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1. System G after Prof. Fran De Aquino 
 
January 2000 Prof. Fran De Aquino, Maranhao  State University, Brazil reported on one 
of his experiments, described as the System-G , to which he developed a corresponding 
theory. (see  http://jlnlabs.imars.com/systemg/index.htm ). 
 
Prof. De Aquino claims that he has succeeded with the help of a so-called ELF antenna 
to reduce the weight of the experimental construction considerably. 
 
1.1.  Theory 
 
Prof. De Aquino derives a formula in [16] for the connection between heavy mass mg 
and  inertial mass mi, which must be regarded as a fundamental basis for the 
experiment.: 

 
Included are.: 
 D:  Power density of the emitted radiation 
 f:  Frequency of the radiation 
 a:  Surface of the mass particles mi 
           µ, σ:     Permeability and conductivity of the medium around the mass particle mi 
                      ( the steel shell casing) 
           c:        Light velocity 
 
Mass becomes mg =0 if  valid: 

                                      
If D is very big opposite to this term, the mass gets even negative! 
 
By using the theoretical values De Aquino receives the following diagram: 
 

http://jlnlabs.imars.com/systemg/index.htm


 
 
The heavy mass decreases with rising current. Noticeable is the singularity striking the 
at I = approx. 130 A,  where the mass of the iron powder goes toward zero. Left. is only 
the weight of the iron coat . 
This diagram is suggesting, that theoretical and experimental values well agree. 
However, De Aquino has published no actual measurement results nowhere.  
 
After our enquiries there is worldwide no operating " replication" in existence.  
It was our intention to make the experiment according to the accessible information as 
exactly as possible. 
 
1. 2. Description of the System G after Prof. Fran De Aquino 
 
Description of the construction (see illus. 1) 
 
Two copper spools coiled inversely arranged (each three meanders) are in a torus of 
annealed sheet iron. The diameter of the copper bars is 12 mm, the thickness of the 
sheet iron 0.6 mm. 
The two copper spools are at their ends, not connected within the torus. 
Around the sheet iron, a "steel jacket" can be attached, which, however, has merely a 



protecting function and doesn't contribute to the function, according to the information of 
Prof. De Aquino  
The tube diameter of the torus is indicated with 63.5 mm, the middle diameter of the ring 
with 640 mm  
The length of each copper bar is 6 m (total of 12 m). The two copper spools are 
described as an "ELF antenna" and are varnish insulated. 
This ELF antenna lies in iron powder with a permeability of 75 * µ 0 
 
Connecting the construction through an alternating current transformer (translation 
relationship 6:1) to the energy net (in Brazil: 220V / 60 Hz). 
a current flow up to 300A is possible. (at not connected line ends)  
In addition, a weight reduction of more than 30%, shall be measured.  
 



 
                                                                                                                                                         ll.. 1  
2. .     Experimental set up at the IGF 
2.1. .   First construction, hexagon, steel sheet 
2.1.1.  Manufacturing the construction 
For our first construction we decided to use a hexagon shaped arrangement (see illus. 2). 
due to economical reasons in the manufacturing method. 
The metal of the shell casing was simply easier and faster to be built than in round 
shape. The same applied to the copper windings, were a "enormous" exertion had been 
necessary for  the design. (illustr. 3) 



Furthermore the individual elements of the hexagon shell casing fitted much better in the 
kiln. With this first construction we wanted to gain primarily experience and gradually 
optimise following arrangements. 

       
Illus. 2 
 

 
 
Illus. 3 
 
The copper bars had a diameter of 12 mm. The middle diameter of the hexagon was 
640 mm, the cross-sectional area for the shell casing 56 mm*56mm = 3136 mm²  
Inside of the bundled conductor, was a 12 mm PVC bar. 
The copper bars were isolated (see illus. 4) with fabric tape or shrinkage tube (thickness 
approx. 0.08 mm) insulated. (see ill. 4). 
 



 
Abb. 4 
 
The sheet metal shell casing (steel sheet, thickness 0.7 mm, purity 99.74%)  
was filled with the ELF antenna together with gray cast iron powder type GG 150 (grain 
size 0 to 150 µ m) (see illus. 5).  
 

 
Illus. 5 
 
To condense the grey cast iron powder with the iron shell casing evenly, (also between 
the individual meanders of the ELF-antenna) a rattling table was used . 
Two three-phase motors, fixed underneath the rattling table, caused vibrations by 
unbalance (see illus. 6). Between each individual rattling process powder had to be 
refilled. 



 
Abb. 6 
 
2.1.2.  Operation / results 
 
Then the complete construction was put (see illus. 7) on a mechanical scale and 
attached to a customary welding transformer that can supply up to 300 A(for a short-time 
even more) (see illus. 8). 
 

 
Illus. 7 
 



 
 
Illus. 8 
 
 
Measuring results: 
 
A current of 9.8 mA was measured, at the secondary voltage of 26.2 V of the welding 
transformer. In the insulation no possible leaks are yet taken into consideration. 
It is possible that the measurement of the current was possibly distorted by leaks and a 
too high current was measured. 
The mechanical scale showed no weight change. 
 
Result: 
These results were still miles away from those indicated by Prof. De Aquino. 
However, we did not expect anything else , since the used materials weren't optimised 
yet. Next, we wanted to utilize (as already mentioned) a improved manufacturing 
method.  
 
 

 2.1.3. Annealing the shell casing   
 
The first step in optimising was annealing the sheet iron shell casing. The sheet iron has 
a purity degree of 99.74% and corresponded with the Prof. De Aquino specifications.  
The Curie temperature of iron is 770 degrees Celsius. 
The metal was glowed at 850 degrees Celsius for approx. 4 hours (see illus. 9). The cool 
down rate was 200 degrees Celcius per hour . The glowing process took place under 
argon atmosphere. The metal was taken out of the kiln only at "room temperature"  
 



 
 
Illus. 9 
 
2.1.4. Renewed operation 
 
At the renewed operation there weren't any considerable differences to the values 
measured before. At a secondary voltage of the welding transformer of approx. 26 V a 
current of approx. 10 mA flowed. Possible leaks were not considered. 
 
2.1.5. Enquiry about suitable iron powder 
 
The next parameter which we wanted to improve was the iron powder. 
Prof. De Aquino indicates a permeability of 75 * µ 0 for the iron powder to be used. 
 
While the manufacturer of the grey cast iron powder GG 150 couldn't make any 
statements on conductivity and permeability, Tridelta GmbH, Hermsdorf supplied us with 
a ferrite powder (type Mf 196) with a quality very interesting to us. 
The manufacturer was able to supply us with three “basic data” for this powder: 
 
1. In a compact firm condition the Mf 196 powder has a permeability of approx. 2000 * µ 
0 (melted as a sintered ring core at 1350 degrees Celsius). 
 
2. At a mixing ratio of 90% Mf 196 powder with 10% polyamide  
a permeability of approx. 20* µ 0 known 
 
3.  A mixing ratio of a of 70% Mf 196 powder with 30% polyamide caused a permeability 
smaller than 10 * µ 0. 
 
Since we wanted to use the powder in pure form (100%) the permeability was. over 20 * 
µ0 
 



We checked this according to the following method (see illus. 10). 
 

                                                                       
 
Abb. 10 Transformer in neutral 
 
Validated transformer main equation:  
 
                          U2i = (B*A*2*π*f*n2) / 2^(0,5) 
   
 
 
with:                    B = µ 0 * µ r*H 
 
and:                    H = (Io1*n1) le 
 
results in:            µr = (U2i*2^(0,5)) / (2*π*f*n2*A*µ0*H)     
 
 
Notice:                 µr ...  relative permeability [/] 
                           U2i ... Secondary voltage [V] 
                           f..            Frequency [Hz] 
                           n2 ... Windings of the secondary spool [/] 
                           A.   Cross-sectional area of the iron [m ²] 
                           µ 0... magnetic field constant µ 0 = 1.25664 E-6 Vs/(Am) 
                           H. . Field strength [A/m] 
                           B.   magnetic induction [T] 
                           Io1 ...       Primary current [A] 
                           n1 . windings of the primary spool [/] 
                           le ...         Length of the magn. Lines of force into iron [m] 
 
Practically  we replaced the transformer, (illus. 10) with a thin synthetic tube, filled with 
MF 196 powder (see illus. 11)  
 



 
Abb: 11 
 
How many windings must be rolled up primary and secondary sided depends on the 
material or its saturation behaviour. The iron powder used by us, showed, that a 
saturation occurred very quickly, and the field strength therefore must be kept low. At 
very low µr (< 500) we worked with high frequencies, otherwise secondary sided nothing 
is induced. 
We worked with sinus signals with frequencies between 20 and 60 kHz. 
 
H = (Io1 * n)/ le needs few windings to realize low field strengths. We used primary 
sided, 37 and secondary-sided 10 windings  
 
We took up following sizes: 
 
Current Io1, voltage at the secondary spool U2i, frequency f 
 
We used the following construction (see illus. 12) 

 
 
Illus.12 
 
Within left picture, it shows the function generator HAMEG HM 8030-3 which generates 



the sinus signal (here 50 kHz). After that the audio amplifier, still supplying enough 
power with this frequency, is switched in between, (see illus. 13). 
 

 
 
Illus. 13 
 
The amplitude and with that the field strength, produced primary sided, can be regulated 
on the amplifier  
Once, the voltage U1 at the primary spool (Tektronix digital Oszi, channel 1) and on the 
other hand the voltage U2i is measured at the secondary spool (Tektronix digital Oszi, 
channel 2). In addition, the current must be measured, during the flow through the 
primary spool. This cannot be realized by switching the multi-meter in between. 
Corresponding multi-meters do not work , or are too inaccurately at this frequency 
range. The currents are comparatively low. Therefore the voltage should be measured 
with a Shunt resistance (here power resistor 0.1 ohms, max. 5 W). and a additional 
oscilloscope. This must galvanically be separated from the other Oszi  otherwise all 
three channels have a common ground mass and the measurements results in 
falsification. To simplify, the Fluke 45 table multi-meter can also be used to measure the 
voltage over the Shunt instead of the analogous oscilloscope. It is suitable for 
frequencies of about 80 kHz.. The current should under no circumstances be measured 
directly, since the shunt of the gauge is too large,  
 
During the measuring process, the amplitude should only be opened up as far as the 
saturation occurs. Otherwise with increasing field strength, the permeability decreases 
down to 1 again. 
 
