Nuclear Physics B186 (1981) 412-428
© North-Holland Publishing Company

SEARCH FOR A REALISTIC KALUZA-KLEIN THEORY*

Edward WITTEN
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA

Received 12 January 1981

An attempt is made to construct a realistic model of particle physics based on eleven-
dimensional supergravity with seven dimensions compactified. It is possible to obtain an SU(3) x
SU(2) x U(1) gauge group, but the proper fermion quantum numbers are difficult to achieve.

In 1921 Kaluza suggested [1] that gravitation and electromagnetism could be
unified in a theory of five-dimensional riemannian geometry. The idea was further
developed by Klein [2] and was the subject of considerable interest during the
classical period of work on unified field theories [3]. Readable expositions of some of
the classical work have been given in text books by Bergmann and by Lichnerowicz
[4]; more recent discussions have been given by Rayski and by Thirring [5].

While the Kaluza—Klein approach has always been one of the most intriguing ideas
concerning unification of gauge fields with general relativity, it has languished
because of the absence of a realistic model with distinctive and testable predictions.
Yet the urgency of the unification of gauge fields with general relativity has surely
greatly increased with the growing importance of gauge fields in physics. Moreover,
the Kaluza—Klein theory has generalizations to non-abelian gauge fields which
actually were first proposed [6] well before real applications were known for
Yang-Mills fields in physics.

In the last few years this approach has been revived by Scherk and Schwarz and by
Cremmer and Scherk, originally in connection with dual models [7]. These authors
introduced many new ideas as well as new focus. In contrast to much of the classical
literature, they advocated that the extra dimensions should be regarded as true,
physical dimensions, on a par with the four observed dimensions. Cremmer and
Scherk suggested that the obvious differences between the four observed dimensions
and the extra microscopic ones could arise from a spontaneous breakdown of the
vacuum symmetry, or, as they called it, from a process of ‘‘spontaneous
compactification” of the extra dimensions.

These ideas have motivated much recent work. The idea of spontaneous
compactification has been developed in more detail by Luciani [8]. An interesting
idea by Palla [9] about massless fermions in theories with extra compact dimensions
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will figure in some of the discussion below. Manton [10] has discussed some questions
that arise in trying to generate Higgs fields as components of the gauge field in extra
dimensions. The idea of extra hidden dimensions has stimulated much work in
supersymmetry theory, including the successful construction of the N =8 super-
gravity theory by Cremmer, Julia and Scherk and by Cremmer and Julia [11]. This
work has been generalized to give models with broken sypersymmetry [12].

In many respects, of course, the modern approaches to this subject tend to differ
from the classical point of view. In view of the proliferation of new particles in the last
thirty years, one may be more willing today than in the past to postulate the infinite
number of new degrees of freedom that must exist if extra dimensions really exist.
Much of the classical literature focussed on the need to eliminate a massless spin-zero
particle that naturally exists in the original Kaluza-Klein theory; the question seems
less urgent today because the obvious answer is that quantum mechanical mass
renormalization could easily account for the failure to observe this particle (a mass of
10 * eV would make it undetectable). Some of the early work was motivated by the
hope that the fifth dimension could provide the hidden variables that would eliminate
indeterminacy from quantum mechanics. Despite the many generalizations and
changes in emphasis that have occurred, I will refer generically to theories in which
gauge fields are unified with gravitation by means of extra, compact dimensions as
Kaluza-Klein theories.

It has often been suggested that spontaneous compactification and supergravity
could be usefully combined together. The N = 8 supergravity theory was constructed
by ‘“‘dimensional reduction’ starting from an eleven-dimensional theory. In this
context, ‘‘dimensional reduction” just means that the fields are taken to be
independent of seven of the original eleven coordinates, to which physical reality
need not be attributed. However, Cremmer and Julia [11] suggested that one ﬁight
wish to consider seriously the eleven dimensions and interpret seven of them as
compact dimensions in the spirit of Kaluza and Klein. This idea has been raised, on
occasion, by various other theorists. In this paper, I will describe an attempt — not
completely successful, but not completely unsuccessful either — to construct a realis-
tic theory of Kaluza-Klein type, based on eleven-dimensional supergravity.

As discussed by some of the authors mentioned above, from a modern point of
view the Kaluza-Klein unified theory of gravitation and electromagnetism is prob-
ably best understood as a theory of spontaneous symmetry breaking in which the
group of general coordinate transformations in five dimensions is spontaneously
broken to the product of the four-dimensional general coordinate transformation
group and a local U(1) gauge group.

