
ar
X

iv
:h

ep
-t

h/
00

11
19

4v
1 

 2
1 

N
ov

 2
00

0

1

Discrete Lorentzian Quantum Gravity

R. Lolla

aAlbert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik,
Am Mühlenberg 1, D-14476 Golm, Germany

Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the
study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom
are dynamical, and that therefore also the lattice theory must be formulated in a background-independent way.
After summarizing the status quo of discrete covariant lattice models for four-dimensional quantum gravity, I
describe a new class of discrete gravity models whose starting point is a path integral over Lorentzian (rather than
Euclidean) space-time geometries. A number of interesting and unexpected results that have been obtained for
these dynamically triangulated models in two and three dimensions make discrete Lorentzian gravity a promising
candidate for a non-trivial theory of quantum gravity.

1. QUANTUM GRAVITY

For the purposes of this presentation, quantum

gravity will be defined as the non-perturbative
quantization of the classical theory of general rel-
ativity, with and without the inclusion of other
matter fields and interactions. Judging from
our current knowledge of the fundamental laws
of physics, it seems highly likely that at suffi-
ciently large energies also gravitational interac-
tions should be governed by quantum rather than
by classical equations of motion. Quantum grav-
ity – whose theoretical formulation is still elusive
– should include a consistent description of lo-
cal quantum phenomena in the presence of strong
gravitational fields.

It has been known for a long time that pertur-

bative quantum gravity, based on a decomposition

gµν(x) = ηµν +
√

32πG hµν , (1)

of the Lorentzian space-time metric gµν into the
flat Minkowski metric ηµν and a linear pertur-
bation hµν (representing the degrees of freedom
of a massless spin-2 graviton), leads to a non-
renormalizable field theory. Although this does
not preclude the use of the perturbation series as
an effective description of quantum gravity in the
presence of an energy cut-off, it cannot serve as
the definition of a fundamental theory.

The ensuing need to quantize gravity non-

perturbatively is not confined to field theory, but
persists in string-theoretic formulations (where it
is an unsolved problem as well). Imagine try-
ing to obtain a quantum state representing a 4d
Schwarzschild black hole with metric

gµν = −(1−GM

r
)dt2+(1−GM

r
)−1dr2+r2dΩ2(2)

by superposing gravitonic excitations within
string theory. However, because of the propor-
tionality G ∼ g2

str for Newton’s constant G [1],
this involves arbitrary powers of the string cou-
pling gstr, and is therefore an intrinsically non-
perturbative construction.

1.1. How do we quantize gravity non-

perturbatively?

The great success of lattice models in describ-
ing non-perturbative properties of QCD has for a
long time been a motivation for applying discrete
methods also in quantum gravity. I will be report-
ing on the status quo of path-integral (“covari-
ant”) lattice models for quantum gravity, and on
how to make them more Lorentzian. However, it
should be pointed out that there are other ways of
tackling the problem, most notably, in a canonical
continuum approach based on a gauge-theoretic
formulation of gravity in four dimensions [2].

Non-perturbative formulations of gravity usu-
ally involve suitable versions of the space M of all
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4d space-time geometries (of space-time metrics
modulo diffeomorphisms), and all lattice models
start from a discretized version of this classical
configuration space. Note that giving up the no-
tion of a preferred flat background metric ηµν also
means that the Poincaré group will not appear as
a fundamental symmetry group of the base space
M . This has nothing to do with the loss of the
smooth manifold structure during discretization,
but is a typical feature of all non-perturbative,
background-independent formulations.

Among the important (and difficult) questions
one may ask in discrete quantum gravity are the
following:
(i) how do we construct quantum gravity lattice
models that are well-defined, convergent statisti-
cal systems at finite volume? How is the absence
of a preferred background metric reflected in the
lattice construction?
(ii) Do these models lead to interesting contin-
uum theories in the infinite-volume limit? What
are their physical excitations?
(iii) What is the (quantum) geometry of the
ground state of the theory? Do we recover semi-
classical geometries in a suitable limit?

