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Abstract

Physicists have tried to find the theory which would unify all the
known interactions under a fundamental law for a long time. One of
the first attempts was the Kaluza-Klein theory which uses the postu-
lation of extra space dimensions as the basic idea. In this seminar the
5-dimensional Kaluza-Klein theory is described thoroughly and at the
end the extension to higher dimensions is mentioned. The description
of possibility of Kaluza-Klein theory to be the right unifying theory is
also included.
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1 Introduction

The original Kaluza-Klein theory was one of the first attempts to create an
unified field theory i.e. the theory, which would unify all the forces under
one fundamental law. It was published in 1921 by German mathematician
and physicist Theodor Kaluza and extended in 1926 by Oskar Klein. The
basic idea of this theory was to postulate one extra compactified space di-
mension and introduce nothing but pure gravitiy in new (1+ 4)-dimensional
space-time. It turns out that the 5-dimensional gravitiy manifests in our
observable (1 + 3)-dimensional space-time as gravitational, electromagnetic
and scalar filed. Kaluza and Klein obviously managed to unify gravity and
electromagnetism but the theory had some major flaws. For example, the
calculated mass and electric charge of electron did not correspond to exper-
imental facts. Further more, the theory did not contain any of the nuclear
forces simply because they were not known at the time of the development
of the theory.

Despite the inconsistencies of the theory, it was never completely aban-
doned. Over many decades physicists were trying to improve the Kaluza’s
and Klein’s concept, resulting in many new unified filed theories, for example
well known string theory. They all share the same assumptions, that is the
compactified extra space dimensions of space-time, and are commonly known
as Kaluza-Klein(like) theories.

Figure 1: The founders of original KK theory, Theodor Kaluza (left) and
Oskar Klein (right) [1]
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1.1 General coordinate transformations

Before we can proceed with the theory, we need to get familiar with some
concepts we will use. First is the general coordinate transformation, which
tells us how to transform physical quantities between different frames of ref-
erence. It is useful to write the square distance between the two neighboring
points P (x) and Q(x+ dx), the line element, in reference frame S(x),

ds2 = dxµgµν(x)dx
ν , (1.1)

where gµν(x) is the metric tensor. Notice, that the Einstein summation
convention is used. Since the interval between P and Q is independend of
the choise of reference frame, the line element (1.1) is invariant under the
transformation between reference frames so in S ′(x′) one can write

ds2 = dx′µg′µν(x
′)dx′ν . (1.2)

The general coordinate transformation dxµ = ∂xµ

∂x′ν dx
′ν and the equality of

equations (1.1) and (1.2) yields

g′µν(x
′) =

∂xα

∂x′µ gαβ(x)
∂xβ

∂x′ν = eαµgαβ(x)e
β
ν , (1.3)

where

eµν =
∂xµ

∂x′ν (1.4)

is the definition of the vielbein, which will be needed in a great extent later
in the theory for converting vectors and tensors from one frame into another.
The inverse vielbein f ν

µ can also be defined, so that the equations

eανf
µ
α = δµν ,

eµαf
α
ν = δµν

(1.5)

must be valid.
For better understanding I will present a simple example. Consider the

relation between Cartesian and polar coordinates,

x0 = ρcosϕ,

x1 = ρsinϕ.
(1.6)

The metric tensor in Cartesian coordinate system S(x0, x1) is of the form
gµν = diag(1, 1). If we want to obtain the metric tensor in polar coordi-
nate system S ′(ρ, ϕ), we must first calculate the vielbeins. This is easy, by
differentiating equations (1.6) we obtain

e0ρ = cosϕ e1ρ = sinϕ
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e0ϕ = −ρsinϕ e1ϕ = ρcosϕ

and using (1.3) we can calculate metric tensor

g′µν = diag(1, ρ2).

Using the identity
gαµg

µβ = δβα, (1.7)

the inverse metric tensor gµν can be obtained,

g′µν = diag(1, 1/ρ2).

1.2 Principle of equivalence

Another very important concept is the principle of equivalence, stated by
Albert Einstein in 1907. We will formulate the principle with the help of a
thought experiment. Consider a closed laboratory witout any windows with
a scientist inside. If we place the laboratory in outer space with no forces
acting on it, the scientist will float (left side of Figure 2).

