Diagrams for relativistic length contraction and time dilation
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When a rod of length L, (at rest) moves uniformly with
speed v in the x direction parallel to its axis, that rod con-
tracts relativistically to a length

L =Ly/1T— (v/c)?, (N
where c is the speed of light.! In this note we propose a
simple diagram? that shows the relativistic length contrac-
tion in geometric proportion to the speeds v and c. The
diagram may be considered complementary to the familiar
diagrams of moving reference frames and space-time
(Minkowski) diagrams used in introductory texts.>S

We construct the diagram by drawing the first quadrant
of a coordinate system with a distance abscissa and a speed

ordinate (see Fig. 1). We scale the axes so that ¢ units on .

the speed axis have the same length as L, units on the dis-
tance axis. Thus a quarter circle about the origin O with
radius L, intercepts the speed axis at ¢. A horizontal line
from speed v on the ordinate over to point P on the quarter
circle then has the length L.

The proof uses Pythagoras’ theorem and the fact that the
quantities ¢ and L, have the same length in the diagram
yielding L=vP=[(0OP)2—v*]"?=[? —v*]"?
=c[1 — (v/c)*]"? = L,[1 — (v/c)?]V2

Figure 1 illustrates clearly that the contracted length L is
close to the rest length L, for small speeds v. When, on the
other hand, v approaches the speed of light ¢, the length L
shrinks dramatically.

Another relativistic phenomenon is time dilation.! For
example, an observer measures the period T, of a pendu-
lum swinging about a fulcrum that is at rest in his reference
frame. However, when the fulcrum moves uniformly with
speed v, the observer measures a longer period,

T=Ty/J1— (v/c)2. (2)

+

o

Fig. 1. Diagram for relativistic length contraction showing rest length L,
and contracted length L of a rod moving with speed v in the x direction.
The speed of light is denoted by c.
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In order to illustrate relativistic time dilation with a dia-
gram,’ we again draw the first quadrant of a coordinate
system and a quarter circle with radius ¢ around the origin
O (see Fig. 2). The ordinate represents speeds v up to the
speed of light c¢. The abscissa measures the time elapsed
between events in the reference frame of the observer. A
(dotted) horizontal line from v on the speed axis over to the
right intersects the circle at point P. We next draw a
(dashed) vertical line to the right of the circle at a distance
T,, intersecting the abscissa at point R. A slanted straight
line through O and P intersects the dashed line at M. The
length OR represents then the “rest period” T,, and OM
represents the dilated period T of the traveling pendulum.

The proof employs an auxiliary point a that is the or-
thogonal projection of point P on the abscissa. Using simi-
larity of the triangles OaP and ORM together with Pytha-
goras’ theorem, we get T/T,=c/a=c/[c* —v*]'?

=[1— (v/c)?] V2

When the pendulum travels with a slow speed v, point P
is slightly above the abscissa and the slowly rising slanted
line OM = T'is only a little longer than the horizontal line
OR = T, This situation corresponds to a small time dila-
tion. When, on the other hand, the pendulum travels with v
close to the speed of light ¢, point P is near the top of the
circle. Now the slanted line is almost parallel to the dashed
vertical line resulting in a very distant intersection M. The
distance OM is then much longer than OR. This case illus-
trates a very large time dilation.

Having introduced time dilation with periods 7, and T
of pendulums swinging about resting and moving ful-
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Fig. 2. Diagram for relativistic time dilation showing periods 7, and Tof a
pendulum by the lengths of arrows OR and OM, respectively. The pendu-
lum has a period T, when it swings about a fulcrum at rest in the observer’s
reference frame. When the fulcrum moves uniformly with relative speed v,
a dilated period of the pendulum T is observed. The speed of light is
denoted by c.
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crums, we consider the flow of elapsed time, At, and Az,
between events in the observer’s frame of reference and in a
frame moving uniformly with relative speed v. This may be
visualized via the distances OR and OM, respectively, by
imagining that the dashed vertical line moves uniformly to
the right starting from O at the initial event.

Since the relativistic mass,

m=my/\J1— (v/c)?, (3)

has the same speed dependence as time dilation, Eq. (2),
Fig. 2 may also be used for a geometric illustration of rela-
tivistic mass increase. In that case, the length OM repre-
sents m and OR the rest mass m,,.

Moreover, we can use Fig. 2 to illustrate the relativistic
energy'

E=m€2= [(pc)2+ (moc2)211/2 (4)
by associating E with the length OM, the rest energy mqc”
with OR, and the quantity pc with RM. Here, p is the rela-

tivistic momentum. .
On a slightly more abstract level than the present dia-

grams, the speed dependence of relativistic length contrac-
tion, time dilation, and mass, Egs. (1)-(3), is occasionally
illustrated in the literature’ by graphs of (1 — £2)'/? and
(1 —B%) ~"2 vs B, respectively, where B = v/c. One of
these graphs, (1 — £2)!/2, is similar to Fig. 1 when coordi-
nate axes are interchanged. The application of the diagram
in Fig. 2 to Eq. (4) was inspired by a mnemonic device in
Resnick’s text.®
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This note presents a simple analytic formula for the heli-
city? of an elliptically polarized electromagnetic wave.

Let us consider an electromagnetic wave whose electric
field is given by

E =34 cos(kz — wt + a) + pB cos(kz — wt + B), (1)

where 4, B, a, B, k, and w are real constants. The angular
frequency of the wave is @ and the wave vector is k = Zk.

In general, expression (1) describes an elliptically polar-
ized wave'~ such that, at a fixed point in space, the electric
field rotates and its magnitude varies in time. The rotation
direction of the electric field depends on the values of & and
B. '

A mechanical analogy is useful to show the connection
between the rotation direction of E and the values of @ and

B

Imagine a particle whose position is given by
r = Xa cos(¢ — wt) + pb cos(¢¥ — wt + ), (2)

where a, b, ¥, o, and ¥ are real constants.
In general, such a particle would describe an elliptical
trajectory with a velocity

vV = Xowa sin(Y — wt) + b sin(y — wt + 7). (3)
Equations (2) and (3) yield
rXv+2=wabsiny, (4)

which shows that the sign of sin ¥ defines the direction in
which the particle describes its trajectory. For instance, if
sin y is positive, r X v and 2 have the same direction, and the
paticle moves counterclockwise when viewed from above
(see Fig. 1).
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A similar result holds for the electromagnetic wave giv-
enby (1). In this case r and v are, respectively, replaced by
E and dE/dt.

The rotation direction of the electric field is related to the
wave helicity, > which is said to be positive (negative) if, at
a fixed point in space, the electric field rotates counter-
clockwise (clockwise), to an observer facing the approach-
ing wave, i.e., looking in the direction opposite to that of
wave propagation.

From (1) we get

Ex aa—];:EwABsin(B—a), (5)
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Fig. 1. Mechanical system (sin > 0).
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