1.2. Where do we stand?

The three most popular approaches to discrete
quantum gravity in four dimensions are:
Covariant Gauge Approaches, based on gauge-
theoretic first-order formulations of gravity with
connections and vierbeins (mostly on regular cu-
bic lattices); they were studied intensely for about
ten years, starting in the late 70s [3]. More re-
cently, discrete gauge-theoretic formulations have
seen a revival in the context of so-called spin foam
models for gravity, based on ideas coming from
topological quantum field theory [4].
Quantum Regge calculus is based on the second-
order form of gravity in terms of metric fields.
Space-time is approximated by a simplicial com-
plex, and the sum over all geometries takes the
form of a sum over all possible lengths of the
edges of this complex. This approach to quan-
tum gravity originated in the mid-80s and is still
being pursued [5].
The method of Dynamical Triangulations is a
more recent variant of the quantum Regge cal-

culus program, where all edge lengths are frozen
in, and the state sum is taken over all possible
manifold-gluings of a set of equilateral simplicial
building blocks. Although this is the most recent
of the three approaches (started in the early 90s
[6,7]), the number of research papers written in
this area is by far the largest. Interest in this
formulation was largely propelled by its success
in reproducing results from continuum Liouville
gravity in d = 2. – I will not dwell on a de-
tailed description of the individual achievements
of these approaches, since this has been done both
in previous overview talks at lattice conferences,
and in a recent review article on the subject [8].

What has been learned from these investiga-
tions? Maybe not surprisingly, analytic results in
4d have proved hard to come by, although qual-
itative estimates of the partition function in cer-
tain phases can sometimes be made. Efficient nu-
merical methods for models of fluctuating geom-
etry and/or lattices have been developped and
refined. The phase structures of all of the models
described above have been investigated and their
phases characterized in geometric terms, showing
some surprising similarities across the various for-
mulations [8]. However, it is probably fair to say
that in spite of occasional claims to the contrary,

there is so far no convincing evidence of a second-

order phase transition in these models, which is
usually taken as a necessary condition for the ex-
istence of an underlying continuum theory with
propagating field degrees of freedom.

1.3. What to do?

Various strategies have been tried to improve
on this somewhat unsatisfactory state of affairs,
usually by modifying the measure of the quantum
theory, or by adding appropriate matter fields. I
refer to last year’s review talk by Krzywicki [9]
for a more detailed account of these attempts.
The most recent development in this area con-
cerns the addition of non-compact U(1)-gauge
fields in the dynamical triangulations approach.
The phase structure of these models does indeed
appear changed with respect to the pure-gravity
models [10], but more recently it has been under-
stood that this is a “spurious” effect, and com-
pletely equivalent to a rescaling of the measure
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by factors of the determinant of the metric [11].
Conflicting numerical results on this issue have
been reported at this conference [12], so this may
still hold out some hope for more interesting find-
ings in this matter-coupled model. However, the
general consensus seems to be that more radical
changes of the discrete models are required to al-
ter these negative results.

1.4. Absence of a Wick rotation

Unfortunately, until recently it seemed that we
had run out of natural, geometrically motivated
ways of modifying the discrete gravity models.
There is another reason for why the situation may
be yet more serious: even if some of these quan-
tization attempts had been successful, their con-
nection with the physical, Lorentzian theory of
quantum gravity would have remained unclear,
because they all work with configuration spaces
of (positive-definite) Euclidean geometries. There
are of course good technical reasons for making
the substitution

∫

Lor(M)

Diff(M)

[DgLor
µν ]eiS[gLor] →

∫

Eu(M)

Diff(M)

[DgEu
µν ]e−S[gEu], (3)

since state sums over complex phase factors usu-
ally diverge. Well-motivated though it may be, it
should be pointed out that in a non-perturbative
context, (3) is an ad hoc substitution. Although
(3) may look suggestive, unlike in ordinary field
theory on a Minkowski background, there is no
a priori concept of a “Wick rotation” in a the-
ory with a dynamical metric. The problem lies
in the fact that we must Wick-rotate all metrics,
but that almost all metrics gµν (unless they have
special symmetries, for example, time-like Killing
vectors) have no geometrically distinguished no-
tion of “time”. (Recall that t in general rela-
tivity denotes simply “coordinate time”, and can
be changed by a diffeomorphism without affect-
ing physical results.) However, a prescription like
t 7→ τ = −it is certainly not diffeomorphism-
invariant (think of a simple coordinate transfor-
mation like t 7→ t2, for t > 0).

Since there is a certain reluctance to recognize
this as a problem, let me add some further re-
marks on the issue. It does of course not fol-
low from the discussion above that suitable Wick

rotations do not exist. However, they should
be constructed explicitly, and their naturalness
and/or uniqueness be shown. Also, one might
hope that once an interesting continuum limit of
Euclidean quantum gravity is found, a continu-
ation to Lorentzian signature might be obvious.
This is a logical possibility, but it has not yet been
realized.

At any rate, there is no a priori reason that a
theory based on a non-perturbative path integral
for Riemannian (or Euclidean) metrics should
be related in any simple way to one based on
Lorentzian metrics. Interpreted positively, this
observation may offer us a way out of the current
impasse in finding physically interesting quantum
gravity models. Our failed attempts to quan-
tize could be closely related to the fact that the
Lorentzian nature of gravity is not appropriately
taken into account. As I will describe in more de-
tail below, there is now evidence from discrete
Lorentzian models of gravity in two and three
space-time dimensions supporting this point of
view.