The construction used by us has a middle magnetic field line length (which corresponds 
also to the middle bulk of the synthetic material tube) of le = 0.38 m and the cross-
sectional area of the iron powder filling = A 2,54*10 ^ (-4) m ².  
 
For example, at a frequency of f = 40 kHz, a primary current lo =  2.7 mA, a primary 
voltage U1 103 mVs and a secondary voltage U2i = 10 mV, a permeability of the Mf 196 
powder of µr = 66,4. 



 
Therefore the powder seemed suitable to us. 
After the Mf 196 powder was filled into the hexagon shell casing instead of the GG 150 
powder, (incl. ELF antenna and rattling), and the construction again was attached to the 
welding transformer, almost equal measurements where reached. (a. 26 V approx. 
approx. 10 mA ). 
 
Result: 
The exchange of the iron powder had caused nothing decisive. 
Because of these circumstances we decided to examine the resonance behaviour of the 
system. 
 
2.1.6. Determening the resonance behaviour 
 
We did built the measuring circuit outlined in the following circuit diagram (see illus. 14). 
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Abb. 14 
 
The ELF construction was connected to a frequency generator. 
For the frequency domain of 0 Hz to 100 kHz a function generator Hameg HM8030 3 
was used. For the frequency range 100 kHz. and for some MHz to we used a signal 
source Fluke 6062A   
The oscilloscope was a Tektronix TDS 3054.  
For the galvanic separation the oscilloscope was fed through a network-independent 
mobile energy supply. 
The measuring resistance Rm was 10 Ohm and served recording the current  
We worked with a sinusoidal Generator voltage, which had in "neutral" (no resonance), 
7.2 V, peak-to-peak, and "disrupted." for example in resonance case, down to 0.6V 
peak-to-peak  
 
Our first measuring series in the area of 100 kHz to 2 MHz showed the following 



behaviour of the current and voltage (see illus. 15). A clear resonance point can be 
recognized close to 760 kHz. 
 

Frequenzverhalten des de-Aquino-Dipols --- Mf 196-Pulver / zweifach gerüttelt / 6-Eck

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Frequenz f [kHz]

St
ro

m
 I 

[m
A

]

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

Sp
an

nu
ng

 U
 [V

]

Strom
Spannung

 Ill. 15 
 
Finally we examined the behaviour of 0 Hz to 100 kHz (see illus. 16). 
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Ill.. 16 
 
 
You can clearly recognize, that this construction has its lowest resonant frequency at 
approx. 760 kHz. Below that there is no resonance point . 
 
Result:  
We are still far away from the resonance of 60 Hz , indicated by Prof. De Aquino  
  
We noticed during additional measuring, that the System G construction has also 
resonance points in the higher frequency range. (see illus. 17.) 
At these resonance points a current minimum occurs at the same time as the voltage 
maximum  
To simplify the representation in this report , we will in the future declare the resonant 
frequencies as voltage minimum  
 

Spannung, im Mf 196-Pulver, 2-fach gerüttelt

0,000

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

0 2 4 6 8 10 12 14 16 18 20 22 24

Frequenz in MHz

Sp
an

nu
ng

 in
 V

Spannung U [V]

 
Ill.. 17 
 
Besides the resonance point at 760 kHz further resonance points at approx. 5 MHz, 
approx. 10 MHz and approx. 20 MHz can be recognized. 
 
Until now only a few mA flowed at resonance. Because of this we tried to work with 
higher voltages. In our laboratory we had a short wave transmitter (Self constructed) 
capable of approx. frequency of 5 MHz, ( were another resonance point was ) supplying 
a maximum output voltage of 5000V ( possible output power for the transmitter 2000 W). 
(see illus. 18) 



  
Unfortunately a high voltage supply flashover occurred during start up of the voltage. 
which damaged the insulation of the ELF antenna. The insulation wasn't designed for 
such high voltage. In addition, the copper bars were laying as bundles close to each 
other, which favoured the Flash over. We had to repair the insulation. 
 

  
 Illus. 18 
 
We insulated the copper bars 2 mm thick, at first we started again with low voltage (as 
Prof. De Aquino). We noticed that alone by rising the insulation thickness, the resonance 
behaviour of the System G construction had changed considerably (see illus. 19). 
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Abb. 19 



 
The lowest resonance point was now at approx. 1.8 MHz (before 760 kHz), the next 
higher at approx. 9 MHz (before approx. 5 MHz) . 
 
Result: 
At this point, we decided to change our examination strategy. Each parameter of the 
system will specifically be examined. 
 
2.1.7. Pressing the iron powder 
 
We decided, using our RCL meter, Fluke PM6304 , (see Ill..20) to examine the 
impedances of our System G arrangements in the future.  
The RCL meter has 4 measuring frequencies: 
100 Hz, 1 kHz, 10 kHz, 100 kHz. 
The most interesting measuring frequency for us is 100 Hz, it comes closest to the 60 
Hz of Prof. De Aquino..  
 

 
Illus. 20 
 
First we examined the change of the resonance behaviour in which the System G 
assembly (including the iron powder) was being pressed with high pressure.  
We had the opportunity to put our construction on a hydraulic press, with a pressing-
pressure of 30 tons (see illus. 21) 
 



 
Abb. 21 
 
Preventing that our experimental construction wouldn’t, simply squashed, we built 
around the steel sheet shell casing (with the ELF antenna and the Mf 196 powder) an 
additional concrete shell, with additional  stability.(see Ill..22). 
Pressure was only put on that area, under which the hexagon was located.. 
 

 
Illus. 22 
 
Illus. 23 shows the concreted System G construction, while the press is closing. 
 



 
Illus. 23 
 
After the pressing process it was clearly seen, that the height of the area where the steel 
sheet shell was located was visibly smaller than before the pressing process. The width 
remained (inner and outer diameter) the same even by strengthening the concrete. 
 
 
Resulting in following resonance and impedances (see illus. 24). 
1 = before pressing 
2 = after pressing 
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Abb. 24 
  
Before we started pressing we had noticed that after concreting, the lowest resonance 
point, was at approx. 1.45 MHz. Prior to concreting it was approx. 1.8 MHz.  
Consequently the changing of the shell casing had also affected the resonant frequency. 
The pressing itself changed the resonant frequency only insignificantly. 
 



Similar to the impedances, measured at 100 Hz (see illus. 25). 
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Illus. 25 
 
 
Result: 
 
Even through pressing, it wasn't possible to come close to the target range. (according 
to Prof. De Aquino statement resonant frequency 60 Hz at an impedance of 116 milli 
Ohm [14]). 
 
No further changes could be carried out on the hexagon construction (it is concreted in ), 
therefore a second construction was build. 
 
 
2.2.  Second construction, torus circular, tubular steel 
2.2 1. Manufacturing of the construction 
We used a steel tube with a pipe diameter of 60 mm, 
bent  to a ring with a middle diameter of 640 mm. The wall thickness of the pipe was 3 
mm (see illus. 26). 
These are almost exactly the measures which Prof. De Aquino provides. 
 



 
Illus. 26 
 
Furthermore we manufactured an ELF antenna from a customary flexible line, cross-
sectional diameter of line 25 mm ², insulation thickness 1.5 mm. 
The line was wrapped according to the information from Prof. De Aquino. 
The respective length of the two dipole elements was 6 m (together 12 m). 
The two elements aren't connected with each other (electrically) (see illus. 27). 
Inside of the conductor bundle was a PVC pipe with the thickness of the cable. 
 

  
Illus. 27 
 
 
2.2.2. Operation/results 
 
The resonance and impedances were examined as follows: 
1. Measuring of the ELF antenna in air (without iron powder outside the torus). 
2. Measuring of the ELF antenna without iron powder however within the torus. 
3. Measuring of the ELF antenna, surround by MF 196-powders in the torus. 
4. Measuring of the ELF antenna, surround by MF 196 powders in the torus, shaken. 
 
With following results (see illus. 28 and illus. 29) 
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. 
Abb. 28   
 

Impedanzen in kOhm bei 100Hz, runder Stahltorus,
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Abb. 29 
 
Result: 
The measures we received showed that the resonant frequency rises as soon as the 



ELF antenna is put in the empty steel torus without iron powder. 
Filling it with Mf 196 powder the resonant frequency goes back again. The shaking in of 
the Mf 196 powder causes another fall back to approx. 1.6 Mhz. 
The impedance of the system, which by the way has a capacitive character, falls back to 
reading 1 to 4 continually. We have lost the reading for measuring 3. The lowest 
impedance lies by approx. 1. 25 mega-ohms. 
 
With this construction we also didn't even roughly reach the values of Prof. De Aquino  
 
 
 
 
Enter 2.3. 
2.3….Third construction, torus (circular), steel tube, thinner insulation 
2.3.1. Manufacturing the construction  
 
Next we wanted to examine the effect of a thinner insulation on the impedance and 
resonance behaviour of the system, with the same conditions as shown at 2.2.  
 
Another ELF antenna was manufactured. We removed the original insulation (1.5 mm) 
Of a flexible line with 25 mm ² of cross-sectional and replaced it by a heat shrinkable 
tube with 0.1 mm strength (see illus. 30 and illus. 31). 
The same measures as 2.2.1. applied. 
 

 
Illus. 30 
 



 
Illus. 31 
 
We noticed, that by removing the thick insulation and overlaying the thinner heat 
shrinkable tube, the cable lost a little of its stability 
Meaning when wrapping the ELF antenna coils, the individual cable-bows did not cling 
on to each other evenly.  
Due to the series of experiments, we also wanted to examine the influence of cables 
laying loose and narrow to each other.  
 
 
2.3.2. Operation / results 
 
The resonance and impedances were examined as follows: 
 
1. Measuring of the ELF antenna in air outside the torus. 
2. Measuring of the ELF antenna in air, outside the torus, with 50 cable fasteners fixed. 
3. Measuring of the ELF antenna in air outside the torus, with 100 cable fasteners fixed. 
4. Measuring of the ELF antenna without iron powder, however inside the torus, with 100 
cable fasteners fixed. 
5. Measuring of the ELF antenna in Mf 196 powder inside the torus fixed with 100 cable 
fasteners  
6. Measuring of the ELF antenna shaken in Mf 196 powder, inside the torus, fixed with 
100 cable ties. 
 