Let us review how this arises. One considers standard general relativity in five
dimensions with the standard Einstein—Hilbert action

A= I d’xVgR. 1)
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Instead of assuming that the ground state of this system is five-dimensional
Minkowski space, which we will denote as M°, one takes the ground state to be the
product M*xS' of four-dimensional Minkowski space M* with the circle S'. The
space M* xS’ is, like M°, a solution of the five-dimensional Einstein equations.
Classically it is difficult to decide which of the spaces M® and M*x S’ is a more
appropriate choice as the ground state, since they both have zero energy, insofar as
energy can be defined in general relativity*. Conventionally, one might assume that
the ground state is M?. In the Kaluza—Klein approach one assumes, instead, that the
ground state is M* x S’, and the physical spectrum is determined by studying small
oscillations around this ground state. One assumes that the radius of the circle S' is
microscopically small, perhaps of order of the Planck length, and this accounts for
why the existence of this fifth dimension is not noted in everyday experience.

The symmetries of the Kaluza-Klein ground state M* xS are the four-dimen-
sional Poincaré symmetries, acting on M*, and a U(1) group of rotations of the circle
S'. These symmetries would be observed as local or gauge symmetries in the
apparent four-dimensional world because the whole theory started with the Einstein
action (1) which is generally covariant. In fact, if one considers small oscillations
around the “ground state” M*x S', one finds an infinite number of massive excita-
tions, the masses being of order the inverse of the circumference of S'. One finds also
a finite number of massless modes, which presumably would constitute the low-
energy physics. The massless modes turn out to be a spin-two graviton and a spin-one
photon, which are gauge particles of the symmetries of M* xS, and a Brans-Dicke
scalar.

The ansatz which exhibits the massless modes is the following. The metric tensor
of this theory is a five by five matrix gag(x*, ¢) which in general may depend on the
four coordinates x“, u =1-- -4, of M*, and on the angular coordinate ¢ of S'. The
massless modes are those for which gap is a function of x“ only. One can then write
gap in block form

2)

guv(x) | A,,,(x))

g, 0)= (ST o

where g,,, is a four by four matrix (the first four rows and columns of g45), A, = g.s,
and o = gss. Then g,, is the ordinary metric tensor of the apparent four-dimensional
world, and describes a massless spin-two particle; A, is the gauge field of the U(1)
symmetry, and o is the Brans-Dicke scalar.

In the classical work on the Kaluza-Klein theory, it is shown that the five-
dimensional Einstein action (1), when expanded in terms of g,,,, A,, and o (and the
other modes, which decouple from these at low energies) contains a four-dimen-
sional Einstein action \/ER “ for g..» @ Maxwell action F,zw for A,, and the usual

* The definition of energy in general relativity depends on the boundary conditions, so while both M®
and M* x §' have zero energy, a comparison between them is meaningless, like comparing zero apples
to zero oranges.
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kinetic energy for o. Also, one can readily check that A, transforms as a gauge field
A,-> A, +d,e under coordinate transformations of the special type (x',¢)-
(x', @ +e(x")) if the metric gap is transformed by the standard rule

1A' 2: 4
dx' ox

8aB > ga'B’ -(.)G__A_ EJx—B .

The Kaluza-Klein theory thus unifies the metric tensor g,,, and a gauge field A,
into the unified structure of five-dimensional general relativity. This theory is surely
one of the most remarkable ideas ever advanced for unification of electromagnetism
and gravitation.

The Kaluza—Klein theory, as noted above, also has a non-abelian generalization,
which has been extensively discussed over the years. In this generalization, one starts
with general relativity in 4 + n dimensions, possibly with additional matter fields or
with a cosmological constant. Instead of assuming the ground state to be ¥
Minkowski space of 4 + n dimensions, one assumes the ground state to be a product
space M* x B, where B is a compact space of dimension n. M* x B should be a solution
of the classical equations of motion, or possibly, as will be discussed later, a minimum
of some effective potential.

As in the previous discussion, symmetries of B will be observed as gauge
symmetries in the effective four dimensional world. With a suitable choice of B, one
may unify an arbitrary gauge group, abelian or non-abelian, with ordinary general
relativity, in a 4+ n dimensional theory.

The ansatz which generalizes (2) is the following. Let ¢, i =1 - - - n, be coordinates
for the internal space B. Let T% a=1"--- N, be the generators of the symmetry
group G of B. Let the action of the symmetry generator T° on the ¢; be ¢,
¢ +K{(¢), where K (¢) is the “Killing vector” associated with the symmetry T°.
Then the massless excitations of the candidate ‘‘ground state” M* x B correspond to
an ansatz of the following form:

Bun(%7) Xi Ai(x“)K?(qb"))
L. ALK (") Yi(d") ’
where v;; is the metric tensor of the internal space B. The fields A7 (x*) are massless
gauge fields of the group G. In this way one may obtain the gauge fields of an
arbitrary abelian or non-abelian gauge group as components of the gravitational field
in 4 +n dimensions.

