , a boosted observer will then observe the Lorentz
contracted length L′ = γ−1Lp (here γ = 1/

√
1− v2/c2 is the Lorentz–FitzGerald contraction factor) which is shorter

than Lp, and therefore Lp cannot be the minimal length. This “simple minded”46 intuition is then deemed “wrong,
because it ignores quantum mechanics”.47

Rovelli’s idea to resolve the apparent conflict can be summarized as follows: (1) Minimal length is not fixed
property of the geometry of space. (2) It is the lowest non–zero eigenvalue in the discrete spectrum of a quantum
operator. (3) Boosted observers will measure the same spectrum, with the same minimal eigenvalue. (4) Boost
operations will change the probability distribution over the eigenvalues (but the minimal length remains untouched).
(5) Therefore, the minimal length does not change, and there are no ‘sub-minimal’ contractions.

In order to analyze this argument we need to unpack it first. (1) and (2) amount to saying that in LQG length
(and area, and volume—everything said here holds mutatis mutandis for all three) are not classical quantities, but
rather quantum observables with discrete spectra which are, according to (3) shared by boosted and non–boosted
observables, and for which the minimal length (area, volume) is the lowest positive eigenvalue. But in order for (4)
to hold, boosted observables should not commute with the original observables measured by an observer at rest, i.e.,
if the system is in an eigenstate of A (the area operator at rest), it must not be in an eigenstate of A′ (the ‘boosted’
area operator). Only then would (5) follow.

The gist of the argument hinges on a famous counterexample to the intuitive conflict between discrete spectra
and continuous symmetries.48 That counterexample shows that spatial rotation symmetries of angular momentum
in non–relativistic quantum mechanics are not violated by the discreteness of spectra of the angular momentum
components due to the non–vanishing commutation relations between these components. The non–commutativity
prevents the theory from making verifiable predictions about the continuous symmetry, in a manner similar to the
way in which measuring a position of a particle in non–relativistic quantum mechanics prevents us from sharply
predicting its momentum. Hence, it is improper to say that the symmetry breaks when acting on operators with
discrete spectra.

To complete his argument, Rovelli must show that the area observable at rest A and its Lorentz–transform A′

do not commute, i.e., that [A,A′] 6= 0. This is done by noticing that due to the relativity of simultaneity, the two
observers (‘at rest’ and ‘boosted’) measure the gravitational field on their surface with a timelike separation,49 and
since no quantum field operator commutes with its time derivative, the two functions of the gravitational field A
and A′ do not commute.

Rovelli’s argument has been given a lot of credit in the LQG community, and many cite it side by side with
the above counterexample.50 Further analysis reveals, however, that at least in its current form, the argument is
incomplete, and when completed, is still too weak to rule out DSR.

The initial step in this analysis was taken in a couple of penetrating papers by one of the first proponents of DSR.51

To understand the crucial problem here it is instructive to return to compatibility example Rovelli relies on. There
it was argued that because a measurement of one component of the angular momentum, say Lx, introduces (in
general) a significant uncertainty concerning the other components, Ly and Lz , one can claim that quantum theory
gives no verifiable predictions on the fate of the continuous rotational symmetry. For this result to hold, however,
the necessary requirement is that at least some of the procedures that are suitable for a sharp measurement of Lx are
not such that they depend on sharp information of Ly and Lz .52

But while this operational independence does hold for angular momentum, it is not proved, let alone mentioned,
in Rovelli’s argument!

In fact, when one inquires further into the operational meaning of area measurement, one discovers that the non–
commutativity that Rovelli’s compatibility argument requires is actually a non–commutativity between the area

46 Rovelli & Speziale (2003, 1).
47 Rovelli (2004, 316).
48 Snyder (1947).
49 Rovelli & Speziale (2003, 2); Rovelli (2004, 317–318).
50 E.g., Ashtekar & Lewandowski (2004, R136).
51 Amelino Camelia (2002); (2003a).
52 Amelino Camelia (2003a, 25–28).
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operator and the velocity operator of the surface, namely [A, v] 6= 0 .53 Consequently, the operational independence
that holds in the case of angular momentum becomes highly suspect in Rovelli’s case.