 
Following results revealed (see illus. 32 and illus. 33.) 
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5 =  ELF-Antenne, umgeben von MF 196-Pulver, im Torus, mit 100 Kabelbindern fixiert
6 =  ELF-Antenne, umgeben von Eisenpulver, gerüttelt, im Torus, mit 100 Kabelbindern fixiert

 
 
Abb. 32 
 



Impedanzen in kOhm bei 100Hz, runder Stahltorus, Isolation 0,1mm
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1 = ELF-Antenne in Luft (ohne Eisenpulver, außerhalb des Torus) 
2 = ELF-Antenne in Luft (ohne Eisenpulver, außerhalb des Torus), mit 50 Kabelbindern fixiert
3 = ELF-Antenne in Luft (ohne Eisenpulver, außerhalb des Torus), mit 100 Kabelbindern fixiert
4 = ELF-Antenne ohne Eisenpulver, jedoch innerhalb des Torus, mit 100 Kabelbindern fixiert
5 = ELF-Antenne, umgeben von MF 196-Pulver, im Torus, mit 100 Kabelbindern fixiert
6 = ELF-Antenne, umgeben von Eisenpulver, gerüttelt, im Torus,mit 100 Kabelbindern fixiert

 
Abb. 33 
 
The influence of the insulation strength is considerable. As already mentioned, the 
hexagon construction under point 2.1.6 , causes a thicker insulation and a higher 
resonance frequency. 
The same applies for the impedance. 
The loose or narrow laying cable-bows considerably affect impedance and resonance. 
The tighter they are laying, the smaller are both values.  
Similar as in point 2.2.2, the resonant frequency rises as soon as the ELF antenna is put 
into the torus without iron powder. The "loosely" filled iron powder pushes the resonant 
frequency down below. Rattling (with refilling) provides another reduction of the 
resonance (and impedance). 
 
Result: 
These values are "more favourable" than the values shown in item 2.2.2. 
But they by far, do not come close to the ranges of Prof. De Aquino. 
 
 
2.4.    Furth construction, torus (circular), PVC tube 
2.4.1. Manufacturing the construction 
 



To record the influence of an iron or steel shell coat regarding e.g. not magnetic 
materials, we replaced the steel torus of item 2.2 and 2.3 by a shell coating made of a 
PVC tube, with unchanged conditions as item 2.3 (see illus. 34 and illus. 35.) 
 
 

  
Illus. 34 
 

 
 
Abb. 35 
 
 
2.4.2. Operation/results 
 
The resonance and impedances were examined as follows: 
 
1. Measuring of the ELF antenna into air outside of the PVC tube. 
2. Measuring of the ELF antenna within the PVC tube without iron powder. 
3. Measuring of the ELF antenna within the PVC tube with Mf 196 powder. 
4. Measuring of the ELF antenna in the PVC tube in Mf 196 powder, shaken 
5. Measuring of the ELF antenna in the PVC tube in Mf 196 powder, shaken 
     fixed with package cord  
6. Measuring of the ELF antenna in the PVC tube in Mf 196 powder shaken, fixed 
    with package cord and approx. 1.5 t of pressing pressure 



 
The following results where recorded (see illus. 36 and illus. 37). 
 

Niedrigste Resonanzpunkte in MHz, PVC-Schlauch, Isolation 0,1mm
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1 = ELF-Antenne in Luft, außerhalb des PVC-Schlauches 
2 = ELF-Antenne innerhalb des PVC-Schlauches, ohne Eisenpulver
3 = ELF-Antenne innerhalb des PVC-Schlauches, mit Mf 196-Pulver
4 = ELF-Antenne, im PVC-Schlauch, in Mf 196-Pulver, gerüttelt
5 = ELF-Antenne, im PVC-Schlauch, in Mf 196-Pulver, gerüttelt mit Paketschnur fixiert
6 = ELF-Antenne, im PVC-Schlauch, in Mf 196-Pulver, gerüttelt mit Paketschnur fixiert plus, ca 1,5t Pressdruck

 
Abb.36 
 



Impedanzen in kOhm bei 100Hz, PVC-Schlauch, Isolation 0,1mm
kapazitives Verhalten
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1 = ELF-Antenne in Luft, außerhalb des PVC-Schlauches
2 = ELF-Antenne innerhalb des PVC-Schlauches, ohne Eisenpulver
3 = ELF-Antenne innerhalb des PVC-Schlauches, mit Mf 196-Pulver
4 = ELF-Antenne, im PVC-Schlauch, in Mf 196-Pulver, gerüttelt
5 = ELF-Antenne, im PVC-Schlauch, in Mf 196-Pulver, gerüttelt mit Paketschnur fixiert
6 = ELF-Antenne, im PVC-Schlauch, in Mf 196-Pulver, gerüttelt mit Paketschnur fixiert plus, ca 1,5t Pressdruck

 
Abb. 37 
 
We would like to mention, that measuring 1 to 4 the individual cable bows had not been 
fixed with cable fasteners or similar items.  
 
The pressing pressure was generated by a hydraulic jack. The measuring 6 was carried 
out "under pressure". 
The PVC tube (without iron powder) did not increase the resonant frequency (unlike the 
items 2.2.2 and 2.3.2). 
The influence of loose and shaken Mf 196 powder is already known and recognized 
here. 
 
Result: 
A clear (one or more decades) effect, that we had hoped for, at impedances and 
resonance in favour of an iron shell coat, by exchanging the iron-/ steel shell coat in a 
plastic shell coat, did absolutely not appear  
It doesn't seem to make any greater difference, whether to uses synthetic material 
instead of iron. 
 
 



2.5      Fifth construction, torus (circular), PU tube, 90 mm ²cable 
2.5.1.  Manufacturing the construction 
The aim of this construction was, to find out the behaviour of a system, if a considerably 
stronger copper cable was being used. 
We used a customary, flexible copper cable with 90 mm of 2 cable diameter. 
The insulation thickness was 1.6 mm. 
The diameter of the middle ring was 640 mm. The length of a dipole 6 m 
(together 12 m). 
Inside of the cable bundle was a PVC stick, same thickness as the cable. 
The pipe diameter of the coat had to be extended. 
We manufactured a torus made out of a Polyurethane tube with a tube diameter of 75 
mm (illus. 38, illus. 39 and illus. 40). 
 
To receive a better "contact" of the iron powder with the insulation, we filled at the last 
measuring, 1.5 Liter of spirit into the torus. During all measuring the ELF antenna is fixed 
with approx. 50 cable fasteners. 
 

 
 
 
Illus. 38 
 

 
 
Abb. 39 



. 
 
Abb. 40 
 
2.5.2.  Operation / results 
The impedances and resonance were examined as follows: 
1. Measuring of the ELF antenna in air outside the PU tube 
2. Measuring of the ELF antenna within the PU tube without iron powder 
3. Measuring of the ELF antenna within the PU tube with Mf 196 powder 
4. Measuring of the ELF antenna in the PU tube in Mf 196 powder shaken 
5. Measuring of the ELF antenna in the PU tube in Mf 196 powder shaken,  
     in addition, approx. 1.5 t of pressing pressure 
6. Measuring of the ELF antenna in the PU tube in Mf 196 powder, shaken, 1 day 
     after additional filling 1.5 l of spirit 
Following results were received. (see illus. 41 and illus. 42). 
We have lost the reading for measuring 2. 



Niedrigste Resonanzpunkte in MHz, PU-Schlauch, Isolation 1,6mm
(bei Messung 2 kam uns der Messwert abhanden)
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1.  Messung der ELF-Antenne in Luft, außerhalb des PU-Schlauches
2.  Messung der ELF-Antenne innerhalb des PU-Schlauches, ohne Eisenpulver
3.  Messung der ELF-Antenne innerhalb des PU-Schlauches, mit Mf 196-Pulver
4.  Messung der ELF-Antenne, im PU-Schlauch, in Mf 196-Pulver, gerüttelt
5.  Messung der ELF-Antenne, im PU-Schlauch, in Mf 196-Pulver, gerüttelt, plus ca. 1,5t Pressdruck
6.  Messung der ELF-Antenne, im PU-Schlauch, in Mf 196-Pulver, gerüttelt, 1 Tag nach dem Zufüllen von 1,5 l Spiritus

 
 
Illus. 41 
 



Impedanzen in kOhm bei 100Hz, PU-Schlauch, Isolation 1,6mm
kapazitives Verhalten
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1.  Messung der ELF-Antenne in Luft, außerhalb des PU-Schlauches
2.  Messung der ELF-Antenne innerhalb des PU-Schlauches, ohne Eisenpulver
3.  Messung der ELF-Antenne innerhalb des PU-Schlauches, mit Mf 196-Pulver
4.  Messung der ELF-Antenne, im PU-Schlauch, in Mf 196-Pulver, gerüttelt
5.  Messung der ELF-Antenne, im PU-Schlauch, in Mf 196-Pulver, gerüttelt, plus ca. 1,5t Pressdruck
6.  Messung der ELF-Antenne, im PU-Schlauch, in Mf 196-Pulver, gerüttelt, 1 Tag nach dem Zufüllen von 1,5 l Spiritus

 
Illus. 42 
 
The pressing pressure was also caused by a hydraulic jack. 
Measuring 5 was carried out "under pressure". 
Result: 
The PU torus (without iron powder) doesn't increase the resonant frequency (opposite to 
the iron-/ steel torus). 
Mf 196 powder, in loose and shaken condition behaved as expected. 
The pressing pressure did also causes nothing worth mentioning. 
Similar applies to moistening the Mf 196 powder with spirit  
In regards to the results of Prof. De Aquino, we didn’t make in progress so far.  
 