One may verify that the 4+n dimensional gravitational action really contains
the proper kinetic energy term Y., (F,.. )%. It is also straightforward to check that
under infinitesimal coordinate transformations of the special form (x° @)~
(x%, ¢:+Y " (x*)K{ (¢)), which is an x-dependent symmetry transformation of the
internal space B, the field Aj(x) transforms in the expected fashion, Aj(x)-
An(x)+D,e“(x). Thus, A really has the properties expected of an ordinary
four-dimensional gauge field. This gauge field is a remnant of the original coordinate

gas(x® o5)= ( 3)
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invariance group in 4 + » dimensions, which has been spontaneously broken down to
the symmetries of M x B.

As has been noted before, there is a fairly extensive literature on this construction.
The case which has been discussed most widely is the case in which B is itself the
manifold of some group H. It should be noted that, if H is a non-abelian group, the
symmetry group G of the group manifold is not H but HxH, since the group
manifold can be transformed by either left or right multiplication. If one starts with
general relativity in 4 + n dimensions, the ansatz (3) will automatically give massless
gauge mesons of the full symmetry group H x H.

What problems arise if we try to construct a realistic theory along these lines?
Known particle interactions can be described by the gauge group SU(3) x SU(2) x
U(1). So the symmetry group G of the compact space B must at least contain this as a
subgroup,

SU@B)xSUQR)xU((1)=G. (4)
So B must at least have SU(3) X SU(2) X U(1) as a symmetry group.

To be as economical as possible, we may wish to choose B to be a manifold of
minimum dimension with an SU(3) x SU(2) X U(1) symmetry. What is the minimum
dimension of a manifold which can have SU(3) x SU(2) X U(1) symmetry?

U(1) is the symmetry group of the circle S', which has dimension one. The lowest
dimension space with symmetry SU(2) is the ordinary two-dimensional sphere S°.
The space of lowest dimension with symmetry group SU(3) is the complex projective
space CP’, which has real dimension four. (CP? is the space of three complex
variables (Z', Z% 2Z*), not all zero, with the identification (Z" Z2. 2=
Az 1, AZ? \Z?) for any non-zero complex number A. CP? can also be defined as the
homogeneous space SU(3)/U(2).) Therefore, the space CP>xS?>xS' has SU(3) x
SU(2) xU(1) symmetry, and it has 4 + 2+ 1 =7 dimensions.

As we will see below, seven dimensions is in fact the minimum dimensionality of a
manifold with SU(3) x SU(2) x U(1) symmetry, although CP? x §* x S’ is not the only
seven-dimensional manifold with this symmetry. If, therefore, we wish to construct a
theory in which SU(3)xSU(2)xU(1) gauge fields arise as components of the
gravitational field in more than four dimensions, we must have at least seven extra
dimensions. With also four non-compact “‘space-time”’dimensions, the total dimen-
sionality of our world must be at least 4+7 =11,

This last number is most remarkable, because eleven dimensions is probably the
maximum for supergravity. Eleven-dimensional supergravity has been explicitly
constructed, and it is strongly believed that supergravity theories do not exist in
dimensions greater than eleven. (The reason for this belief is that, on purely algebraic
grounds [13], a supergravity theory in d>11 would have to contain massless
particles of spin greater than two. But there are excellent reasons, both S-matrix
theoretic [14] and field theoretic [15], to believe that consistent field theories with
gravity coupled to massless particles of spin greater than two do not exist.) It is
consequently just barely possible to obtain SU(3) X SU(2) x U(1) gauge fields as part



E. Witten | Kaluza—Klein theory 417

of the gravitational field in a supergravity theory, if we use the unique, maximal,
eleven-dimensional supergravity theory.

It is certainly a very intriguing numerical coincidence that eleven dimensions,
which is the maximum number for supergravity, is the minimum number in which
one can obtain SU(3) xSU(2) x U(1) gauge fields by the Kaluza—Klein procedure.
This coincidence suggests that the approach is worth serious consideration.

Let us now discuss in more detail the question of why seven dimensions is the
minimum number of dimensions for a space with SU(3) x SU(2) X U(1) symmetry -
and the related matter of determining all seven-dimensional manifolds with this
symmetry.

The space of lowest dimension with any symmetry group G is always a homo-
geneous space G/H, where H is a maximal subgroup of G. (The space G/H is defined
as the set of all elements g of G, with two elements g and g’ regarded as equivalent,
g = g, if they differ by right multiplication by an element of H, that is, if g = g’ with
h e H.) The dimension of G/H is always equal to the dimension of G minus the
dimension of H.