To see why, let’s imagine that a sharp measurement of A, which induces an unsharpness on the measurement of
v, required a sharp value of v in order to be performed in the first place. Now recall that the non–commutativity
result ([A, v] 6= 0) is necessary and sufficient to establish premise (4) in Rovelli’s compatibility argument. But how
can this non–vanishing commutation relation between the area and its velocity be physically meaningful when the
area measurement itself requires sharp knowledge of the velocity?

Think, for example, of the following attempt to devise a suitable area measurement procedure that uses only
time measurement of light bursts (assume for simplicity that we have previously established that the surface is
rectangular, so that by measuring two sides one can obtain the area). The area of the surface should be obtained
from two time–of–flight measurements T1 and T2 (see figure).54 However, it is not sufficient to measure T1 and T2

in order to obtain an area measurement: it is also necessary to know the velocity v of the surface! For if the surface
is at rest the area will be deduced from the (T1, T2) measurement as A = T1·T2·c2/4. But if the surface is moving
with speed v along the direction of the T1 measurement–procedure one would instead deduce from the (T1, T2)
measurement that A = T1·T2·(c2 − v2)/4 .

���������

���������
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In order to establish premise (4) in his argument, Rovelli must present us with an area measurement procedure
that is operationally independent of the knowledge of the surface velocity. This, however, is a very difficult task, as,
at least in the flat spacetime situation considered here, “all the commonly considered length–measurement–procedures
do require sharp knowledge of the velocity of the ruler in order to achieve a sharp measurement of its length”.55

Note also that in the absence of such an alternative measurement procedure the only area one could measure is one’s
own ‘rest–area’ (where v is known to be 0).

Here I would like a suggest a further step in the analysis. My claim is that even if one could come up with an alternative
area measurement procedure that is operationally independent of the knowledge of the velocity of the surface, Rovelli’s argument
is still too weak to rule out DSR.

Consider two observers (“at rest” and “boosted”), each holding a surface with minimal area in his rest frame.
As long as the two observers do not compare any quantity (including their respective surface ‘rest–areas’), there
should be no inconsistency between spatial discreteness and exact Lorentz invariance. And yet, agreement between
different frames requires a comparison; an observer in one frame cannot actually ‘see’ the surface in the other frame
without probing it. If such a comparison is to be done, however, it must involve some interaction process.56 The
crucial question is the following: what is the appropriate mathematical structure one should use to describe this
interaction that also maintains the minimal length observer–independent?

53 This arises from the fact that, at least in the case which is investigated here of a flat surface with an area A in a flat spacetime, the Lorentz boost
transforms the area A into the area A′ in a way that is continuous and depends on the velocity v of the surface. See Amelino Camelia (2003a, 30).

54 Amelino Camelia (2002, 46–48).
55 Amelino Camelia (2003a, 30) [my emphasis].
56 Hossenfelder (2006).
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Take a putative measurement procedure that uses three identical clocks, two of which are sent to each of the far
ends of the surface and back with an arbitrary velocity. Now the length of each one of the two dimensions of the
surface can be calculated from the time–discrepancy between each of the two clocks and the third one, similar to
the twin paradox, using a relevant transformations group. But what guarantees us (kinematically) that the correct
transformations group in this regime is the Lorentz group, or that (dynamically) the dispersion relations that underlie
such an interaction between the clocks and the surface are the standard special–relativistic ones?