1.5. Going Lorentzian

In the continuum, a Lorentzian space-time is
usually given in the form of a metric field ten-
sor gµν(x) on some manifold M , with signa-
ture (–+++), where gµν is symmetric and non-
degenerate, but not necessarily diagonal. The as-
sociated line element

ds2 = gµν(x)dxµdxν (4)

may therefore take values < 0, = 0 or > 0,
depending on whether the infinitesimal distance
measured on M is time-like, light-like or space-
like. It follows that the neighbourhood of any
point p ∈ M has a light-cone structure, where the
light-cone consists of all points q that can be con-
nected to p by curves whose tangent vectors are
everywhere light-like, with analogous prescrip-
tions for points in- and outside the light-cone.
Just as it does in Minkowski space, this implies a
local causal structure: a point q lies to the future
(past) of p, if there is a future- (past-)oriented
curve from p to q that is nowhere space-like. Oth-
erwise, p and q are not causally related. In ad-
dition, one usually requires a well-defined causal
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structure globally, to avoid pathologies such as
closed time-like curves. Note also that branch-
ing points, associated with a topology change of
spatial slices (Fig. 1) are not compatible with a
well-defined Lorentzian structure, since the light-
cones must necessarily degenerate at such points.
– By contrast, in Euclidean metric spaces there is
no distinction between space- and time-like direc-
tions. How can Lorentzian features be built into

t

Figure 1. At a branching point associated
with a spatial topology change, light-cones get
“squeezed”.

a framework of discretized geometries? Regge’s
prescription for approximating smooth geome-
tries by piecewise linear spaces works just as well
(and was originally conceived) for Lorentzian sig-
nature. The work described below may be re-
garded as a Lorentzian version of the dynamical
triangulations (DT) approach to quantum grav-
ity. We prefer this method over quantum Regge
calculus, since we are interested in an analytic
formulation (which even for d < 4 is impossible
in Regge calculus, due to the presence of trian-
gle inequalities) and because the evidence from
d = 2 suggests that DT deals correctly with the
diffeomorphism symmetry of the theory.

In a Lorentzian DT approach, one may expect
to have both time- and space-like edges (and pos-
sibly even null-edges). However, a random assign-
ment of squared edge lengths l2 = ±1, say, to an
arbitrary simplicial complex (a “triangulation”)
will in general not lead to a metric structure of
the correct signature and without closed time-

like curves. Our strategy will be to first iden-
tify a large class of well-defined discrete causal
triangulations (without restricting the local cur-
vature degrees of freedom). In order to make the
associated partition function convergent, we will
then use a Wick rotation to map each discrete
Lorentzian geometry into a unique Euclidean ge-
ometry. After the sum and the continuum limit
have been performed, the propagator is “rotated
back”. Our particular choice of the fundamental
building blocks, described below, is motivated by
a simple form for both the path integral and the
Wick rotation.

2. THE NEW IDEA

Let me now turn to an explicit description of
the Lorentzian DT model, which incorporates a
notion of causality and possesses a “Wick rota-
tion” [13–15]. The partition function takes the
form of a sum over causal triangulations T with
certain edge length assignments,

Z(λ, G) =
∑

causal T

1

CT
eiSRegge

, (5)

with each contribution weighted by the Regge ac-
tion (the simplicial version of the d-dimensional
Einstein action, including a cosmological con-
stant λ) associated with T and a discrete symme-
try factor CT . The triangulations appearing in
the sum (5) all have a foliated structure, where
successive (d–1)-dimensional spatial slices (real-
ized as equilateral Euclidean triangulations of
squared edge length l2s = +a2) are connected by
time-like, future-oriented edges of length-squared
l2t = −αa2, with α > 0. This is most easily
illustrated in 1+1 space-time dimensions (Fig.
2), where the spatial slices are simply given by
chains of n space-like edges. In addition, to reflect
the causal properties of the continuum geometries
these piece-wise linear spaces are supposed to ap-
proximate, we do not allow for any spatial topol-
ogy changes. For simplicity, we use compactified
and connected spatial slices, yielding a space-time
topology R × S1.