Figure 2: Free falling downwards is equivalent as being in the absence of
gravity and other forces [2]

If now someone on the outside suddenly pulls the laboratory upward
with a constant acceleration, the scientist will be pushed to the bottom of
the laboratory with the constant force (right picture of Figure 3). On the
other hand, we can place the laboratory in a uniform gravitational field and
the effect on the scientist be completely the same (left picture of Figure 3).
From this we can conclude that the effects of acceleration and gravity are
indistinguishable [3].

Furthermore, if we drop the laboratory to fall freely in a uniform gravi-
tational field, the scientist and the object inside will once again float, as in
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Figure 3: The scientist inside the closed laboratory cannot tell whether the
laboratory is accelerating or it rests in a uniforn gravitational field [4]

the case of absence of all forces (right side of Figure 2). The effect of gravity
could obviously be eliminated by going to freely falling reference frame. In
such a frame our scientist will observe all the objects obeying the usual laws
of motion in the absence of gravity and the frame is therefore inertial and a
special theory of relativity can be used in it.

Throughout the whole section I was using only the uniform gravitational
field. What happens if we would like to make a generalization to a completely
arbitrary non-uniform gravitational field? All we have to do is to include the
term local into our conclusions. For a non-uniform gravitational field we
would state: At every point in a reference frame with an arbitrary gravita-
tional field it is possible to chose a locally inertial (freely falling) reference
frame. The term locally is implying that we are constricted to such small
regions of space-time that gravitational field seems to be uniform. We can
also say that the space-time is locally flat and is having the simple Minkowski
metric,

ηµν = diag(1,−1,−1,−1). (1.8)

1.3 Notations

In this section I will shortly discuss the notation, which will be used later on.
We will be dealing with different reference frames, some having an arbitrary
metric tensor gµν describing curved space-time, and others having Minkowski
metric ηab describing flat space-time. Greek indices (α, β, γ, ...) will denote
curved index, while Latin indices (a, b, c, ...) will denote flat index. Besides
that, letters from the beginning of both the alphabets (a, b, c, ... and α, β, γ, ...)
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will indicate general index, from the middle of the alphabets the observed
(1+ 3) dimensions (m,n, ... and µ, ν, ... = 0, 1, 2, 3) and letters from the bot-
tom of the alphabets (s, t, ... and σ, τ, ...) will indicate compactified extra
space dimensions.

1.4 Spin connection field

In the last section before the begining of the concrete Kaluza-Klein theory I
will present the spin connection field, a very important concept in this theory.
The equivalence principle tells us that the Einstein’s general relativity, which
we will be using, must be invariant under local Poincaré transformations.
In other words, the fermionic field (spinor) Ψ must transform under frame
rotations as an SO(1, 3) spinor,

Ψ(x) → Ψ′(x′) = M(x)Ψ(x),

where M(x) = L(x)+S(x) is a group generator and is a function of position.
This is called local or gauge transformation. The Dirac action for fermions

SD =

∫
d4xLD(Ψ, ∂µΨ)

must be invariant under these transformations, which means that its vari-
ance must vanish. Considering the position dependance of M(x) this cer-
tainly does not hold. To provide the invariance of the action, the covariant
derivative ∇µΨ must be introduced in such a manner that the equation

δSD = δ

∫
d4xLD(Ψ,∇µΨ) = 0

is valid [5]. This yields

∇µΨ = (∂µ −
i

2
Sabωabµ)Ψ, (1.9)

where Sab = i
4
{γa, γb}− with γa being Dirac gamma matrices and

ωabµ = fα
beaβΓ

β
µα − fα

b∂µeaα (1.10)

is so-called spin connection [6]. Γβ
µα is the Christoffel symbol with definition

Γα
µν =

1

2
gαγ(∂µgνγ + ∂νgµγ − ∂γgµν). (1.11)

Because of the M(x) being an SO(1, 3) group generator, the spin connec-
tion field can be interpreted simply as the angular momentum gauge field,
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but it can be shown that the orbital angular momuntum L(x) is not needed
and only spin S(x) component is important. Spin connection filed is a com-
pensating field which raises to cancel all the unwanted effects of local trans-
formations enabling the existance of local symmetries [5].