 
 
2.6.    Sixth construction, torus (circular), steel tube, GG 150 powder 
2.6.1. Manufacturing the construction 
 
This test was quasi a "repetition" of test 2.3, using different iron powder. We filled in the 
grey cast iron powder GG 150, we already mentioned.  
Pointed out under 2.3, a flexible copper line, 25 mm ² was used, thickness of the 
insulation 0.1 mm, brought into the steel torus together with the GG 150 powder. 
The leader bundle of the ELF antenna was always fixed with 100 cable fasteners. 



 
2.6.2.   Operation / results 
 
The impedances and resonances were examined as follows: 
 
1. Measuring of the ELF antenna in air (outside the torus) 
2. Measuring of the ELF antenna in the torus without iron powder. 
3. Measuring of the ELF antenna in the torus with GG 150 powder. 
4. Measuring of the ELF antenna in the torus with GG 150 powder, shaken. 
5. Measuring of the ELF antenna in the torus with GG 150 powder, shaken. Then filled 
with 0.3 l of water. 
 
Following results were received (see illus. 43 and illus. 44.) 
 

Niedrigste Resonanzpunkte in MHz, runder Stahltorus, Isolation 0,1mm, GG-
150-Pulver
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1 = ELF-Antenne in Luft (ohne Eisenpulver, außerhalb des Torus)
2 = ELF-Antenne ohne Eisenpulver, jedoch innerhalb des Torus
3 = ELF-Antenne, umgeben von GG-150-Pulver,  im Torus
4 = ELF-Antenne, umgeben von GG-150-Pulver, gerüttelt, im Torus
5 = ELF-Antenne, umgeben von GG-150-Pulver, gerüttelt, im Torus, nach Einfüllen von 0,3l Wasser

 
Illus. 43 
 



Impedanzen in kOhm bei 100Hz, runder Stahltorus, Isolation 0,1mm, GG-150-
Pulver
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1 = ELF-Antenne in Luft (ohne Eisenpulver, außerhalb des Torus)
2 = ELF-Antenne ohne Eisenpulver, jedoch innerhalb des Torus
3 = ELF-Antenne, umgeben von GG-150-Pulver,  im Torus
4 = ELF-Antenne, umgeben von GG-150-Pulver, gerüttelt, im Torus
5 = ELF-Antenne, umgeben von GG-150-Pulver, gerüttelt, im Torus, nach Einfüllen von 0,3l Wasser

 
 
Illus. 44 
 
In direct comparison with item 2.3. (the same construction in MF 196 powder) no clear 
change can be recognized regarding the lowest resonant frequencies. 
The moistening brought also very little. 
Please notice, that the GG 150 powder is far less absorbent than the MF 196 
Powder. The impedances at 100 Hz are a little more favourable " compared with the GG 
150 powder, but still “infinitely far" from 116 milli Ohm. 
 
Result: 
The exchange of the iron powder showed nothing new. 
 
 
 
2.7.  Seventh construction, open cardboard box shell casing, 1.5 mm varnish 
isolated, scale 1: 2 
 
2.7.1. Manufacturing the construction 
 
We noticed that all our previous systems, had at the impedances and at the resonances 
always the same order of magnitude. We decided to shorten the time consuming 
manufacturing method. 
Since the material of the shell coat had no considerable influence, the following shell 
coat’s were made of cardboard box material. 
The models were fabricated in a 1: 2 scale. At this point, a greater change of 
impedances and resonances can be diagnosed and if required a copy of the original 



system could be replicated.  
We used also thin cable diameter and customary copper varnish wire, cable diameter 
1.5, mm middle diameter of the hexagon 320 mm, length of a dipole bow 3 m, total 
length 6 m (see illus. 45.) 
 
Totally placed into Mf 196 powder. (see illus. 46) . 
 

 
   
Illus. 45 
 

 
 
Abb. 46 
 
2.7.2.  Operation / results 
 
The impedances and resonances were examined as follows. 
 
1. ELF antenna in air (without iron powder outside of the hexagon) 
2. ELF antenna, surround by MF 196 powder within the hexagon 
3. ELF antenna, surround by MF 196 powder, easily stamped, within the hexagon,  
 
Following results were received. (see illus. 47 and illus. 48): 
 



Niedrigste Resonanzpunkte in MHz, 6-Eck, Maßstab 1:2, Iackisoliert, Mf 196-
Pulver, Leiterdurchmesser 1,5mm
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1. ELF-Antenne in Luft (ohne Eisenpulver, außerhalb des 6-Ecks)
2. ELF-Antenne, umgeben von MF 196-Pulver,  im 6-Eck
3. ELF-Antenne, umgeben von Mf 196-Pulver, leicht gestampft, im 6-Eck

 
 
 
 
Illus. 47 
 
 
 

Impedanzen in kOhm bei 100Hz, 6-Eck, Maßstab 1:2, Iackisoliert, Mf 196-
Pulver, Leiterdurchmesser 1,5mm
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1. ELF-Antenne in Luft (ohne Eisenpulver, außerhalb des 6-Ecks)
2. ELF-Antenne, umgeben von MF 196-Pulver,  im 6-Eck
3. ELF-Antenne, umgeben von Mf 196-Pulver, leicht gestampft, im 6-Eck

 
 
 
Illus. 48 



 
 
At first we were astonished, that despite of serious change of three parameter 
(insulation, scale, cable crosscut) we were still laying within the order of magnitude of 
the previous systems  
The lowest resonant frequencies had only been insignificantly higher as previous 
arrangements. 
The higher impedances can be explained due to the very low cable diameter (cf. 2.2 and 
5.2). 
 
Result: 
Our objective (ca.116 milli Ohm at an approx. 60 Hz) still far away.  
 
 
2.8   Eight construction, open cardboard box shell casing as hexagon, ELF 
antenna, cable diameter 1.5 mm, varnished , cable no longer bundled, scale 1:2 
 
2.8.1. Manufacturing the construction 
 
We discovered in an illustration published in the internet by Prof. De Aquino, in which 
the cable bows were not bundled, but with distance evenly distributed over the tube 
cross-section of the torus  
If and how this version would have an effect on our target was examined with the 
following model: 
Construction: 
Copper varnish wire, cable diameter 1.5 mm, distance of the cables to each other 8 mm, 
middle diameter of the ELF antenna 320 mm, length of a dipole bow 3 m, total length 6 
m (see illus. 49 and illus. 50). 
 
This ELF antenna was also put into Mf 196 powder. 
 

 
 
Abb. 49 
 



 
 
 
Illus. 50 
 
 
 
2.8.2.  Operation / results 
 
The impedances and resonances were examined as follows: 
 
1 .ELF antenna in air (without iron powder, outside of the hexagon) 
2. ELF antenna, surround of MF 196 powders, within the hexagon 
3. ELF antenna, surround of Mf 196 powders, easily stamped, within the hexagon,  
 
The following results had been recorded (see illus. 51, illus. 52 and illus. 53). 
 
Attention !!!  Scale changed !!! 
 

Niedrigste Resonanzpunkte in MHz, Mantel als 6-Eck, Elf-Antenne rund, 
Maßstab 1:2, Iackisoliert, Mf 196-Pulver, Leiterdurchmesser 1,5mm
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1. ELF-Antenne in Luft (ohne Eisenpulver, außerhalb des 6-Ecks)
2. ELF-Antenne, umgeben von MF 196-Pulver,  im 6-Eck
3. ELF-Antenne, umgeben von Mf 196-Pulver, leicht gestampft, im 6-Eck

 



Abb. 51 
 

Impedanzen in kOhm bei 100Hz, Mantel als 6-Eck, Elf-Antenne rund, 
Maßstab 1:2, Iackisoliert, Mf 196-Pulver, Leiterdurchmesser 1,5mm, 

kapazitives Verhalten
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1. ELF-Antenne in Luft (ohne Eisenpulver, außerhalb des 6-Ecks)
2. ELF-Antenne, umgeben von MF 196-Pulver,  im 6-Eck
3. ELF-Antenne, umgeben von Mf 196-Pulver, leicht gestampft, im 6-Eck

 
 
Illus. 52 
 
The following illus. 53 shows the impedances again in "original" scale. Measurement 1 is 
located outside of the diagram.  
 

Impedanzen in kOhm bei 100Hz, Mantel als 6-Eck, Elf-Antenne rund, 
Maßstab 1:2, Iackisoliert, Mf 196-Pulver, Leiterdurchmesser 1,5mm, 

kapazitives Verhalten
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1. ELF-Antenne in Luft (ohne Eisenpulver, außerhalb des 6-Ecks)
2. ELF-Antenne, umgeben von MF 196-Pulver,  im 6-Eck
3. ELF-Antenne, umgeben von Mf 196-Pulver, leicht gestampft, im 6-Eck

 
Abb. 53 
 
 
Result: 
While the resonant frequencies of this system increased toward item 2.7 only slightly (as 



soon as the ELF antenna was in the iron powder), a very clear reduction of the 
impedances (up to 50%) were recognized in comparison to 2.7  
The construction of an ELF antenna in which the cables are arranged within distance 
seemed to be a more favourable solution regarding the impedances. 
  
 
2.9. Ninth construction, open cardboard box shell casing as a hexagon, ELF 
antenna round, cable diameter 1.5 mm, NO longer bundled. 
           Scale 1:2, insulating thickness 1.5 mm 
 
2.9.1. .Manufacturing the construction 
 
To examine the difference between "thick" synthetic insulation and varnish insulation, we 
changed in our construction 2.8 only one parameter, the insulation thickness.  
Now to 1.5 mm (Pvc) (see illus. 54.) 
 

. 
Abb. 54 
 
2.9.2.  Operation / results 
The impedances and resonances were examined as follows: 
1 ELF antenna in air (without iron powder, outside of the hexagon) 
2. ELF antenna, surround of MF 196 powders, within the hexagon 
3. ELF antenna, surround of Mf 196 powders, within the hexagon, easily stamped  
 
The following were recorded. (see illus. 55, illus. 56 and illus. 57). 
Attention !!! Scale changed !!! 
 