In the case G=SU(3)xSU(2)xU(1), the largest dimension subgroup that is
suitable is SU(2)xU(1)xU(1). Any larger subgroup of G would contain as a
subgroup one of the three factors SU(3), SU(2), or U(1) of G, and this factor would
then not have any non-trivial action on G/H - it would not really be a symmetry
group of G/H. Since the dimension of SU(3) xSU(2) x U(1) is 8+3+1=12 and the
dimension of SU(2)xU(1)xU(1) is 3+ 1+ 1 =35, the dimension of (SU(3) X SU(2) x
U(1))/(SUR)xU(1)xU(1)) is 12—5=7. It is for this reason that a space with
SU(3)xSU(2)xU(1) symmetry must have at least seven dimensions. However,
there are many ways to embed SU(2) x U(1) x U(1) in SU(3) x SU(2) x U(1),and as a
result there are many seven-dimensional manifolds with SU(3)xSU(2)x U(1)
symmetry.

To embed SU(2)xU(1)xU(1) in SU(3)xSU(2)xU(1) we first embed SU(2).
SU(2) can be embedded in SU(3) xSU(2)xU(1) in a variety of ways. The only
embedding that turns out to be relevant is for SU(2) to be embedded in SU(3) as an
“isospin’ subgroup, so that the fundamental triplet of SU(3) transforms as 2+1
under SU(2). [Other embeddings of SU(2) lead to spaces G/H on which some of the
SU(3)xSU(2)xU(1) symmetries act trivially, as discussed in the previous
paragraph.] We still must embed U(1) X U(1) in SU(3) x SU(2) x U(1).

SU(3)xSU(2) xU(1) has three commuting U(1) generators which commute with
the SU(2) subgroup of SU(3) that we have just chosen. There is a “hypercharge”
generator of SU(3), which we may call Ag, which commutes with the ‘‘isospin”
subgroup. Also, we have the U(1) factor of SU(3) x SU(2) X U(1), which will be called
Y, and we may choose an arbitrary U(1) generator of the SU(2) factor, which will be
called Ts;.

So SU(3) xSU(2) x U(1) contains an essentially unique subgroup SU(2) x U(1) x
U(1) x U(1), where the three U(1) factors are Ag, T3, and Y. We do not want to divide
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SU(3)xSU(2) x U(1) by the full SU(2) x U(1) x U(1) x U(1) subgroup because this
would yield a space (CP*xS?, to be precise) on which the U(1) of SU(3) x SU(2) x
U(1) would act trivially and would not really be a symmetry. So we delete one of the
three U(1) factors, and divide only by SU(2) x U(1) X U(1).

The U(1) factor that is deleted may be an arbitrary linear combination pAg+qT5 +
rY of Ag, T3, and Y where p, q, and r are any three integers which have no common
divisor*. So we define H as SU(2) x U(1) x U(1), where the SU(2) is our “‘isospin”’
subgroup of SU(3), and the two U(1)’s are the two linear combinations of Ag, T3, and
Y which are orthogonal to pAg+qT5+rY. The space G/H is then a seven-dimen-
sional space with SU(3) X SU(2) x U(1) symmetry, which we may call M"",

In a few cases the M™ are familiar spaces. M*"' is our previous example
CP’xS’xS'. But in most cases the M are not familiar spaces, and are not
products.

In a few cases the M”* have greater symmetry than SU(3) x SU(2) x U(1). M'? is
$° x §%, which has the symmetry O(6) x SU(2). M*!! is CP>x S*, whose full symmetry
is SU(3) x SU(2) X SU(2). Except for these two cases, one cannot obtain from seven
extra dimensions a symmetry “larger”” than SU(3) x SU(2) X U(1). Therefore, the
observed gauge group in nature is practically the ‘““largest’’ group one could obtain
from a Kaluza-Klein theory with seven extra dimensions.

Although the M*" for general values of p, ¢, and r are not familiar spaces, it is
possible to give a rather explicit description of them. Consider first the eight
dimensional space $°xS® [S" is the n-dimensional sphere, with symmetry group
O(n +1)]. The symmetry group of S* x §*is O(6) x O(4). Let us introduce a particular
generator of O(6),

01 00 00O
-1 0 00 0O
00 01 00
= 5
K 00 -1 0 00F) ®)
00 00 01
00 00 -1 0
and a particular generator of O(4),
01 00
=} O & 0
L=
00 0 1) ©)
0 0 -1 0

Then the subgroup of O(6) that commutes with K is SU(3) x U(1) [the U(1) being

* And r should be non-zero to avoid obtaining a space on which U(1) is realized as the identity.
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generated by K itself] and the subgroup of O(4) that commutes with L is SU(2) X
U(1) [the U(1) being generated by L].