As mentioned earlier, we can now define a
unique Wick rotation on any discrete Lorentz ge-
ometry of this type by substituting all time-like
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t

t+1

t+2

+a2

−αa2

Figure 2. Two layers of a 2d Lorentzian triangu-
lation, with spatial slices of constant t and inter-
polating future-oriented time-like links.

links with l2t = −αa2 by space-like links with
squared edge length l2t = +αa2. One can show
[14,15] that this analytic continuation in α has
the desired effect of inducing

eiSLor l2t→−l2t−→ e−SEu

(6)

on the weights. It is important to realize that
the set of Euclidean triangulations obtained af-
ter the Wick rotation is strictly smaller than the
set of all Euclidean triangulations. It is precisely
this feature that leads to a change of universal-
ity class of the Lorentzian models, compared with
the Euclidean ones. One could rephrase this by
saying that we have introduced a different mea-

sure, which however was not chosen ad hoc, but
motivated by physical and geometric considera-
tions. Obviously, in the end only the solution of
this model and its physical properties can tell us
whether this ansatz is justified. In this regard, we
are encouraged by the results obtained so far in
dimensions two and three.

What has been shown is that for finite lattice
volume in d = 2, 3 and 4, the discrete Lorentzian
models are completely well-defined, in the sense
that the associated transfer matrices T̂ in the dis-
crete propagators

G(g
(d−1)
1 , g

(d−1)
2 , t) = 〈g(d−1)

1 |T̂ t|g(d−1)
2 〉 (7)

(where g
(d−1)
i denotes a discrete spatial geome-

try) are bounded and strictly positive. The slice
parameter t has a natural physical interpretation
as a discrete proper time, that is, the time experi-
enced by an idealized set of observers freely falling

along geodesics perpendicular to surfaces of con-
stant t. Our next task will be to understand the
continuum theories associated with these models.
Fortunately, at least in d = 2, Lorentzian quan-
tum gravity turns out to be exactly soluble.

3. LORENTZIAN GRAVITY IN D=2

In two space-time dimensions, the Einstein ac-
tion for a fixed topology reduces to the cosmolog-
ical term

S = Λ

∫

d2x
√

| det g| discret.−→ S = a2λN2(T ), (8)

where N2(T ) is the number of triangles in the tri-
angulation T , and λ is the bare cosmological con-
stant. The most natural propagator in Lorentzian
gravity is a “two-loop function”, describing the
transition amplitude between an initial geometry
of length lin and a final geometry of length lout

(with integer lengths li = 1, 2, . . .) in t time steps.
Its functional form after the Wick rotation (and
setting a = 1) becomes simply [13,16]

Gλ(lin, lout, t) =
∑

causal T

e−λN2(T )

=
∑

N2

e−λN2

∑

causal TN2

1. (9)

The last expression on the right makes it clear
that solving the model is tantamount to solving
the combinatorial problem of counting the num-
ber of inequivalent causal triangulations of vol-
ume N2 and length t, for given lengths lin and
lout. (Similar statements hold in higher dimen-
sions too.)

In two dimensions, this problem can be solved
explicitly, and leads after continuum limit, renor-
malization and an inverse Wick transformation to
the continuum amplitude

GΛ(Lin, Lout, T ) = e− coth(i
√

ΛT )
√

Λ(Lin+Lout)

×
√

ΛLinLout

sinh(i
√

ΛT )
I1

(

2

√
ΛLinLout

sinh(i
√

ΛT )

)

, (10)

where I1 is the Bessel function, and Λ, L and
T are the renormalized counterparts of the bare
constant λ and of l and t. The theory described
by (10) is unitary, and its Hamiltonian can be
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mapped onto a three-dimensional harmonic os-
cillator with spin 1/2 and diagonalized explicitly
[17]. Modified versions of 2d Lorentzian grav-
ity (including a higher-order curvature term, and
“decorations” by dimers and a restricted class of
baby universes) have also been solved analytically
[18], leading to similar results.

3.1. Geometry of the ground state in 2d

What is the physics described by this model?
There cannot be much physics to speak of, since
classical gravity in 2d is an empty theory. All
one can expect are quantum fluctuations at the
Planck scale (which happens to coincide with the
cosmological scale, since the theory has only a
single length scale). Nevertheless we can investi-
gate the geometric properties of the ground state
of the quantum theory and compare them with
the Euclidean case. Fig. 3 shows a typical 2d

Figure 3. A typical 2d Lorentzian space-time, at
volume N2 = 18816 and total proper time t =
168.

Lorentzian space-time, taken from a Monte Carlo
simulation. Observe how the size of the compact-
ified spatial slices changes as a function of proper
time (pointing upwards). These fluctuations are
indeed large, and of the same order as the average
spatial length, 〈∆L〉 ≃ 〈L〉.