2 Kaluza-Klein theory

We are now familiar with all necessary concepts to derive and understand the
Kaluza-Klein theory. We will begin by constructing the Kaluza-Klein action
in d = (1 + (d − 1)) dimensions which will describe the massless fermionic
field and only pure gravtity. Such an action is

SKK = SD + SE =

∫
ddxE(

1

2
Ψ†γ0γap0aΨ+ h.c.)− α

∫
ddxER, (2.1)

where h.c. means Hermitian conjugate, SE is Einstein action describing
gravity, E = det(−gαβ)

1
2 = det(eaα), α is gravitational coupling constant and

R is Ricci scalar, defined as

R = fα[afβb](∂βωabα − ωcaαω
c
bβ), (2.2)

with [...] meaning antisymmetrization, fα[afβb] = fαafβb−fαbfβa. Using the
definition for covariant derivative (1.9) in knowing the form of the momentum
operator we can write

p0a = fα
a(pα +

1

2
Scdωcdα). (2.3)

From now on, our goal will be to derive, how the fields in higher dimen-
sions manifest in our observed (1+ 3)-dimensional space-time. First, we will
follow the original Kaluza and Klein idea in 5 dimensional space-time and
later on we will extend the theory to higher dimensions.

2.1 Kaluza-Klein theory in (1 + 4)-dimensions

The original Kaluza-Klein theory was derived with one extra spacial dimen-
sion. We have to find the appropriate metric tensor for 5 dimensional space-
time, which is of the form

ĝµν =

(
gµν gµ5
gν5 g55

)
, (2.4)

where hat (̂.) denotes the 5 dimensional quantity. The 5th dimension is
postulated to be compactified, rolled-up in a small circle, which provides us
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the explanation for the unobservability of the extra dimension. Thus the 5-
dimensional space-time has the topologyM4×S1, where M4 is 4-dimensional
Minkowski space-time and S1 is a circle. The simplest way to imagine space
with one extra dimension is to imagine a small circle (extra dimension) in
every point of 3-dimensional space as shown in Figure 4, where for simplicity
instead of the 3-dimensional space the 2-dimensional plane is used.

Figure 4: In every point of space-time there is one extra dimension,
roled-up into a circle [7]

We can choose the basis vectors eµ and e5, where the latter is in direction
of 5th dimension. Vector e5 will not in general be orthogonal to eµ, thus

eµ · e5 = gµ5 6= 0.

The 4-dimensional basis is decomposed into a parallel and orthogonal part

eµ = eµ⊥ + eµ‖, eµ⊥ · e5 = 0

and because e5 and eµ‖ are parallel, one can write eµ‖ = gµ5
g55

e4. The first
component of metric tensor can now be obtained,

gµν = eµ · eν = g(4)µν +
gµ5gν5
g55

,

where g
(4)
µν is metric of 4-dimensional Minkowski space-time. With definitions

Bµ =
gµ5
g55

,

Φ = g55,

the final form of metric tensor (2.4) is obtained,

ĝmn =

(
ηmn + ΦBmBn ΦBm

ΦBn Φ

)
, (2.5)
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where we have considered g
(4)
µν = ηmn for locally flat space-time [8]. The

inverse metric tensor is calculated with the help of identity (1.7),

ĝmn =

(
ηmn −Bm

−Bn 1
Φ
+Bm′Bm′

)
. (2.6)

We will also need to calculate the vielbein and inverse vielbein. This will
be done using the relations (1.3) for transformation from Minkowski metric
to metric (2.5) and relation (1.5). For vielbein we obtain

êaα =

(
δmµ 0√
−ΦBµ

√
−Φ

)
(2.7)

and for inverse vielbein

f̂α
a =

(
δµm −Bm

0 1√
−Φ

)
. (2.8)

At this point I will present the so-called cylinder condition, which takes
care of unobservability of the 5th dimension. It states that all metric com-
ponents are independent of extra dimension,

∂5ĝαβ = 0.

The consequence of this condition is that (1+3) dimensions are also indepen-
dent of extra dimension. With the help of definition (1.4), taking cylinder
condition into account, we can see the reason for em5 and fµ

5 components of
vielbein (2.7) and inverse vielbein (2.8).