For any non-zero p and g, we now define N = —gK +pL. Then N generatesa U(1)
subgroup of O(6) x O(4), consisting of elements of the form exp (N, 0=t =<2m. We
may now form from S’ x S” a seven-dimensional space M* = (S*xS§%)/U(1), where
two points in S§° X S* are considered to be identical if they are mapped into each other
by the action of the U(1) subgroup generated by N.

This space M” is equal to the r=1 case of what we have previously called
MP¥. The M™ are actually the most general simply connected seven-dimensional
manifolds with SU(3)xSU(2)xU(1) symmetry. To obtain M*" for r#1 one
must factor out from S° x S” an additional discrete subgroup consisting of elements
of the form exp 2mqK/r) (g=0,1,2,...,r—1). We define M =M"/Z" =
(°x8Y)/(U)xZ).

To verify that the construction of the M just presented is equivalent to the
previous definition as (SU(3)xSU(2)x U(1))/(SU(2) x U(1) x U(1)), one uses the
fact that SU(3)/SU(2) is S°, while SU(2) is S, so (SU(3)xSU(2)x U(1))/(SU(2) x
U(1)x U(1))is (S x §* x U(1))/(U(1) x U(1)). Dividing out the two U(1) factors, one
arrives at the above definition of M™ as (S° x $?)/(U(1) X Z").

The MP" are not quite the most general seven-dimensional manifold with SU(3) x
SU(2) x U(1) symmetry, because for special values of p, g, and r it is possible to
supplement SU(2) x U(1) x U(1) with an additional twofold discrete symmetry. One
obtains in this way some non-orientable manifolds with one of the M”* as a double
covering space. These spaces are the following. Dividing M"? by a discrete symmetry
one can get CP?xP?xS' (P* is real projective space of dimension k), or CP* x
(S*xS")/Z,, where Z, is a simultaneous inversion of S? and S*. From M'% one gets
S*x P? and (S°x§?%)/Z,, where the Z, is a simultaneous inversion of S° and S°.
Likewise, by dividing M'"" by an additional two-fold symmetry one can make
S°/Z" x P? and (S°/Z" x $*)/Z,. These spaces are non-orientable. This completes the
list of seven-dimensional manifolds with SU(3) x SU(2) x U(1) symmetry.

If one is willing to suppose that the ground state of eleven-dimensional super-
gravity is a product of four-dimensional Minkowski space with one of the M?*, one
can obtain an SU(3) x SU(2) x U(1) gauge group, the gauge fields being components
of the gravitational field, according to the ansatz of eq. (3). Of course, to describe
nature, it is not sufficient to have the gauge group. It is also necessary to have quarks
and leptons of essentially zero mass [very light compared to the energy scale of
gravitation; massless in any approximation in which SU(3)xSU(2) x U(1) is not
spontaneously broken] which should be in the appropriate representation of the
gauge group. And it is necessary to find Higgs bosons whose vacuum expectation
value could ultimately trigger SU(2) X U(1) breaking.

How can one obtain massless quarks and leptons in the Kaluza—Klein framework?
To understand the basic idea*, suppose that in a 4+ n dimensional theory we have a

* See also a discussion by Palla [9].
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massless spin one half fermion. It satisfies the 4 + n dimensional Dirac equation,

By=0, (7)
or explicitly

4+n

T yDy=0. 8)
“This Dirac operator can be written in the form

DYy +p "™y =0, 9)

where P =¥"_| y'D; is the ordinary four-dimensional Dirac operator, and B/ =
Z::; ¥'D; is the Dirac operator in the internal space of #» compact dimensions.

The expression (9) immediately shows that the eigenvalue of P will be
observed in practice as the four-dimensional mass. If By = Ay, then ¢ will be
obse__rved by four-dimensional observers who are unaware of the existence of the
extra microscopic dimensions as a fermion of mass |A|.

The operator P acts on a compact space, so its spectrum is discrete. Its
eigenvalues either are zero or are of order 1/R, R being the radius of the extra
dimensions. Since 1/R is, in the Kaluza-Klein approach, presumably of order the
Planck mass, the non-zero eigenvalues of P correspond to extremely massive
fermions which would not have been observed. The observed quarks and leptons
must correspond to the zero modes of E“"t).

If, in eleven-dimensional supergravity, the ground state is a product of four-
dimensional Minkowski space with one of the M”?, then the zero modes of the Dirac
operator in the internal space will, if there are any zero modes at all, automatically
form multiplets of SU(3)xSU(2) x U(1), since this is the symmetry of the internal
space. It therefore is reasonable to wonder whether for an appropriate choice of p, g,
and r, zero modes could exist and form the appropriate representation of the
symmetry group, so as to reproduce the observed spectrum of quarks and leptons.