This is exactly the point of contention.
Recall that underlying DSR is the assumption that any interaction between the clocks and the surface would be

constrained by kinematics different from standard QFT (since in this case both QFT effects and gravitational effects are
relevant). This means that when completing Rovelli’s argument with a measurement procedure that is independent
of the knowledge of the velocity, one must be careful not to treat the interaction required by such a procedure as a
priori Lorentz covariant; doing so will obviously render the whole argument question begging.57

But while Rovelli’s argument, when completed, is too weak to rule out DSR, as it stands in its current form it is
also too strong: some deviations from exact Lorentz invariance might have phenomenological consequences, and
while it is still unclear whether these predictions are testable in practice (see below), the issue of practical testability
is immaterial. After all, the uncertainty principle is a fundamental limitation on prediction, not a practical one; by
using it to claim agnosticism with respect to the fate of Lorentz invariance in LQG, Rovelli’s argument addresses the
theoretical motivation for deforming the latter, and not its testability in practice.

The upshot is that the thought experiment proposed in (Rovelli & Speziale 2003) and (Rovelli 2004), while releasing
the tension between spatial discreteness and exact Lorentz invariance, remains unconvincing. In its incomplete form
it is too strong, and when completed, it is too weak to rule out a theory such as DSR that holds the principle of
relativity intact but deforms the Lorentz group by introducing an additional observer–independent fundamental
length scale.

B. Deformations of Lorentz invariance single out a preferred frame

The main idea behind DSR is to replace the usual linear Lorentz boost transformation with some non–linear function
thereof which reduces to the identity for low energies. It is noteworthy that a similar proposal for a non–linear
deformation of the Lorentz group was made by Fock,58 who was motivated by the search for a general symmetry
group that would preserve the principle of relativity without assuming the constancy of c. But while Fock modified
the action of the transformations at large distances, in DSR the action is modified at large momentum. Note also
that the group structure of these deformed transformations is the same as the ordinary Lorentz group (which seems
reasonable, as we want to retain the spatial rotations and to reproduce the full set of Lorentz transformations in low
energies).

So far DSR relies mostly on the particle picture, and at this stage there is no unique and well–defined field–theoretic
formulation of the theory that would allow one to translate the particle behavior in momentum space (E, p) into
position space (t, x). As mentioned in section III, different attempts to do so lead to different composition rules (i.e.,
they differ on the question which properties are extensive), and also to different predictions regarding the varying
speed of massless Planckian particles (i.e., they differ on whether this velocity varies, and if so, whether this variation
depends on energy or on energy–density,59 and, respectively, on whether or not the in principle testable predictions
of LQG are indeed so in practice).60

A detailed analysis of these different methodologies and the predictive price they carry is deferred to future work.
Here I would like to concentrate instead on another challenge to DSR which aims to expose the allegedly dire con-
sequences of any translation of DSR from momentum space to position space. This argument (Schützhold & Unruh
2003) aims to show that while there is still no clear formulation of DSR in field–theoretic terms, when translated into
position space the non–linear deformation of the action of the Lorentz group on momentum space leads, in general,
to some bizarre macroscopic consequences that are presumably inconsistent with our current knowledge of physics.

The motivation for this claim comes from an analogy between the modified dispersion relations suggested in DSR
and the modified dispersion relations one finds in the propagation of sound in high energies (as in both cases the

57 Note that one cannot defend Rovelli’s argument from this attack by arguing that both dynamics and interactions are so poorly understood in
LQG, as doing so will ipso facto make Rovelli’s argument too weak to rule out DSR.

58 Fock (1964, 6–7; 369–375).
59 See e.g., Magueijo & Smolin (2003); Kimberly et al. (2004); Girelli & Livine (2005); Amelino Camelia (2006); Hossenfender (2006); (2007).
60 Lamon et al. (2008, 1733).
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modifications are non–linear and energy–dependent).61 To translate from momentum space (E, p) to position space
(t, x) one first does a Fourier transform F (assuming ip ↔ ~∂/∂x ), then applies the non–linear Lorentz transforma-
tion and finally transforms back to get the position space rotated:

φ(t, x) → φ̃(E, p) = Fφ ,

φ̃(E, p) → φ̃(E′, p′) ,

φ′(t, x) = F†φ̃(E′, p′) .