A rough way of characterizing the quantum ge-
ometry is through its Hausdorff dimension dH . It
can be measured by finding the scaling behaviour
of the volumes V (R) of geodesic balls of radius R
in the ensemble of Lorentzian geometries,

〈V (R)〉 ∼ RdH . (11)

It is straightforward to extract dH from the prop-
agator, yielding dH = 2. This may not seem a
surprising result, since we started from an ensem-
ble of two-dimensional triangulations. However,
it is by no means a foregone conclusion, since
it is a property of the entire quantum ensem-
ble (which, as we have seen, is subject to large
fluctuations). Besides, we already know an ex-
ample where this does not happen, namely, Eu-
clidean (or “Liouville”) quantum gravity in two
dimensions, which has dH = 4! In this case, it
is an indication of the highly fractal nature of
the quantum geometry, which is completely dom-
inated by so-called baby universes (Fig. 4). Such

����
����
����
����

Figure 4. The fractal baby-universe structure of
2d Euclidean gravity, artist’s impression.

highly branched configurations cannot occur in
the Lorentzian state sum, since they are not com-
patible with our causality conditions. It can be
shown explicitly that this is the central difference
between the two formulations, causing them to
lie in different universality classes. This observa-
tion has also been used to relate the two models
by a renormalization procedure that amounts to
an “integrating out of baby universes” [19]. It
demonstrates that the relation between the two
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continuum theories is rather more complicated
than a simple analytic continuation t 7→ −it.

Thus we see that the physics described by the
Lorentzian quantum gravity model is completely
different from that of the Euclidean one. Obvi-
ously, since quantum gravity in two dimensions is
an unphysical theory, there is not much to choose
between the two theories; we cannot perform ex-
periments to determine which of them is “cor-
rect”, nor is there any a priori preference for a
particular metric signature. However, let us for
the moment assume that we were interested in
obtaining a theory of Lorentzian geometries (as
arguably is the case in d = 4). One could then
argue that it was unnatural to single out a “time”
in the purely Euclidean theory, since the fractal
geometries have no distinguished directions any-
where. Although it is clearly possible to make
an arbitrary choice of a time parameter, this will
typically result in constant-time slices that are
highly multiply connected and undergo constant
topology changes. Again, this may not be of great
concern in dimension 2, but if a similar behaviour
was found in d = 4, one would have to make sure
that it did not lead to consequences in contradic-
tion with observations.

3.2. Coupling 2d Lorentzian gravity to

matter

I will now briefly describe the properties of
Lorentzian gravity coupled to matter fields. The
partition function for the coupled model takes
exactly the same form as in Euclidean DT, but
again with the sum taken over causal triangu-
lations only. For an Ising model with nearest-
neighbour interaction it is given (in the Euclidean
sector) by

Z =
∑

N2

e−λN2

∑

causal TN2

∑

{σi=±1}
e

βm
2

∑

<ij>

σiσj

, (12)

where the last sum is over all possible spin con-
figurations of the Ising model on the triangula-
tion TN2. We are interested both in the critical
properties of the matter on this non-trivial “back-
ground” and in possible back reactions of the
matter on the geometry, since the latter is repre-
sented by a fluctuating ensemble. Our main refer-

ence point for such a system is Euclidean Liouville
gravity with an Ising model, where the critical
matter exponents (specific heat, magnetization,
magnetic susceptibility) are changed from their
Onsager values on fixed, regular lattices (α = 0,
β = 1/8, γ = 7/8) to α = −1, β = 1/2 and γ = 2
[20].

The Lorentzian model has not yet been solved
exactly, but we have performed both a high-
temperature expansion and Monte Carlo simula-
tions to determine its critical behaviour. (The
diagrammatic expansion used in the former has
some non-standard features, since the graph
counting takes place in a fluctuating ensemble of
geometries.) At the combined critical point of the
cosmological coupling λ and the matter coupling
βm, they consistently yield the Onsager expo-
nents for the Ising matter [21]. This may be sur-
prising at first, since one could have been tempted
to interpret the outcome of the Euclidean sys-
tem cited above as an indication that the critical
matter behaviour must necessarily change in the
presence of a fluctuating geometry. Here we have
an example where this is not the case. Another
lesson is that we also may not draw the converse
conclusion, namely, that Onsager exponents for
the matter necessarily imply that the underlying
geometry is fixed and flat. On the contrary, we
have to conclude that these exponents are rather
“robust”, and that the geometry has to be very
distorted in order to cause a change of the crit-
ical matter behaviour. (Note that one could try
to turn this into a method for determining crit-
ical matter exponents: simply couple them to
Lorentzian lattices. For the case of the Ising
model, we found a remarkably good convergence
of the diagrammatic expansion for the suscepti-
bility γ [21].)