Of course, to reproduce what is observed in nature, we would need quite a few zero
modes of the internal space Dirac operator. If the top quark exists, there are in nature
at least 45 fermion degrees of freedom of given helicity, counting all colors and
flavors of quarks and leptons. We would therefore need at least 45 Dirac zero modes.
However, when a Dirac operator has zero modes, the number usually depends on
topological invariants. Perhaps by choosing suitable values of p, g, and r we could
suitably “twist’”’ the topology and obtain the required 45 zero modes lying in the
appropriate representation of SU(3) x SU(2) x U(1).

Actually, if one has in mind eleven-dimensional supergravity, one must modify
this program slightly. In eleven-dimensional supergravity, there is no fundamental
spin one half field. The only fundamental Fermi field in that theory is the Rarita—
Schwinger field /.., of spin 3 (u is a vector index, a a spinor index).

Although this field has spin 2 from the point of view of eleven dimensions, the
components of ¢, with 5=y <11 are spin one half fields from the point of view of
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ordinary four-dimensional physics. For u =5, u would be observed as an internal
symmetry index, not a space-time index; it carries spin zero. Although the
components ¢, with u =1---4 are spin-% fields in the four-dimensional sense, the
components with u =5 - - - 11 are spin one half fields. So zero-mode solutions of the
spin-% wave equation in the extra dimensions would be observed as massless spin-3
fermions in four dimensions. These would be the ordinary light fermions of the
spontaneously compactified eleven-dimensional theory.

In one sense, it is an advantage to have to consider the Rarita—Schwinger operator
rather than the Dirac operator. The Rarita—Schwinger operator can have zero modes
more easily and in more abundance than the Dirac operator, because the Dirac
operator has positivity properties which tend to suppress the number of zero modes.
For instance, with four extra dimensions, it is known [16] that there is only a single
non-flat compact solution of Einstein’s equations on which the Dirac operator has
zero modes. This is the Kahler manifold K3 (which has no Killing vectors). On this
space there are two zero modes of the Dirac operator — but 42 zero modes of the
Rarita-Schwinger operator. The large discrepancy is caused, in this case, by a much
larger coefficient of the axial anomaly for Rarita-Schwinger fields. This example
shows, incidentally, that the rather large number of zero modes that would be
required to describe what is observed in physics is not necessarily out of reach.

In the approach considered here, the solution of the problem of flavor — the
problem of the existence of several ‘“‘generations” of fermions with the same
quantum numbers — would be that the extra dimensions have a sufficiently complex
topology that there are several zero modes with the same SU(3)xSU(2) x U(1)
quantum numbers. When an operator has several zero modes, they are not neces-
sarily related by any symmetry. For instance, the isospinor Dirac operator in a
Yang-Mills instanton of topological number K has K modes; these modes
are not related by any symmetry. This is fortunate, because the various genera-
tions of fermions have very different masses and are not obviously related by any
symmetry.

Unfortunately, there is a basic reason that this idea does not work, at least not in
the form described above. The reason for this is related to one of the most basic facts
about the observed quarks and leptons: the fermions of given helicity transform in a
complex representation of the gauge group, or, to put it differently, right-handed
fermions do not transform the same way that the left-handed fermions transform.
For instance, left-handed color triplets (quarks) are SU(2) doublets, but right-
handed color triplets are SU(2) singlets. This is the reason that quarks and leptons do
not have bare masses but receive their mass from the Higgs mechanism — from
SU(2) x U(1) symmetry breaking. This is a very important fact theoretically, because
it is the basis for our theoretical understanding of why the quarks and leptons are very
light compared to the mass scale of grand unification or the Planck mass. If left- and
right-handed fermions transformed the same way under the the gauge group, bare
masses would have been possible and could have been arbitrarily large.
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In the framework that has been described above, right- and left-handed fermions
would inevitably transform the same way under SU(3) x SU(2) x U(1). The reason
for this is that low mass fermions are supposed to arise as zero modes of the
Rarita—Schwinger operator in the extra dimensions. But the Rarita—Schwinger
operator in the seven extra dimensions does not “‘know”” whether a spinor field is left-
or right-handed with respect to four-dimensional Lorentz transformations. It treats
four-dimensional left- and right-handed fermions in the same way. One therefore
could not get the observed SU(3) x SU(2) x U(1) representation. One would inevit-
ably get vector-like rather than V-A weak interactions, with bare masses being
possible for all fermions. (Indeed, precisely because bare masses would be possible
for all fermions, it is not natural to get any massless fermions at all.)