Niedrigste Resonanzpunkte in MHz, Mantel als 6-Eck, Elf-Antenne rund, Maßstab 1:2, 
Isolation 1,5 mm, 

Mf 196-Pulver, Leiterdurchmesser 1,5mm
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1. ELF-Antenne in Luft (ohne Eisenpulver, außerhalb des 6-Ecks)
2. ELF-Antenne, umgeben von MF 196-Pulver,  im 6-Eck
3. ELF-Antenne, umgeben von Mf 196-Pulver, leicht gestampft, im 6-Eck

 
Abb. 55 
 

Impedanzen in kOhm bei 100Hz, Mantel als 6-Eck, Elf-Antenne rund, 
Maßstab 1:2, Isolation 1,5mm,

Mf 196-Pulver, Leiterdurchmesser 1,5mm, kapazitives Verhalten
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1. ELF-Antenne in Luft (ohne Eisenpulver, außerhalb des 6-Ecks)
2. ELF-Antenne, umgeben von MF 196-Pulver,  im 6-Eck
3. ELF-Antenne, umgeben von Mf 196-Pulver, leicht gestampft, im 6-Eck

 
Illus. 56 
 
 
 
The following illus. 57 again shows the impedances in the "original" scale. Measurement 
1 is outside of the diagram. 
 



Impedanzen in kOhm bei 100Hz, Mantel als 6-Eck, Elf-Antenne rund, Maßstab 
1:2, Isolation 1,5mm,

Mf 196-Pulver, Leiterdurchmesser 1,5mm, kapazitives Verhalten
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1. ELF-Antenne in Luft (ohne Eisenpulver, außerhalb des 6-Ecks)
2. ELF-Antenne, umgeben von MF 196-Pulver,  im 6-Eck
3. ELF-Antenne, umgeben von Mf 196-Pulver, leicht gestampft, im 6-Eck

 
Abb. 57 
 
While the resonance points showed only insignificant changes toward item 2.8., the 
impedances however increased considerably, partially more than 100%, each capacitive 
behaviour.  
 
Result: 
This construction showed the expected behaviour.  
A thicker insulation caused higher (and with this disadvantageous) impedances.  
 
 
2.10.  Tenth construction, steel sheet shell coat as a octagon, ELF antenna round, 
            cable diameter 8 mm, varnish insulated, cable NOT bundled any longer, 
            original scale 1:1 
          
 
2.10.1 Manufacturing the construction 
 
Due to the experiences made with the previous nine arrangements ( actually some 
more, but only nine meaning full arrangements are described here ) we wanted to 
optimise the tenth construction with the knowledge we had won so far.  
 
We manufactured an ELF antenna out of thick copper bars 8 mm (diameter). Each 
dipole half was 6 m long, together 12 m. 
The cable bows were not bundled and had a distance of each 16 mm to each other. 
Middle diameter of the ELF antenna: 640 mm (see illus. 58). 
 
The shell casing was built in an octagon steel sheet shell casing, strength 0.7mm with a 
purity of 99.74% (see illus. 59 and illus. 60). 



 
Varnish spray (Kontakt Chemie, Plastic 70, Schutzlack) was used for the insulation of 
the copper bars. 
 
Iron powder Mf 196 powder (Tridelta) was used. 
 
During this tenth series of experiments, the steel sheet shell casing was annealed 
(similar to item 2.1.3.).  
We started the series of experiments on construction number ten with a not annealed 
shell casing.  
 

 
 
Abb. 58 

 
Illus. 59 
 



 
 
 
Illus. 60 
 
 
2.10.2.  Operation / results 
 
The impedances and resonance were examined as follows: 
 
1. ELF antenna, varnished, in air (without iron powder, outside the octagon). 
2. ELF antenna, varnished, within the octagon (without iron powder) lid open 
3. ELF antenna, varnished , in loose Mf 196 powder, lid open. 
4. ELF antenna, varnished, easily stamped into Mf 196 powder, lid open. 
5. ELF antenna, varnished, easily stamped into Mf 196 powder lid closed  
6. ELF antenna, varnished, shell casing, annealed, into easily stamped Mf 196 powder,  
    lid closed. 
 
 
 
Following results were recorded (see illus. 61 and illus. 62:) 
 
 
 
Attention !!! Scale changed !!! 
 



Niedrigste Resonanzpunkte in MHz, Stahlblechmantel als 8-Eck, Antenne rund,
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1. ELF-Antenne, lackiert, in Luft (ohne Eisenpulver, außerhalb des 8-Ecks).
2. ELF-Antenne, lackiert, im 8-Eck (ohne Eisenpulver), Deckel offen
3. ELF-Antenne, lackiert, in lockerem Mf 196-Pulver, Deckel offen.
4. ELF-Antenne, lackiert, in leicht gestampften Mf 196-Pulver, Deckel offen.
5. ELF-Antenne, lackiert, in leicht gestampften Mf 196-Pulver, Deckel geschlossen.
6. ELF-Antenne, lackiert, Mantel geglüht, in leicht gestampften Mf 196-Pulver, Deckel geschlossen.

 
 
Illus. 61 
 

Impedanzen in kOhm bei 100Hz, Stahlblechmantel als 8-Eck, ELF-Antenne rund,
            Leiterdurchmesser  8mm, lackisoliert, Leiter NICHT mehr gebündelt,

            Originalmaßstab 1:1, kapazitives Verhalten

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1 2 3 4 5 6

Im
pe

da
nz

 in
 k

O
hm

 b
ei

 1
00

 H
z

1. ELF-Antenne, lackiert, in Luft (ohne Eisenpulver, außerhalb des 8-Ecks).
2. ELF-Antenne, lackiert, im 8-Eck (ohne Eisenpulver), Deckel offen
3. ELF-Antenne, lackiert, in lockerem Mf 196-Pulver, Deckel offen.
4. ELF-Antenne, lackiert, in leicht gestampften Mf 196-Pulver, Deckel offen.
5. ELF-Antenne, lackiert, in leicht gestampften Mf 196-Pulver, Deckel geschlossen.
6. ELF-Antenne, lackiert, Mantel geglüht, in leicht gestampften Mf 196-Pulver, Deckel geschlossen.

 
 



Illus. 62 
 
Following illus. 63 shows the resonance points again in the "original scale "  
Measurement 2 is outside of the display diagram. 
 

Niedrigste Resonanzpunkte in MHz, Stahlblechmantel als 8-Eck, Antenne rund,
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1. ELF-Antenne, lackiert, in Luft (ohne Eisenpulver, außerhalb des 8-Ecks).
2. ELF-Antenne, lackiert, im 8-Eck (ohne Eisenpulver), Deckel offen
3. ELF-Antenne, lackiert, in lockerem Mf 196-Pulver, Deckel offen.
4. ELF-Antenne, lackiert, in leicht gestampften Mf 196-Pulver, Deckel offen.
5. ELF-Antenne, lackiert, in leicht gestampften Mf 196-Pulver, Deckel geschlossen.
6. ELF-Antenne, lackiert, Mantel geglüht, in leicht gestampften Mf 196-Pulver, Deckel geschlossen.

 
 Abb. 63 
 
Following illus. 64 shows the impedances in a more significant scale. Measurements 1 
and 2 are outside of the displayed diagram. 
. 



Impedanzen in kOhm bei 100Hz, Stahlblechmantel als 8-Eck, ELF-Antenne rund,
            Leiterdurchmesser  8mm, lackisoliert, Leiter NICHT mehr gebündelt,

            Originalmaßstab 1:1, kapazitives Verhalten
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1. ELF-Antenne, lackiert, in Luft (ohne Eisenpulver, außerhalb des 8-Ecks).
2. ELF-Antenne, lackiert, im 8-Eck (ohne Eisenpulver), Deckel offen
3. ELF-Antenne, lackiert, in lockerem Mf 196-Pulver, Deckel offen.
4. ELF-Antenne, lackiert, in leicht gestampften Mf 196-Pulver, Deckel offen.
5. ELF-Antenne, lackiert, in leicht gestampften Mf 196-Pulver, Deckel geschlossen.
6. ELF-Antenne, lackiert, Mantel geglüht, in leicht gestampften Mf 196-Pulver, Deckel geschlossen.

 
Illus. 64 
 
Result: 
While the lowest resonance points, relative little moved down below, with impedances 
we reached the lowest (favourable) values so far. With 50 kilo Ohm still several decades 
away from 116 milli Ohm . 
 
We were astonished, because after annealing the steel shell casing a (unfavourable) 
rise of the impedance at almost 500% arose, while the resonant frequency of the system 
was going insignificantly down to approx. 900 kHz, here also several decades above the 
aimed 60 Hz.  
 
 
Now it was clear to us: 
 
The System G, described by Prof. De Aquino, can't work !!!!? 
 
However, we weren't satisfied with this determination. 
We decided to carry out further examinations which perhaps could bring us closer to our 
target. 
 
The order of our intended further procedure: 
 

 1. Repetition of the test as point 2.10, all though with an ELF antenna, 
not isolated  



 
2. Examination of the conductivity of the iron powder.  
Prof. De Aquino states in his documentation the use of iron powder, Cond = 10 
S/m“. 
 
3. Testing to push the resonance point of the ELF antenna downward by using 
external components. 
 
4. Determining possible time delay distortion. 
 
5. Examination of the behaviour of (electric-) magnetic shielding with different 
materials. (such as MU metal). Prof. De Aquino claimed, the magnetic field, would 
be almost 100% protected, by the sheet iron of the shell casing. Hardly nothing 
would reach the outside. 
 
 
 
 
 
 
 
 
 
 
 
 
2.11.  Eleventh construction, steel sheet shell casing, annealed as octagon, 
ELF antenna round, cable diameter 8 mm, NO insulation, cable NOT 
bundled, original scale 1:1 
 

2.11.1.  Manufacturing the construction 
 
The construction corresponded with item 2.10. Different, the used ELF antenna wasn't 
insulated, had however all data like 2.10.  
Of course we couldn't carry out any tests with the un annealed shell casing now, it was 
already annealed.. 
 
 
2.11.2.  Operation /results 
 
The impedances and resonances were examined as follows: 
 
1.  ELF antenna, not varnished, in air (without iron powder, outside of the octagon). 
2.  ELF antenna, varnished, shell casing not annealed, easily stamped into Mf 196 
powder, lid closed. 
 
Following results were recorded. (see illus. 65 and illus. 66:) 
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1. ELF-Antenne, NICHT lackiert, in Luft (ohne Eisenpulver, außerhalb des 8-Ecks).
2. ELF-Antenne, NICHT lackiert, Mantel geglüht, in leicht gestampften Mf 196-Pulver, Deckel geschlossen.