3.3. ... and more matter

In 2d Lorentzian gravity coupled to a single
model of Ising spins, we did not find any apprecia-
ble back reaction of the matter on the geometry
(i.e. one that would have survived the continuum
limit). However, as more matter is coupled to the
system (n Ising models, with n > 1), this is no
longer true. The coupling is achieved by substi-
tuting the last sum in (12) by a sum over n in-
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Figure 5. A typical Lorentzian geometry in the
presence of one Ising model, at volume N2 =
18816 and total proper time t = 168.

dependent copies of the Ising model on the given
triangulation TN2 . There is a very good reason
for studying this situation. In the language of
conformal systems, a system with n Ising mod-
els at its critical point gives rise to a conformal
field theory with central charge c = n

2 . However,
Liouville-matter models with n > 2 are known to
be inconsistent, in the sense that their critical ex-
ponents become complex. (This also goes by the
name of “c = 1 barrier” in bosonic string theory,
where n plays the role of embedding dimension.)

In the Lorentzian case, we have found no such
inconsistencies. We have performed Monte Carlo
simulations at n = 8 [22], where the combined
system seems perfectly well-defined, and – within
the numerical error bars – the matter behaviour is
again governed by the Onsager exponents! (The
value 8 was chosen to be well beyond the re-
gion n = 2, since the experience from Euclidean
dynamical triangulations tells us that the phase
change right at n = 2 may not be very pro-
nounced in numerical simulations.) In contrast
with the case n = 1, we now observe a strong
back reaction on the geometry, which results in a
different universal behaviour of the gravitational
sector. The impact of the matter coupling is
best illustrated visually. Fig. 5 shows the cou-

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 6. A typical Lorentzian geometry in the
presence of eight Ising models, at volume N2 =
73926 and total proper time t = 333.

pling to a single Ising model at λcrit and βcrit
m .

As far as the geometry of the configuration is
concerned, there are no dramatic changes com-
pared with pure gravity (Fig. 3). However, after
switching on eight Ising models, a typical config-
uration looks like Fig. 6. The effect of the matter
is to “squeeze off” part of the space-time to an
effectively one-dimensional region which will play
no part in the continuum limit. All interesting
physics takes place in the remaining, extended
part. In this region of the geometry, we have
measured the Hausdorff dimension of space-time
to be dH ≈ 3 [22]. It is a tempting but completely
unproven conjecture that the phase transition in
the geometry takes place exactly at c = 1.

We can understand the influence of the matter
qualitatively, since the spin models have an ener-
getic preference for short boundaries between spin
clusters of a given orientation. In a theory where
the geometry can fluctuate, spins will therefore
have the tendency to squeeze off part of the space-
time geometry. In the case of Euclidean Liouville
gravity, whose geometries are very branched to
start with, this apparently leads to a complete
degeneracy of the geometry beyond the c = 1 bar-
rier. By contrast, the geometry of the Lorentzian
2d model remains well-defined.
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4. LORENTZIAN GRAVITY IN D=3

Which of the characteristic features of the 2d
Lorentzian model generalize to higher dimensions
and how do they differ from their Euclidean coun-
terparts? Our next stop on the way to the phys-
ically relevant case d = 4 is in three dimensions.
Apart from being a new statistical model of three-
dimensional fluctuating geometries, this theory
has some intrinsic interest. Although largely an
unphysical theory, 3d quantum gravity is an ex-
tensively studied system [23]. It is often invoked
as a model system for the full theory, since its
classical equations resemble in many ways those
of general relativity. There are of course no phys-
ical field degrees of freedom, and after getting rid
of the diffeomorphisms, the theory has a finite-
dimensional phase space. Although one has not
yet been able to make full use of this observa-
tion in a configuration space path-integral formu-
lation, it suggests that one may still be able to
solve 3d gravitational models analytically.

As mentioned earlier, we have constructed an
extension of the simplicial Lorentzian formulation
to 3 and 4 dimensions, on a set of causal and
“Wick-rotatable” geometries. The model is fi-
nite and well-defined at finite volumes, without

the need for further cut-offs [14,15]. We have
also shown that the extreme geometric phases
found in Euclidean dynamical triangulations can-
not be realized in the Lorentzian model. These
phases of rather degenerate geometry make up
the phase diagram of Euclidean DT in d = 3, 4
[24,6], depicted in Fig. 8. At small inverse gravi-
tational coupling k0 ∼ 1

G one finds a “crumpled”
phase, dominated by configurations of very large
Hausdorff dimension d ≈ ∞ (these are simplicial
manifolds where roughly speaking any two ver-
tices are a minimal distance apart). Above the
first-order transition at kcrit

0 , the system is in a
branched-polymer phase of highly branched ge-
ometries (with a fractal dimension dH = 2). Un-
fortunately, neither of these phases seems to have
a ground state that resembles an extended geom-
etry of dimension d ≥ 3.