If we consider the translation along extra dimension, x′µ = xµ, x′5 =
x5 + ε(x), we can calculate the transformation of gµ5 component of metric
tensor using equation (1.3). Considering cilinder condition, we obtain

g′µ5 =
∂xν

∂x′µ
∂x5

∂x′5 gν5 +
∂x5

∂x′µ
∂x5

∂x′5 g55,

which yields
B′

µ = Bµ + ∂µε. (2.9)

Bµ obviously transforms like the electromagnetic potential. Because the
gauge transformations in electrodynamics are local U(1) transformations,
we can identify Bµ with electromagnetic potential by postulating the extra
dimension to be geometrically a circle. Therefore, any movement along x5

can be interpreted as an Abelian gauge transformation of Bµ [5].
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2.1.1 5-dimensional gravity

I will consider the terms of the action in equation (2.1) separately. In this
section I focus on 5-dimensional gravity and how it manifests in observed (1+
3)-dimensional Minkowski space-time. The Einstein acion in 5 dimensions
reads

SE = −α̂

∫
d5xER̂, (2.10)

where hat again denotes 5-dimensional quantity and E =
√
−Φ. Placing

definition for spin connection (1.10) into (2.2), the equation for Ricci scalar
can be rewritten in the form

R = gαβ(∂γΓ
γ
αβ − ∂βΓ

γ
αγ + Γδ

αβΓ
γ
δγ − Γδ

αγΓ
γ
βδ).

Considering definition (1.11), a straightforward calculation leads to the 5-
dimensional Ricci scalar

R̂ = R(4) − 1

4
ΦFµνF

µν − 2√
−Φ

∂µ∂
µ
√
−Φ (2.11)

where R(4) is 4-dimensional Ricci scalar and Fµν = ∂νBµ− ∂µBν . The action
(2.10) now looks very similar to action for gravitational field, electromagnetic
field and one additional unrecognizable scalar field. Setting this scalar field
to constant value, Φ = −1, integrating over the compactified dimension x5

and substituting Bµ = Aµ√
α
provides us with effective 4-dimensional action

SEeff
= −α

∫
d4xR(4) −

∫
d4x

1

4
FµνF

µν = SE + SEM , (2.12)

where α = Lα̂ is 4-dimensional gravitational coupling constant and L =
2πR is the length of the compactified dimension [5]. The equation (2.12)
clearly shows us that we have managed to describe 4-dimensional gravity
and electromagnetic field beginning only with 5-dimensional gravity (2.10).

2.1.2 5-dimensional fermionic field

Similarly as in previous section we will now determine the effective 4-dimensional
Dirac action. We begin with massless fermionic field from action (2.1), which
in 5 dimensions have the form

SD =

∫
d5x

√
−Φ(

1

2
Ψ†γ0γafα

a(pα +
1

2
Scdωcdα)Ψ + h.c.). (2.13)
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Again, we set Φ = −1 and insert the inverse vielbein (2.8) and we obtain the
action

SD =

∫
d5x(

1

2
Ψ†γ0(γm(pm − p5√

α
Am) + γ5p5 + γafα

a

1

2
Scdωcdα)Ψ + h.c.). (2.14)

The last term of (2.14) can be expanded as γafα
a
1
2
Smnωmnα + γafα

aS
m5ωm5α.

The first term is describing coupling with gravity, which is extremely small
and has not been measured yet and thus can be neglected. Considering the
topology of space-time (M4 × S1) we can see that Sm5 = 0 and also the
second term vanishes. From (2.12) we can also immediately see that the
electric charge and mass should be,

q =
p5√
α

m = p5.
(2.15)

Both are obviously connected with motion in extra dimension. Finally, inte-
grating over extra dimension x5, the effective 4-dimensional Dirac action is
obtained,

SDeff
= 2πR

∫
d4x(

1

2
Ψ†γ0(γm(pm − qAm) + γ5m)Ψ + h.c.).

Kaluza-Klein theory also provides the explanation for quantization of
electric charge. For this purpose we have to consider the periodicity of the
compactified extra dimension. We have already mentioned that 5th dimen-
sion is rolled-up in a circle, thus x5 = x5 + 2πR. The Fourier expansion of
spinor Ψ, periodic in x5 with the coefficients that depend upon xµ, can be
made,

Ψ =
∑
n

Ψn(x
µ)Yn(x

5),

where Yn are orthonormal eigenfunctions of the operator −∂2
5

Yn(x
5) =

1√
2πR

e−inx5/R (2.16)

−∂2
5Yn =

n2

R2
Yn.