 
 
 
 
Illus. 65 
 

Impedanzen in kOhm bei 100Hz, Stahlblechmantel geglüht als 8-Eck, ELF-
Antenne rund,

             Leiterdurchmesser  8mm, KEINE Isolation, Leiter NICHT gebündelt,
            Originalmaßstab 1:1, kapazitives Verhalten
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1. ELF-Antenne, NICHT lackiert, in Luft (ohne Eisenpulver, außerhalb des 8-Ecks).
2. ELF-Antenne, NICHT lackiert, Mantel geglüht, in leicht gestampften Mf 196-Pulver, Deckel geschlossen.

 
 
 
 
 
Abb.66 
 



 
 
Following illus. 67 shows the impedances in a more meaningful scale. Measurement 1 is 
outside of the display diagram. 
 

Impedanzen in kOhm bei 100Hz, Stahlblechmantel geglüht als 8-Eck, ELF-
Antenne rund Leiterdurchmesser 8mm, KEINE Isolation, Leiter NICHT 

gebündelt,
            Originalmaßstab 1:1, kapazitives Verhalten
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1. ELF-Antenne, NICHT lackiert, in Luft (ohne Eisenpulver, außerhalb des 8-Ecks).
2. ELF-Antenne, NICHT lackiert, Mantel geglüht, in leicht gestampften Mf 196-Pulver, Deckel geschlossen.

 
 
Illus. 67 
 
Result: 
Not insulating the copper cables, reduces resonance and impedance. With approx. 700 
kHz and approx. 160 kOhm still in the range area of the system with insulation, herewith 
very, very far off to Prof. De Aquino values 
. 
2.12.  Examination of the conductivity of the iron powder  
 
Prof. De Aquino indicates in his documents: “iron powder, Cond = 10 Sm for [14] , 
meaning that this powder has a very high-impedance, which means, it has a bad electric 
conductivity. 
 
This isn't the specific electric conductivity of pure solid iron with κ = 10 m/(Ω*mm²) 
[ 8]. (For comparison purposes, E copper: κ = 56 m/(Ω*mm²). 
 
See the different units of S/m or m/(Ω∗ mm ²), which have in completely different 
dimensions. 
 
 2.12.1.  Measuring construction 
 
Our laboratory isn't designed to examine metallic material. However, to get an idea of 
the range of the electrical conductivity of iron powder (Mf 196 and GG 150), we used 
following measuring construction (see illus. 68). 



 

 
 
Abb. 68 
 
 
Illus. 68. shows two iron powder "hills". On the left side Mf196 on the right GG 150.  The 
powder was easily stamped. The pad is non conducting carton. 
Two not insulated copper cables (each approx. 80 mm ) lead into each of these "hills". 
The distance of the copper cables within the hill amounts to approx. 30 mm. 
 
 
2.12.2. Operation / results 
 
Following test was carried out on each hill. Attached to the copper cables, a variable 
alternating voltage (0 to 280 V) with a frequency of 50 Hz . Simultaneously the current 
was measured and herewith a resistance R = U/l calculated. 
 
Following results were recorded. (see illus. 69 and illus. 70). 
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Illus. 69 
 

Abhängigkkeit des Wechselstromwiderstandes von Mf 196-Pulver von der 
Spannungshöhe (bei 50 Hz)
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Illus. 70 
 
 



 
Result: 
Very low currents were flowing. Meaningful current sensing below 140 V wasn't 
possible, because of being out of the smallest measurement range of our  
current equipment. 
While a current curve could be measured with the GG 150 powder, merely two usable 
measurements (1 µ A at 190 V or 2 µ A at 277 V) resulted with the Mf 196 powder. 
 
Even if this may be a big estimation, the two measuring rows show, that both the Mf 196 
as well as the GG 150 powder has very high-impedance, 
meaning they have a very unfavourable conductivity (in consideration to solid iron). 
Reason being, that primarily the single grains oxidize. 
 
 
  
 
 
2.13.  Reduction of the resonant frequency by external components.  
 
2.13.1.  Measuring construction 
 
We used the construction shown in item 2.11. (steel sheet shell casing, annealed, as a 
octagon. ELF antenna, round, cable diameter 8 mm, no insulation, cable not bundled, 
within the Mf 196 powder, original scale 1:1). 
We switched different coils or coil combinations in series (see illus. 71 and illus. 72) 
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Abb. 71 
  
 

 
 
Illus. 72 
 
 
 
2.13.2. Operation / results 

 
The inductivities of the individual coils were measured at 50 Hz. 
1. Resonance without coil in series 
2. Resonance with 192µH in series 
3. Resonance with 198µH in series 
4. Resonance with 338µH in series 
5. Resonance with 497µH in series 
 
Following results were recorded. (see illus. 73). 
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Abb.  73 
 
Result: 
The lowest – meaningful - resonance was measured at approx. 180 kHz. Below that the 
current rises were so low, that you couldn't talk about "resonance" any more. 
With this method we didn't come close to the range of a resonant frequency of 60 Hz. 
 
 
 
2.14.    Examination, whether between "the beginning and the end" of a dipole half 
            time delay distortion appears. 
 
2.14.1. Measuring construction 
 
With this examination we wanted to find out, if possibly time delay difference can be 
measured (signal), which fed at the beginning of a dipole half (oscilloscope channel K1) 
and at the end of this dipole half (that is in the iron powder) is worn off again (channel 
K2).  
We used a model, scale 1:2, shell casing fabricated with cardboard, Mf 196 powder, 
varnished wire, no cable bundle, wire diameter 0.56 mm, hexagon construction (see 
illus. 74 and illus. 75). 
The lowest resonant frequency of this construction was detected at 2.6 MHz . 
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Abb. 74 
 
 

 
 
 
Abb. 75 
 
 
2.14.2.   Operation / results 
 
A rectangle signal, U = 10 V, f approx. 150 kHz, was supplied (see illus. 76 and illus. 
77). 
 



 
Abb. 76 
 
The upper signal was at the beginning of the dipole half. The lower signal was measured 
at the "inner end" of the dipole half. 
The fundamental frequency of the lower signal didn't show any phase shift toward the 
upper one. The interference vibrations of the lower signal, caused by the respective 
voltage jump at the entrance, showed a frequency of almost 5 MHz.. 
This being exactly double the size of the resonance of the system (approx. 2.6 MHz) we 
measured. Since we merely measured only one dipole half, the results are correct. 
Splitting a dipole, consequently is doubling the resonant frequency . 
 
Next we connected the two ends of the two dipole halfes. We measured like before, at 
the beginning of a dipole half and at the end ( in the middle of the ELF antenna). 
 
Following are the measurements (see illus. 77): 
 



  
Abb. 77 
 
The frequency of the superimposed vibration was now only halve, approx. 2.5 MHz. 
This wasn't surprising either, because double dipole length means halve of the 
frequency. 
 
The slow decay of the superimposed vibrations is a good indicator, that there is almost 
no energy loss in the iron powder. Contrary to the statement made by Prof. De Aquino. 
If it would be true, that the ELF antenna is a good 60 Hz transmitter , you would expect, 
that a phase shift of π/2 (or 90°) occurs, because these values apply to a λ/4 antenna. 
 
 
Our measurement results are far away from it. 
This ELF antenna cannot be a good transmitter. 
 
 
The connection at the dipole ends were removed again  
The frequency of the supplied signal was at 50 Hz. The signal was also measured at the 
end of the corresponding dipole half.  
 
Following are the measurements see illus. 78): 
 
 



  
Abb. 78 
 
In this case also was the upper signal the supplied one  
The lower one was measured at the "inner" end of the dipole half. 
 
The "slope" of the input signal, (i.e. the deviation of the ideal rectangle) was caused by 
the sensing head of the oscilloscope. 
 
No phase shift was recognized between the in and output signal. 
 
Result: 
This confirms our suspicion, that the theory of Prof. De Aquino bears a fundamental 
error.  
 
2.15.   Examining the shielding behaviour of the shell casing  
 
Prof. De Aquino points out in his publications, that the material of the shell casing (the 
shielding) absorbs the ELF waves "totally" , especially if annealed iron is used [14]. 
 
We tried  this out. 
 
 
2.15.1. Measuring construction 
 
We used the ELF antenna from test 2.2. (Cable cross-section of 25 mm ², insulation 
thickness 1.5 mm, round). 
High magnetic field strengths are produced by high currents, therefore we connected the 
ends of the two dipole halves for this experiment. The two input clamps were connected 
to the welding transformer described at item 2.1.. To measure the current we used a 
current probe "Fluke i410" . 
To detect the 50 Hz magnetic field near the ELF antenna, a Gauss-meterr, respectively 



a Tesla meter "FW Bell 9950" with a measuring probe "STA99 0404" (frequency area: 
DC to 50 kHz) was used. The probe was placed within a defined distance and angle, in 
different places near the ELF antenna, to measure the maximum of the magnetic field 
strength (see illus. 79). 
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Abb. 79 
  
 
We carried out measurings at the ELF antenna in air (see illus. 80 and illus. 81). 
  

 
 
Abb. 80 
 



 
 
Abb. 81 
 
 
 
The ELF antenna was then "packed" together with MF 196 powder into the annealed 
steel sheet shell casing , we repeated the magnetic field measurings  
Close attention was paid, that distance and angle of the probe to the ELF antenna (not 
to the metal shell casing) exactly corresponded to previous measuring in air. 
 
2.15.2.  Results 
 
Through the short circuited ELF antenna with connected ends (in air) a current of 365A 
ran through, with secondary voltage of the welding transformer of 6.1 V.  
We measured with the magnetic field probe (in several places with a same, relative 
distance and angle to the ELF antenna) a magnetic 50 Hz alternating field with an 
average of 5.3 mT (milli-Tesla) 
  
If the ELF antenna was, however, in the annealed steel sheet shell casing with MF 196 
powder, a considerably lower current of approx. 250 A at 15.9 V ran through. 
The construction, laying on a mechanical scales (like illus. 7) kept its weight of 52.5 kg 
without any change. The magnetic field measurings had an average value of 4.6 mT. 
 