There is an intriguing mechanism by which, at first sight, it seems that the internal
space Rarita-Schwinger equation could treat left and right fermions differently.
Eleven-dimensional spinors are constructed with eleven gamma matrices y;, i =
1-++11. Let us define an operator I'y; =iy, y11 which is a sort of eleven-
dimensional helicity operator. Let us also define an operator I'y = iy,y,¥3Y4 Which
measures the ordinary four-dimensional helicity, and an operator I5=1vys" " y11
which one might think of as “‘helicity” in the internal eleven-dimensional space.
Then 'Yy =Fi=I7=1and ' =TI

The Rarita-Schwinger field ¢ of eleven-dimensional supergravity satisfies a Weyl
condition ¢ = I'y1¢. (This condition must be imposed; otherwise there would be
more Fermi than Bose degrees of freedom and supersymmetry would not be
possible.) This identity may equivalently be written I's¢ = I'7¢.

The latter equation shows that in eleven-dimensional supergravity the four-
dimensional helicity of fermions is correlated with the seven-dimensional “‘helicity’.
Components with I, = +1 (or —1) have I; =+1 (or —1). If the quantum numbers of
zero modes of the seven-dimensional Rarita—Schwinger equation depended on I'7, as
one might intuitively expect, they would also depend on I's.

Unfortunately, the spectrum of the seven-dimensional Rarita—Schwinger operator
does not depend on I';. The reason for this is very simple (and depends only on the
fact that the number of extra dimensions is odd). In defining how spinors transform
under coordinate transformations in riemannian geometry one needs the matrices
o;; =[v: v;). One does not (on an orientable manifold) need the y; themselves. The
transformation y; <> —v; does not change the o;;, so it does not affect the definition of
spinors. It does, however, change the sign of I'; = ¥y, - - - y7. Consequently, spinors
with opposite values of I'; transform the same way under coordinate trans-
formations. Since, in the approach discussed here, SU(3) xSU(2)xU(1) trans-
formations are coordinate transformations, spinors with opposite values of I'; have
the same SU(3) xSU(2) x U(1) quantum numbers.

One could try to avoid this conclusion by taking the extra seven dimensions to be a
non-orientable manifold. In a non-orientable manifold, the definition of spinors is
subtle and involves the y; as well as o;. However, seven-dimensional non-orientable
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manifolds with SU(3) X SU(2) X U(1) symmetry are not abundant (they have all been
listed above), and it is not difficult to show that none of them are suitable.

One might also try to avoid the above stated conclusion by going beyond
riemannian geometry to include some variant of torsion. What possibilities this
would offer is not very clear; the matter will be discussed at the end of this paper.

Obtaining the right quantum numbers for quarks and leptons is, of course, not the
only problem that must be faced in order to obtain a realistic theory, although it may
be the most difficult problem. We must also worry about spontaneous breaking of
supersymmetry, spontaneous breaking of CP, spontaneous breaking of SU(2) x U(1)
gauge symmetry, and obtaining the proper values of the low-energy parameters
(coupling constants, masses, and mixing angles); and we must worry about what the
true ground state of the theory really is. These questions will now be briefly discussed
in turn.

For spontaneous breaking of supersymmetry the prospects are very bright; in fact,
supersymmetry almost inevitably is spontaneously broken as part of any scheme in
which there are compact dimensions with a non-abelian symmetry.

The reason for this is the following. Unbroken supersymmetry means that under a
supersymmetry transformation the vacuum expectation values of the fields do not
change. The vacuum expectation values of the Bose fields automatically are invariant
under supersymmetry, since their supersymmetric variation would be proportional
to the (vanishing) vacuum expectation values of the Fermi fields. The delicate
question is whether the vacuum expectation values of the fermi fields change under
supersymmetry,

To illustrate the point, let us ignore the possible presence in the theory of Bose
fields other than the gravitational field. Then the transformation law for the
Rarita-Schwinger field is 8¢, = D, e, ¢ being the gauge parameter. An unbroken
supersymmetry — a symmetry of the vacuum - must have 8¢, =0, so unbroken
supersymmetry transformations correspond to solutions of D,e =0.

On a curved manifold, this equation will almost certainly not have solutions, since
D,e =0 implies the integrability condition [D,, D,]e =0 or R,..p[v", y?le =0,
which on most curved manifolds is not satisfied by any non-zero ¢. For instance, on
none of the M does a solution exist. (The properties of seven-dimensional
manifolds admitting solutions of D,e =0 have been discussed in the mathematical
literature [17], but non-trivial examples do not seem to be known.) So in theories
with curved extra dimensions, there will generally not be any unbroken supersym-
metries.