The absence of these degenerate geometries
from Lorentzian DT is an encouraging feature,
but only a kinematic property, which does not

necessarily prevent the occurrence of (less ex-
treme) pathologies. To understand whether
Lorentzian gravity does indeed solve some of the
problems of the Euclidean approach, we need to
investigate its phase structure by either numerical
simulations or explicit analysis. This work is still
in progress, and I will summarize our current un-
derstanding of the three-dimensional case. More
technical details were reported by Ambjørn in the
parallel session [25], and can also be found in [26].
In addition, efforts are under way to produce an
analytical solution, by using matrix models meth-
ods [27] and a continuum treatment of the gravi-
tational path integral in proper-time gauge [28].

(3,1)

(1,3) (2,2)

t

t+1

Figure 7. The three types of tetrahedral building
blocks used in 3d Lorentzian gravity.

4.1. Construction of 3d geometries

The 3d Lorentzian space-times have again a fo-
liated structure, with spatial slices (of constant
integer proper time t) given by equilateral Eu-
clidean triangulations of the two-sphere. The
space in between these slices is filled by three
types of tetrahedral building blocks named (3,1),
(1,3), and (2,2), according to the number of ver-
tices they share with the spatial slices at times
t and t+1 (Fig. 7). The analogue of the 1+1
dimensional strips in Fig. 2 are now 2+1 dimen-
sional “sandwiches” [t, t + 1]. As in 2d, the spa-
tial edges have squared lengths l2s = +a2, and
the time-like edges, interpolating between spatial
slices, have l2t = −αa2. We can then compute
Regge’s discretized action Sα, α > 0, for a given
Lorentzian simplicial manifold of this type. Since
in the dynamical triangulations approach, both
curvature (i.e. deficit angles) and volume come
in discrete units, the action can be written as a
function of two “bulk variables” Nd (the numbers
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of d-dimensional simplices), and the total length
t of the geometry in proper time, leading to a
partition function of the form

Zα(k0, k3, t) =
∑

causal T

eiSα(N0(T ),N3(T ),t(T )). (13)

By a suitable analytic continuation in the com-
plex α-plane, one finds that the Lorentzian and
Euclidean actions are (for α < −1/2, to satisfy
Euclidean triangle inequalities) related by

Sα(N0, N3, t) = SEu
−α(N0, N3, t). (14)

For α = −1, the right-hand side takes the stan-
dard form familiar from Euclidean DT,

SEu
1 = k3N3 − k0N0, (15)

with the bare couplings (κπ ≡ arccos(1/3))

k0 =
a

4G
, k3 =

a

4G
(3κ − 1) +

a3Λ

48
√

2πG
. (16)

k

k

k

k crit

crit
3

0

3

0

k 0( )

Figure 8. The phase diagram of Euclidean dy-
namical triangulations in 3d.

4.2. Phase structure of 3d Lorentzian grav-

ity

In order to study the 3d Lorentzian gravity
path integral, we have set up a Monte Carlo simu-
lation for the Wick-rotated system with partition
function (13), at the Euclidean point α = −1.
We have chosen S1 × S2 as a convenient topol-
ogy for our numerical purposes. The phase struc-
ture can be characterized as follows (Fig. 9). Just

k

k

k

k crit

crit
3

0

3

0

k 0( )

Figure 9. The phase diagram of Lorentzian dy-
namical triangulations in 3d.

as in the Euclidean case, we find a first-order
transition point kcrit

0 along the critical line of
the cosmological constant kcrit

3 (k0) (along which
a continuum limit exists). However, the geom-
etry of the phases above and below this point
are rather different. Above kcrit

0 , the number
of (2,2)-tetrahedra falls to a minimum, reduc-
ing the space-time to an uncorrelated ensemble
of successive spatial slices, each well-described
by Euclidean 2d gravity. This phase does not
seem interesting from a physical point of view,
because there are no long-range correlations in
time-direction. A typical configuration from this
“ragged” phase is shown in Fig. 11.

A similarly degenerate phase, where the num-
bers of (1,3)- and (3,1)-tetrahedra attain a min-
imum, may exist for small k0. Since our algo-
rithm is not efficient in this region, we have not
been able to explore whether there is a second
(possibly negative) critical point k̃crit

0 . Wherever
this second critical point may be, there is a re-
markable structure that emerges in the region of
intermediate coupling, k̃crit

0 < k0 < kcrit
0 , where

all types of tetrahedra contribute non-trivially.