Result: 
 
According to the Prof. De Aquino the magnetic field should "completely “absorbed in the 
torus.[14]." As the tests revealed, this isn't the case. 
  
We decided to examine the “shielding “ behaviour of different materials closer  
 
 
2.16.  Examination of the shielding behaviour of different materials 
 
2.16.1.   Measuring construction 
 



We utilized: 
 
- Cardboard of 8 mm strong 
- MU metal sheet 0.5 mm strong 
- Iron square pipe 1.5 mm strong, inside crosscut 22 mm x 22 mm 
- Iron pipe (round) 2.8 mm strong, inside diameter 14.4 mm 
 
 
The cardboard as well as the MU sheet metal were tilted so that the inside crosscut 
corresponded with the square tube (see illus. 82). 
 
The length of all parts was 170 mm. 
 

 
 
Abb. 82 
 
In the middle was an insulated copper cable each (1.5 mm ²). 
 
The measuring were carried out with and without Mf 196 powder, as well as with direct 
and alternating current (at different frequencies). 
The probe was so placed, that the active part (the real sensor) was always positioned in 
the same distance to the copper cable, at the "outer skin" of the examined material 
placed in half length.  
The magnetic field lines hit the sensor with an angle of 90° (see illus. 83 and illus. 84). 
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Abb. 83 
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Abb. 84 
 
 
 
2.15.2.Results 
 
Following results were recorded.(see illus. 85 to 90). 
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Abb. 85 
 
 
 
 



Shielding behaviour at  direct current 10A, MIT Mf 196-powder
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Abb. 86 
 
 
 
 
 
 



Shielding behaviour at alternating current 10A, 50Hz,WITHOUT MF 196-Powder

0,0
20,0
40,0
60,0
80,0

100,0
120,0
140,0

0,
8m

m
 P

ap
pe

(C
ar

db
oa

rd
),o

hn
e(

w
ith

ou
t) 

M
f 1

96
-P

ul
ve

r(P
ow

de
r)

0,
5m

m
 M

U
-M

et
al

l-B
le

ch
(S

he
et

m
et

al
),o

hn
e(

w
ith

ou
t) 

M
f

19
6-

Pu
lv

er
(P

ow
de

r)

1,
5m

m
 F

e-
R

oh
r 4

-k
an

t,
(Ir

on
 s

qu
ar

e
pi

pe
),o

hn
e(

w
ith

ou
t) 

M
f

19
6-

Pu
lv

er
 (P

ow
de

r)

2,
8m

m
 F

e-
R

oh
r,

ru
nd

,((
Iro

n 
ro

un
d 

pi
pe

)
oh

ne
(w

ith
ou

t) 
M

f 1
96

-
Pu

lv
er

(P
ow

de
r)

R
is

e 
of

 fi
el

ds
tr

en
gh

t a
t t

he
 p

ro
be

 µ
T,

 a
fte

r s
w

itc
h 

on

 
 
Abb. 87 
 
 
 
 
 

Shielding behaviour at alternating current 10A, 50 Hz, WITH Mf 196-Pulver
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Abb. 88 
 



 
Striking at this point the behaviour of the MU sheet metal filled with Mf 196 powder. 
 
 

Shielding behaviour at alternating current 4,8A, 50000Hz, WITHOUT Mf 196-Pulver
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Abb. 89 
 
 
 

Shielding behaviour at alternating current 4,8A, 50000Hz, WITH  Mf 196-Powder

0,0

2000,0

4000,0

6000,0

8000,0

10000,0

12000,0

0,8mm Pappe (Cardboard),
in Mf 196-Pulver(Powder)

0,5mm MU-Metall-
Blech(Sheet metal), in Mf

196-Pulver (Powder)

1,5mm Fe-Rohr, 4-kant
(Iron square tube), in Mf

196-Pulver (Powder)

2,8mm Fe-Rohr, rund (Iron
round tube), in Mf 196-

Pulver (Powder)

R
is

in
g 

of
 fi

el
ds

tr
en

gh
t a

t t
he

 p
ro

be
 µ

T,
af

te
rs

w
itc

h 
on

 



 
 
Abb. 90 
 
 
 
 
 
 
Result: 
 
No considerable shielding behaviour can be diagnosed during the shielding with iron. No 
matter if, with direct current , 50 Hz alternating current or 50000 Hz alternating current, 
the readings of the iron are very close to those of the cardboard,(sometimes even 
slightly above)  
 
The shielding behaviour of MU metal only works (in this case at 50000 Hz clearly 
recognizable) at higher frequencies. 
At direct current and 50 Hz alternating current, the MU sheel metal seems to be even 
"amplifying". 
 
3 Summary 
 
Unfortunately, do we have to say, the System G, as describes by Prof. De Aquino, can 
not operate. 
 
We have examined many parameters and constantly optimised the parameters. 
 
Primarily we worked with: 
- the thickness of the copper cable 
- the thickness of the insulation of the copper cable 
- copper cable without insulation 
- the type of the iron powder 
- the pouring density of the iron powder (shaken loosely, pressed) 
- transfer of the copper cables as bundle (loose/firm) or with distance 
- the material of the shielding (of the shell casing) 
- the annealing of the shielding (iron) 
- the scale of the models 
- the form of the construction (circular or hexagonal) 
  
The lowest resonant frequency however, still lies 4 (in words four ) decades above the 60 
Hz , stated by Prof..De Aquino. Also no weight reduction was measurable. 
 
The following table and chart give a general view of the most significant experiments and 
the resonant frequencies reached: 
 
Test no. 46 (point 2.11) shows the lowest resonance frequency (710 kHz). Test no. 46 
(point. 2.11) corresponds "almost exact" to those specifications given by Prof. De Aquino. 



All though with bare, not insulated copper cable. Test No. 44 (point 2.10) has the same 
construction, all though with varnish isolated copper cable. The measured resonant 
frequency (830 kHz) is slightly higher. 
 
 

Test No. The construction  

lowest 
Res.Freq 
./MHz 

1 ( pnt. 2.1) Sheet iron torus, hexagon, shaken, annealed in Mf 196 
powder, cable diameter 12 mm, scale 1:1, insulation thickness 
0.08 mm, bundled 

0.76 

2 ( pnt. 2.1) Sheet iron torus, hexagon, shaken, annealed in Mf 196 
powder, cable diameter 12 mm, scale 1:1, insulation thickness 
2 mm, bundled before pressing 

1.47 

3 ( pnt. 2.1) Sheet iron torus, hexagon, shaken, annealed in Mf 196 
powder, cable diameter 12 mm, scale 1:1, insulation. 2 mm 
after pressing with 30 t, bundled 

1.38 

4 ( pnt. 2.2) Steel torus, round, in air, outside the torus, cable cross-
sectional area of 25 mm ², scale 1:1, insulation thickness 1.5 
mm, bundled 

1.89 

5 ( pnt. 2.2) Steel torus, round, in air, within the torus, cable cross-
sectional area of 25 mm ², scale 1:1, insulation thickness 1.5 
mm, bundled 

3.84 

6 ( pnt. 2.2) Steel torus around in Mf 196 powder, cable cross-sectional 
area of 25 mm ², scale 1:1, insulating thickness 1.5 mm, 
bundled 

2.90 

7 ( pnt. 2.2) Steel torus round, rattled in Mf 196 powder, cable cross-
sectional area of 25 mm ², scale 1:1, insulation 1.5 mm, 
bundled 

1.60 

8 ( pnt. 2.3) Steel torus, round, in air, outside the torus, cable cross-
sectional area of 25 mm ², scale 1:1,  insulation 0.1 mm, 
bundled 

1.70 

9 ( pnt. 2.3) Steel torus, round, in air, outside the torus, cable cross-
sectional area of 25 mm ², scale 1:1, insulation 0.1 mm, 
bundled, with 50 cable fasteners fixed,  

1.33 

10 ( pnt. 2.3) Steel torus, round, in air, outside the torus, cable cross-
sectional area of 25 mm ², scale 1:1, insulation 0.1 mm, 
bundled, with 100 cable fasteners fixed,  

1.27 

11 ( pnt. 2.3) Steel torus around, in air, in the torus,cable cross-sectional 
area of 25 mm ², scale 1:1, insulation 0.1 mm, bundled, with 
100 cable fasteners fixed,  

2.40 

12 ( pnt. 2.3) Steel torus around in Mf 196 powder, cable cross-sectional 
area of 25 mm ², scale 1:1, insulation 0.1 mm, bundled, with 
100 cable fasteners fixed,  

1.33 

13 ( pnt. 2.3) Steel torus round, rattled in Mf 196 powder, cable cross-
sectional area of 25 mm ², scale 1:1,insulation 0.1 mm, 
bundled, with 100 cable fasteners fixed,  

0.99 

14 ( pnt. 2.4) Pvc torus, round, in air, outside the torus, cable cross-sectional 1.70 



area of 25 mm ², scale 1:1, bundled, insulating thickness 0.1 
mm, d 

15 ( pnt. 2.4) Pvc torus, round, in air, in the torus, cable cross-sectional area 
of 25 mm ², scale 1:1, insulation 0.1 mm, bundled 

1.60 

16 ( pnt. 2.4) Pvc torus around in Mf 196 powder, cable cross-sectional area 
of 25 mm ², scale 1:1, insulation 0.1 mm, bundled 

1.20 

17 ( pnt. 2.4) Pvc torus around in Mf 196 powder shaken, cable cross-
sectional area of 25 mm ², scale 1:1, insulation 0.1 mm, 
bundled 

1.10 

18 ( pnt. 2.4) Pvc torus round, rattled in Mf 196 powder, cable cross-
sectional area of 25 mm ², scale 1:1, insulation 0.1 mm, with 
package cord fixed, bundled 

1.00 

19 ( pnt. 2.4) Pvc torus around in Mf 196 powder shaken, cable diameter. 25 
mm ², scale 1:1, insulation 0.1 mm with package cord fixed, 
bundled, 1.5 t pressing pressure 

0.93 

20 ( pnt. 2.5) PU torus around, in air outside the torus, cable cross-sectional 
area of 90 mm ², scale 1:1, insulation 1.6 mm, bundled 