Now, apart from difficulties in moving from the single–particle case to the multi–particle picture that arise from
the non–linearity of F (difficulties that have been dubbed “the soccer ball problem” and that have been addressed—
along with their predictive price—more or less satisfactorily in the aforementioned suggestions for field–theoretic
formulations of DSR), the fact that F and its inverse F† are non–polynomial will lead to breakdown of translation
invariance and to non–local effects, both on large scales.

The former effect is derived by following the evolution of two wave packets. The non–linear correction to the
Lorentz transformation is shown to entail that in one coordinate system the wave packets collide, while in another
they miss each other. The latter effect is derived by arguing that if one could follow the trajectory of a Planckian par-
ticle (i.e., a particle with a Planck scale energy) over a macroscopic distance and time (i.e., larger than the respective
Planck scales), non local effects would emerge on these scales: if the speed of light is, e.g., supposed to decrease with
the energy, a massless Planckian particle would eventually stop moving, and if one could localize it for a finite time
duration (much longer than the Planck time) within a few Planck lengths, this would clearly single out a preferred
frame. The upshot of the argument is that, contrary to the aspirations of its proponents, DSR is no different than
those theories that break Lorentz invariance and violate the principle or relativity.

But does DSR generate these arguably fatal empirical consequences? Can’t one ‘deform’ Lorentz invariance with-
out ultimately abandoning the principle of relativity? My claim is that the above argument by Schützhold & Unruh
is unconvincing. The problem with their twofold challenge is that it tacitly presupposes several assumptions which
are explicitly denied in the DSR framework.62

For example, in order to establish the first effect, Schützhold & Unruh assume that the Fourier transform is de-
fined by integrating over the whole range of energies (or, equivalently, lengths), but DSR, contrary to standard QFT,
introduces as a key feature an upper (lower) bound for energy (length). This feature must thus be taken into account
when defining the Fourier transform that allows one to translate DSR into position space. In a similar vein, in order
to establish the second effect, Schützhold & Unruh assume the standard operational definition of a ‘localization of a
particle’, but note that this definition must be modified in the regime DSR purports to describe. In fact, in order to
localize a Planckian particle in this regime one needs other Planckian particles which are the only ones that can give
the resolution one requires. And since the interaction picture in this regime is still missing, in the current state of the
theory it is quite premature to make any dynamical predictions of the sort DSR is challenged with here. Arguably,
DSR holds that interactions in that regime will be constrained by a structure different from Minkowski’s spacetime,
and there seems to be no a priori reason to think that no possible translation of DSR into position space would be
immune to this objection.

V. CONSTRUCTING THE PRINCIPLES

The two arguments mounted against DSR differ in their strategies: the first aims to undercut the intuition behind
thesis (a), attempting to explain why the discrete geometry predicted by LQG doesn’t imply violations of Lorentz
invariance, hence there’s no reason to expect it if LQG is true; the latter aims to demonstrate that thesis (b) must
hold, claiming that if discreteness of geometry entailed deformation of Lorentz invariance, it would also single out a
preferred frame on macroscopic scales, a consequence presumably inconsistent with our current understanding of
physics.

The two arguments, however, share a common tacit presupposition which DSR denies: both implicitly impose
Lorentz covariance on dynamical interactions whose kinematical constraints are assumed by DSR to be different
from the standard QFT ones. While this presupposition is stated explicitly in neither of the two arguments, it reveals
itself upon close analysis. In the first case it appears when one tries to complete the (originally incomplete) argument

61 Note that the latter case explicitly involves a preferred frame!
62 See also Arzano (2003).
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with a measurement procedure that is independent of knowledge of the velocity of the surface whose area is minimal;
in the second it lurks behind the assumption that the standard (QFT) interaction picture holds also at the Planck scale.

