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Wormbholes in the Kaluza-Klein theory
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We discuss wormholes in Kaluza-Klein theory, and deduce the corresponding wormhole equation. By
solving this equation, we give an analytic solution of the equation.

A wormhole is an Euclidean field configuration in
some field theory containing gravity, consisting of two
asymptotically flat regions connected by a tube, or throat.
Wormbholes had been introduced in the 1950s by Wheeler
[1]. Originally, wormholes were three-dimensional
spaces. A good example is the Schwarzschild bridge
which is a slice through a black hole joining two asymp-
totic regions. More recently, people have introduced
four-dimensional wormholes. Their effects on spacetime
coupling constants have provoked great interest among
theoretical physicists [2—8]. Since this kind of wormhole
can join spaces with different topologies, they represent
tiny quantum fluctuations of space. From the point of
view of mathematics, the condition of a wormhole exist-
ing on a four-dimensional asymptotic flat manifold M, is
that the Ricci tensor of M, has negative eigenvalues
somewhere on M, [9]. In the pure gravitation case,
Hawking discussed wormholes in which two baby
universes are connected [2,3]. However, in general the
Euclidean action of the wormhole in the pure gravitation
case is unstable. The wormhole with a stable Euclidean
action was first discovered by Giddings and Strominger
[10] in the theory with a spontaneously broken Abelian
internal symmetry—the theory of a Goldstone boson, or
axion, minimally coupled to Einstein gravity. There is a
Giddings-Strominger wormhole for every value of L, the
wormhole size. (Here, the so-called wormbhole size is
defined as the geodesic length of 27L around the throat.)
Recently, Coleman and Lee studied a wormhole [11] in a
theory with an unbroken Abelian internal symmetry—
the theory of a complex scalar field, ¥, of mass m,
minimally coupled to Einstein gravity, but with no other
interactions. They have obtained the corresponding
wormhole equation and the wormhole solution. In Refs.

44

[12] and [13], wormholes in a scalar field (axion field)
with an axion charge are discussed. In Refs. [14-16],
wormholes are discussed in gauge field theories. In Ref.
[17], wormholes in the Skyrme model are discussed. In
Ref. [18], wormholes in scalar-tensor gravitation theory
are discussed. In Ref. [19], wormholes in higher-
dimensional theory are discussed. In Ref. [20],
wormbholes with a spinor field are discussed.

In this paper, we discuss the wormhole in Kaluza-
Klein theory, and deduce the corresponding wormhole
equation. Solving this equation, we obtain an analytic
solution of this equation and the action of the wormhole
solution.

We consider the spacetime with the topology

R'®@S3emM . (1)

The spacetime dimensions D are D=1+3-+M. The cor-
responding metric takes the form

dS*=d7m*+a*(1)d 03+ b2(1)g,,(»)dydy? , ()

where 7=t/i, a(r) and b(7) are scale factors, dQ2 is a
three-dimensional sphere metric, g,,(p) is the metric of
M-dimensional compact constant-curvature space and
satisfies R, (g)=kg,;, and K is a curvature constant. In
this paper, we only consider K > 0.

We take the Euclidean action as

—_1 Pyv/g (R —
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in which R is the curvature scalar, A is the cosmological
constant, ¢ is a D-dimensional scalar field, and ¢ =a¢(7).
From the scalar field equation, it is given that
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The Einstein field equations are
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where an overdot expresses the derivative with respect to
T.

Let
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Then we have
4
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in which
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The parameters L and H have the following physical
meaning: L is a wormhole radius in D-dimensional back-
ground spacetime, and H is a Hubble constant in D-
dimensional de Sitter spacetime.

Only when
kM(D_z)M+2m2

AM+2
24M+8(7TG )M+3

does Eq. (7) have the following solution:
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where,
1/2

h(x)=arcsin %Ez—_% , 9)

IT is the elliptic integral of the third kind, «, 3, and y are
three real roots of the equation of third order,
x3— 1 3 x2+ 1 >=0,
(HL) (HL)

and a>f3>0>y. Equation (9) is a wormhole which con-
nects the corresponding points in two Euclidean higher-
dimensional de Sitter spacetimes.

When m =40, the axion charge in S3®. MM space can be
given as

q=2m*Vym , (10)

where ¥, is the volume of M.
The action of this wormhole is
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where

p=[a—BNa—y)]'"*,
and F and E are the elliptic integrals of the first and
second kinds, respectively, and Cj is a constant which re-
lates to dimensions.
The above calculated results show that there may exist
wormhole solutions in a spontaneous compactification
spacetime with R '@ S3e.MM.
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