1.66 

21 ( pnt. 2.5) PU torus around in Mf 196 powder, cable cross-sectional area 
of 90 mm ², scale 1:1, insulation 1.6 mm, bundled 

0.95 

22 ( pnt. 2.5) PU torus around in Mf 196 powder shaken, cable cross-
sectional area of 90 mm ², scale 1:1, insulation 1.6 mm, 
bundled 

0.90 

23 ( pnt. 2.5) PU torus around in Mf 196 powder shaken, cable cross-
sectional area of 90 mm ², scale 1:1, insulation 1.6 mm, 
bundled, 1.5 t pressing pressure 

0.91 

24 (Pkt. 2.5) PU torus around in Mf 196 powder shaken, cable diameter. 90 
mm ², scale 1:1, insulation 1.6 mm, bundled, 1 day after filling 
of 1.5 l with spirit 

0.77 

25 ( pnt. 2.6) Steel torus, round, in air, outside the torus, cable cross-
sectional area of 25 mm ², scale 1:1, insulation 0.1 mm, with 
100 cable fasteners fixed, bundled 

1.27 

26 ( pnt. 2.6) Steel torus, round, in air, in the torus, cable cross-sectional 
area of 25 mm ², scale 1:1, insulation 0.1 mm, with 100 cable 
fasteners fixed, bundled 

2.40 

27 ( pnt. 2.6) Steel torus around in GG 150 powder, cable cross-sectional 
area of 25 mm ², scale 1:1, insulation 0.1 mm, with 100 cable 
fasteners fixed, bundled 

1.20 

28 ( pnt. 2.6) Steel torus round, rattled in GG 150 powder, cable cross-
sectional area of 25 mm ², scale 1:1, insulation 0.1 mm, with 
100 cable fasteners fixed, bundled 

1.00 

29 ( pnt. 2.6) Steel torus around in GG 150 powder shaken, cable diameter 
25 mm ², scale 1:1, insulation 0.1 mm joint, with 100 cable 
fastened, fixed with 0.3 l of water 

0.93 

30 ( pnt. 2.7) Cardboard torus, 6th corner, into air outside the torus, leader 
diameter 1.5 mm, scale 1:2, bundled, varnish insulated 

3.09 

31 ( pnt. 2.7) Cardboard torus, hexagon in Mf 196 powder, cable diameter 
1.5 mm, scale 1:2 varnish insulation, bundled 

1.62 

32 ( pnt. 2.7) Cardboard torus, 6th corner, in Mf 196 powder easily stamped, 1.33 



cable diameter 1.5 mm, scale 1:2, bundled, varnish insulation . 
33 ( pnt. 2.8) Cardboard torus , round , in air outside the torus, cable 

diameter 1.5 mm, scale 1:2, not bundled, varnish insulated 
7.10 

34 ( pnt. 2.8) Cardboard torus around in Mf 196 powder, cable diameter 1.5 
mm, scale 1:2, not bundled, varnish insulated 

2.15 

35 ( pnt. 2.8) Cardboard torus around in Mf 196 powder, easily stamped,  
diameter 1.5 mm, scale 1:2, not bundled, varnish insulated 

1.77 

36 ( pnt. 2.9) Cardboard torus around into air outside the torus, cable 
diameter 1.5 mm, scale 1:2, insulation 1.5 mm, not bundled 

6.15 

37 ( pnt. 2.9) Cardboard torus around in Mf 196 powder, cable diameter 1.5 
mm, scale 1:2, insulation 1.5 mm, not bundled 

2.19 

38 ( pnt. 2.9) Cardboard torus around in Mf 196 powder, easily stamped, 
cable diameter 1.5 mm, scale 1:2, insulation 1.5 mm, not 
bundled 

1.98 

39 ( pnt 2.10) Sheet iron torus in air, outside the torus, cable diameter 8 mm, 
scale 1:1, not bundled, varnish insulation 

3.15 

40 (pnt. 2.10) Sheet iron torus, insulation varnish ,in air, in the torus, cable 
diameter 8 mm, scale 1:1, , not bundled, lid open 

5.10 

41 (pnt. 2.10) Sheet iron torus insulation varnish in loose Mf 196 powder, 
leader diameter 8 mm, scale 1:1, open, not bundled, lid 

1.45 

42 (pnt. 2.10) Sheet iron torus insulation varnish, in Mf 196 powder easily 
stamped, cable diameter 8 mm, scale 1:1, not bundled, lid 
open 

1.08 

43 (pnt. 2.10) Sheet iron torus stamped easily into Mf 196 powder, cable 
diameter 8 mm, scale 1:1 varnish insulation, not bundled lid 
open 

0.96 

44 (pnt. 2.10) Sheet iron torus, annealed, stamped easily into Mf 196 
powder, cable diameter 8 mm, scale 1:1 varnish insulation, not 
bundled, lid closed 

0.83 

45 (pnt. 2.11) Sheet iron torus outside the torus, cable diameter 8 mm, scale 
1:1, annealed in air, no insulation, not bundled 

3.16 

46 (pnt. 2.11) Sheet iron torus, annealed, stamped easily into Mf 196 
powder, cable diameter 8 mm, scale 1:1, not insulated, not 
bundled, lid closed. 

0.71 
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Parallel to our examinations, we did further enquiries and built up contacts to persons, 
that deal with this topic (e.g. J. L. Naudin,  for http://members.aol.com/jnaudin509/ ). 
 
We have contacted a person who knows Prof. De Aquino for quite some time, we 
exchanged with him our knowledge of Prof. De Aquino System G. (Name and contact 
mail address are known by us). 
We were infomed by him, that Prof. De Aquino has developed the System G theory, but 
a physically working System -G was probably never built.  
 
This being the reason that no photos or videos of the System G exist. 
 
He also takes into considerations that the theoretical view of Prof. De Aquinos System G 
bears errors. He claims that the atomic mass of the iron must be indicated in kg instead 
of g. This error has been corrected in the later developed theory of the System H. 
 
We have also discovered further inconsistencies in his theory.  
 
For example, there is a commonly known “formula” for “loss – free transmission wires”. 
in existence for many years  
 
R (start) = [R (end) *cos (k) +j*Z*sin (k)]/ [cos (k) +j*R (end) *sin (k) /Z] =  
Z* [R (end) /Z+j*tan (k)] / [1 + j* R (end) * tan (k) /Z]  
 
where k = 2*π* length /λ � and Z = a characteristic impedance of the cable 
Typical values for Z are /. in the area of 10 Ohms to 800 Ohms. Values outside this area 



are hard to reach. R (end) is the terminating resistor of the transmission cable and R 
(start) 
the transformed value of the transmitter of the other end of the cable. 
  
In free space, λ bei 60 Hz, 5000 km. 
According to Prof. De Aquinos formula it results in a value of approx. 15 m. 
This indicates a factor of 336 000. Absolutely "gigantic"! 
  
Related to the actual permeability of approx. 75 * µ o, a wavelength of λ(real) = λ / 
sqrt(75) = 577 km would be expected. 
Way to long for the short cable in the System G. 
 
With the above-mentioned formula you receive k = 2 *π*12m/577 000 m = 1.3*10 ^-4 
You can assess that cos (k) = 1, 0000 and sin (k) = 1.310 ^- 4. 
With a typical value of Z = approx. 30 Ω and a insulation resistance of 300 000 Ω at the 
end, you receive: 
 
R (start) = [ 30* 10. 000 +j*tan (1.3*10 ^- 4)] / [1 + j*10.000*tan (1.3*10 ^ -4) Ohm = 
= (3700 - 4800 J) Ohm. 
 
It can be realised on 60 Hz with a resistance of 3700 Ω , in series with a  
550 nF condenser. If a voltage source of approx. 24 V is used , it is impossible that more 
than a few milli amps flow through this arrangement. 
If a higher value of the insulation resistance is assumed, the R (end) transformed is even 
higher.  
 
It remains to be a puzzle, how such currents can take place within the range of 
100 A to 200A!  
 
 
  
 
 
 
 
 
 
4. Error analysis 
 
To minimize the influence of changing environmental conditions to the measuring 
results, we pay close attention, that measurings on the measuring arrangements were 
performed at the same place, as well as with the same equipment and measuring 
cables.  
 
We differed from it only in few exceptional cases , e.g. the concreted torus which was 
simply to heavy for the measuring table. 
All measurings  were carried out at room temperature (20 degrees Celsius to 23 degrees 



Celsius) with a humidity in the area of 60% to 70%. 
 
We payed close attention, that no falsifications of the measurement, resulting in missing 
calvanic separation, or faulty shielding of the measuring cables appeared (see 2.1.6.). 
Measuring equipment and sensors that we used (see 4.1.) comply with high and highest 
industrial standards.  
 
You can request information relating to precision classes or tolerances at the IGF. 
 
 
4.1.  Used equipment 
 
 
- Function generator  Hameg HM 8030 
- RCL meter    Fluke PM6304 
- Synthesized signal generator/signal source Fluke 6062 ares 
- Oscilloscope (4 channel)  Tektronix TDS 3054 
- Oscilloscope (2 channel)  Voltcraft 630 
- Adjustable direct current source Delta ElectroniK SM 35-45 
- Gauss-/ Tesla meter  F. W. Bell series 9950 
- RMS multi-meter   Fluke 89 IV 
- Multi-meter    Voltcraft 2010 
- Multi-meter    Voltcraft ME 42 
- ampere-meter   Fluke i410 
- Multi-meter    Green Multimter VC 200 
- NF power amplifier  Accusound pro 100 
- Sweat transformer   Röwag KGL 200 
- Digitalcamera   Epson Photo PC 600 
- Process control computer Kinzinger Hydra 
- Laboratory PC   Dell OptiPlex GX1 
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7. Critical comments 
 
Unfortunately, do we also have to address some critical words to Prof. De Aquino. 
He received a complete copy of this final report. We asked for his statement and 
indications of possible mistakes that could have taken place during the series of our 
experimental work. 
 
Till now no statement has been made on his part. 
 
 
Waldaschaff, November 27th, 2002  
 
Dipl. Engineer (FH) Eberhard Zentgraf 
 
Contact mail address: info@gravitation.org  
 
 
 
 
 
 
 