Now we can place the Fourier expansion of spinor into action (2.13), dif-
ferentiate with respect to x5 where necessary and integrate over x5, which
yields

SDeff
= 2πR

∑
n

∫
d4x(

1

2
Ψ†

nγ
0(γm(pm − n

R
√
α
Am) + γ5 n

R
)Ψn + h.c.).

11



Quantized electric charge and mass are therefore [5]

qn =
n

R
√
α
,

mn =
n

R
. (2.17)

Knowing the experimantal data for electron mass and electric charge, we
can verify the validity of results (2.17). If we set q = e0 and calculate the
electron mass, we get the result m ≈ 3× 1030MeV instead of experimantally
known m = 0.51MeV . Thus Kaluza-Klein theory encounter some serious
problems obtaining the right electron charge and mass ratio among the other
problems, mentioned in section 3.

2.2 Higher dimensions

Once understanding the 5-dimensional Kaluza-Klein theory we can extend
the theory to higher dimensions. What we have to determine is the number of
dimensions that would describe all the known interactions. The (1+(3+D))-
dimensional space-time has the topology M4 ×BD, where BD must contain
SU(3) × SU(2) × U(1) as a symmetry subgroups. The symmetry group
of electromagnetism is U(1), of weak interaction is SU(2) and of strong
interaction is SU(3). One of the choices for BD is CP 2 × S2 × S1, where
CP 2 is a 4-dimensional complex projective space with symmetry SU(3), S2

is a 2-dimensional sphere with symmetry SU(2) and as we already know,
S1 is a 1-dimensional circle with symmetry group U(1). We can simply
count that this space has 7 dimensions. Although this is not the only space
with required symmetry, only the 7 or more dimensional spaces contain this
symmetry. This implies that the number of dimensions of realistic Kaluza-
Klein theory has to be at least d = (1 + 10) [5].

3 Prospectives of Kaluza-Klein theory

As mentioned earlier in section 2.1.2, Kaluza-Klein theory encounter some
difficulties. One of them is already described deviation of electron mass and
electric charge ratio from experimantal data. Besides that, E. Witten has
proved the so-calledWitten no-go theorem, telling that the Kaluza-Klein(like)
theories have severe difficulties obtaining massless fermions chirally coupled
to the Kaluza-Klein-type gauge fields in (1+3) dimension, as required by the
standard model. This can be solved by putting extra gauge fields by hand
in addition to gravity in higher dimensions, but this loses the elegance and
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is no longer the pure Kaluza-Klein(like) theory. Since the assumption that
the extra dimensions are compactified is used in the Witten no-go theorem,
there are also the attempts to achieve masslessness by appropriate choices of
vielbeins and spin connectionn fields in noncompact (almost compact) spaces
[9].

The theory can also be extended to explain the origin of families in addi-
tion to origin of charges. For this, at least d = (1+13) dimensional space-time
is needed, as can be seen in spin-charge-family theory [10]. The author is
claiming that her theory is promissing in explaining the assumptions of the
standard model. She starts derivation with only vielbeins and two kinds of
the spin connection fields, connected with the two kinds of the Dirac gamma
matrices, γa and γ̃a, ending up at low energies effectively with the standard
model.

Although the original (1 + 4)-dimensional Kaluza-Klein theory failed to
provide the realistic description of nature, its basic ideas lead to many new
unified field theories. For example, connecting Kaluza-Klein theory with su-
pergravity resulted in improved supersymmetric Kaluza-Klein theory. Many
theories, united under the common name Multidimensional Unified Theories,
are using the idea of Kaluza and Klein to postulate extra (compactified) space
dimensions. One of these theories is also perhaps the most widely known
string theory.

4 Conclusion

The original Kaluza-Klein theory provided very advanced starting idea which
enable to show the elegant way to unify gravity and all the other gauge fields.
Although it turned out that it still needs a lot of proofs and justifications
that it might be the right next step beyond present theories and current
understanding of the laws of nature, it looks very promissing because of the
elegance and simplicity. The theory also set the solid background for many
other unified filed theories. By now no proven consistent theory has been
found, but more and more physicists start to accept that postulating the
extra space dimensions is the right way in obtaining the unification.
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