4.3. Geometry of the ground state in 3d

In this intermediate phase, we observe the
emergence of an extended geometry of roughly
spherical shape (Fig. 10 is a Monte Carlo “snap-
shot”), and a definite extension tu in t-direction.
This persists in the simulations at all volumes N3,
provided the total length t of the compactified
time-direction is chosen sufficiently large, so that
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0 5 10 15 20 25 30

Figure 10. Snapshot of the distribution of two-
volumes N2s(t) of spatial slices at proper times
t ∈ [0, 32], below the critical point kcrit

0 .

0 5 10 15 20 25 30

Figure 11. Snapshot of the distribution of two-
volumes N2s(t) of spatial slices at proper times
t ∈ [0, 32], above the critical point kcrit

0 .

the “universe” can fit in. It is surprising (and un-
precedented) that such a structure should emerge
as the ground state of the quantum theory, given
that we never put in any particular background
geometry by hand. It is also rather straightfor-
ward to see that its presence cannot be explained
as a minimum of the Euclidean action. It must
therefore be the ground state of an effective ac-
tion, where entropy contributions (in other words,
the measure) play a crucial role. Apparently in
our model these contributions are such that they
outbalance potential conformal divergences com-
ing from the Euclidean action (otherwise a well-
defined ground state could not exist).

We have so far only investigated the macro-
scopic geometry of the universe, i.e. its scaling

properties at “cosmic” scales [26]. These are com-
patible with the scaling of a three-dimensional ob-
ject. Namely, the time extension tu scales accord-

ing to tu ∼ N
1/3
3 , and the average two-volume of

the spatial slices according to N2s ∼ N
2/3
3 . A

final question concerns the role of k0 in this ex-
tended phase. The correlators between spatial
volumes and certain distributions of spherical disc
volumes within given spatial slices depend on k0,
but we have found that they can be mapped onto
each other by suitable (and equal) k0-dependent
rescalings of the lengths of time- and space-like
links. This leads us to conclude that the value of
k0 merely fixes an overall length scale, and oth-
erwise does not affect the physics of the model.

5. SUMMARY

I have given a brief overview of the current
status of covariant lattice approaches to four-
dimensional quantum gravity. Activity in the
area of Euclidean dynamical triangulations had
somewhat slowed after a number of negative re-
sults concerning the nature of the phase transi-
tion (although it has by no means been shown
that gravity cannot be quantized this way, if the
current models are suitably modified). However,
even if this approach leads eventually to a non-
trivial continuum theory, some kind of “Wick ro-
tation” will still be needed to make contact with
physical geometries of Lorentzian signature and
with physical observables.

A new class of Lorentzian dynamically trian-
gulated models presents an alternative to these
Euclidean approaches. Their starting point is a
state sum over simplicial Lorentzian geometries,
such that the Lorentzian nature of space-time is
built in from the outset. All of them have a
distinguished proper time, a well-defined causal
structure, and can be uniquely Wick-rotated to
Euclidean geometries. Topology changes of the
spatial slices are not allowed.

From the point of view of statistical mechanics,
they form a new class of models of random geom-
etry (with a distinguished direction or “time ar-
row”). They are well-defined for finite space-time
volumes, in the sense that their transfer matrices
are bounded and strictly positive in dimension
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d = 2, 3 and 4, which implies the existence of a
self-adjoint Hamiltonian with a spectrum that is
bounded from below.

We have found that in two and three dimen-
sions, the properties of the associated Lorentzian
continuum theories are completely different from
their Euclidean counterparts. It seems that the
causality conditions imposed in the Lorentzian
case act as an effective “regulator” on the geom-
etry, still allowing for large local curvature fluc-
tuations, but suppressing the fractal structures
found in the Euclidean models in all dimensions.
One consequence in two dimensions was that we
could cross without problems the infamous c = 1
barrier. In dimension three we observed, rather
remarkably, the emergence of a ground state of
extended three-dimensional geometry.

These results are very encouraging. Motivated
entirely by physical considerations, we have dis-
covered a new class of dynamically triangulated
models for quantum gravity. In d = 2, 3 we
have found a number of new and interesting re-
sults. We are particularly encouraged by the fact
that the three-dimensional Lorentzian model has
a phase with a ground state of extended and non-
degenerate geometry, because this is exactly the
point where the Euclidean DT model failed. The
ultimate test is of course gravity in four space-
time dimensions, where we expect a completely
different picture, with propagating field degrees
of freedom coming to the fore. It remains to be
seen whether discrete Lorentzian quantum grav-
ity can bring us any closer to this holy grail ...
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