On final account, there is no a priori reason to suppose that a certain physical regime cannot be described by a
mathematical structure whose phenomenological consequences are consistent with current experimental evidence
but that is nevertheless different from QFT. Contrary to the underlying assumption behind the arguments analyzed
here, the fact that QFT interactions are Lorentz–covariant does not entail that QG interactions are so, hence the
kinematical structure that may constrain the latter may as well be different from Minkowski spacetime (as long as it
reduces to the latter in the appropriate limit). Moreover, the fact that no departure from exact Lorentz invariance has
been observed so far is consistent with almost any result that may arise when the Planckian regime is probed, and, in
particular, with the predictions made within DSR, as long as the latter are made in a logically consistent way.63

The case of DSR nicely exemplifies the process of devising new theories that aim to predict new physics. In this
process the theoretician is not operating in a void or in a complete absence of constraints, but rather starts from some
‘old’ physics and carefully extends it to new regimes. It is natural, therefore, and by far more productive, to use the
best confirmed principles of the ‘old’ physics as constraining principles in the construction of the new one. But one
should be careful in one’s choice which principle to keep and which to let go:64

We have all these nice principles and known facts, but we are in some kind of trouble: either we get the
infinities, or we do not get enough description — we are missing some parts. Sometimes that means that
we have to throw away some idea; . . . To guess what to keep and what to throw away takes considerable
skill. Actually it is probably merely a matter of luck, but it looks as if it takes considerable skill.

The principle of relativity has endured the transition from Newtonian mechanics to special relativity, and DSR,
no matter how speculative, keeps it intact. What is being ‘thrown away’, as it were, is a certain transformation rule,
which DSR replaces with a more general one. Only time (and experiment) will tell whether this was a matter of skill,
luck, or just plain wrong.

VI. CONCLUDING REMARKS

In this paper I have investigated an intriguing open question that exists today in the domain of QG, namely the status
of Lorentz invariance and its relation to the notion of minimal length, and used it as a case study for highlighting the
delicate balance between conservatism and innovation that characterizes the process of constructing new physics.

Admittedly, Lorentz invariance is one of the pillars of modern physics, and it is hard to imagine what kind of
physics one would end up with if it turned out to be non–fundamental. In fact, physicists actually have used
Lorentz invariance in constructing our best and (at least so far) most fundamental theory of matter, namely QFT,
that dynamically accounts for the contraction of rods and the dilation of clocks.65 And yet, most physicists will agree
that even this theory could turn out to be only an approximation:66

There is nothing but positive evidence that special relativity is correct in the high energy domain, and,
furthermore, there is, if anything, positive evidence that microscopic causality is a correct hypothesis.
Since there exists no alternative theory which is any more convincing, we shall restrict ourselves to the
formalism of local, causal fields. It is indoubtedly true that a modified theory must have local field theory
as an appropriate large–distance approximation or correspondence. However, we again emphasize that
the formalism we develop may as well describe only the large distance limit (that is, distance > 10−13

cm) of a physical world of a different submicroscopic properties.

Theoretical arguments that aim to support the quantization of gravity are sometimes accused of “putting physics
upside down” since, or so the accusation goes, if the gravitation field is to be quantized, it should be so because of
empirical evidence, and not because of some methodological predilection.67 Imposing Lorentz covariance a priori on
interactions that involve gravity by arguments that presuppose the universal applicability of QFT is thus tantamount
to committing the same sin twice. The following, famous words, it seems, are as relevant today as they were almost
half a century ago:68

63 Recall that the Planck scale (∼ 10−33cm) is 17 orders of magnitude from presently–available experimental information (∼ 10−16cm).
64 Feynman (1965, 166).
65 See, e.g., Mermin (2005, 184).
66 Bjorken & Drell (1965, Introduction).
67 See, e.g., Rosenfeld (1963), and recently also Mattingly (2006) and Albers et al. (2008).
68 Rosenfeld (1963, 356).
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It is nice to have at one’s disposal such exquisite mathematical tools as the present methods of quantum
field theory, but one should not forget that these methods have been elaborated in order to describe
definite empirical situations, in which they find their only justification. Any question as to their range
of application can only be answered by experience, not by formal argumentation. Even the legendary
Chicago machine cannot deliver the sausages if it is not supplied with hogs.
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