The picture does not change greatly when one includes Bose fields other than the
gravitational field. We now have 8¢, = D&, where D,, = D,, plus non-minimal terms
involving the vacuum expectation values of other Bose fields (and possibly involving
the expectation values of fermion bilinears, as discussed below). Unbroken super-
symmetries are now solutions of D,e =0, but solutions will still typically not exist
because the integrability condition [D,., D,]e = 0 will still not have solutions.
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Although solutions will generally not exist, the extra dimensions and the vacuum
expectation values of the fields may be just such that one or more solutions of
D,e =0 would exist. Each solution of D,e =0 in the internal space would cor-
respond to an unbroken supersymmetry charge in four dimensions. If there is
precisely one such solution, and so only one unbroken supersymmetry generator, this
corresponds to a theory in which N =8 supersymmetry has been spontaneously
broken down to N = 1 supersymmetry. If there are K solutions, there is an unbroken
N = K supersymmetry.

A particularly attractive possibility would be a theory in which the equation
D,e =0 has precisely one solution in the extra dimensions, corresponding to
unbroken N =1 supersymmetry. With N =1 supersymmetry it is possible to con-
struct more or less realistic models of observed particle physics. With N =2 it is not
possible to make a realistic model, because the supersymmetry algebra for N =2
forces left- and right-handed fermions to transform in the same way under the gauge
group, in contrast with what is observed. It is attractive to believe that N =1
supersymmetry might survive after compactification of seven dimensions because
this would severely constrain the theory, would make many predictions that might be
testable in accelerators, and [19] might shed light on SU(2) x U(1) breaking and the
gauge hierarchy problem. Of course, we would then have to explain how N =1
supersymmetry is eventually spontaneously broken at low energies.

In addition to supersymmetry breaking, we must also explain P and CP breaking
in order to construct a realistic theory. The eleven-dimensional supergravity
langrangian is invariant under inversions of space (or time) combined with a change
of sign of the antisymmetric tensor gauge field that exists in this theory. After
compactification of seven dimensions, the eleven-dimensional symmetry could be
manifested as both P (inversion of space) and C (inversion of the compact dimen-
sions). These potential invariances must be spontaneously broken.

A natural mechanism for spontaneous breaking of P, C, and CP involves the
antisymmetry tensor gauge field of the eleven-dimensional supergravity theory. The
curl F,gys of this field may have a vacuum expectation value without breaking
Lorentz invariance or SU(3) xSU(2) X U(1). In fact, as discussed recently by several
authors [20], a vacuum expectation value of F),34 is Lorentz invariant, It would
violate P and CP but conserve C. The components Fy,, for i - - - m =5 may also
have expectation values, which would spontaneously break C and CP but conserve
P. 1t is not difficult to see (by considering the little group of a point on M”?") that on
any of the M”, the most general SU(3) x SU(2) x U(1) invariant vacuum expectation
value of Fj;, depends on two real parameters,

Although the eleven-dimensional theory can have spontaneous breaking of C, P,
and CP, the strong interaction angle 6 will inevitably vanish at the tree level. The
reason for this is that in the eleven-dimensional theory, there is no operator which
might be added to the lagrangian which reduces in four dimensions to 8 J'd"meﬁu,,.
There simply does not exist in eleven dimensions any topological invariant that can
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be written as the integral of a lagrangian density. Of course, the question of how large
a vacuum angle might be generated by quantum corrections must wait until we
understand how to do calculations in this (presumably) non-renormalizable theory.

It is also necessary, of course, to obtain SU(2) x U(1) symmetry breaking; this
presumably means that we must find, at the tree level, a massless Higgs doublet which
could later obtain a very tiny negative mass squared.

There are various ways that, in a Kaluza-Klein theory, one might obtain massless
charged scalars. In the original Kaluza-Klein theory, with a single compact dimen-
sion (a circle) there is a massless scalar (at least at the tree level) because the classical
field equations do not determine the radius of the circle. Space-time dependent
fluctuations of this radius would be observed as a massless scalar degree of freedom.

If the equations that determine our hypothetical ground state M* x M admit not
a unique solution for the metric of M"" but a whole family of solutions, then
oscillations within this family would be observed as massless scalars. Some of these
oscillations might involve departures from SU(2) X U(1) symmetry and could be the
desired Higgs bosons.

One might also obtain massless scalars as components of the antisymmetric tensor
gauge field. In fact, massless scalars can be obtained in this way, but tend to be neutral
under the gauge group.

Regardless of where the scalars come from, why would they be massless? The most
plausible explanation would be an unbroken supersymmetry relating the massless
bosons to massless fermions. This could involve the possibility discussed above that
the equation D,e =0 has a unique non-trivial solution, leaving N =1 supersym-
metry unbroken. In this case, of course, we must hope to find a non-perturbative
mechanism spontaneously breaking the supersymmetry and giving a small vacuum
expectation value to the scalar bosons. (Some relevant issues will be discussed in a
future paper [21].)

Without understanding the Higgs bosons and the low-energy symmetry breaking,
it is of course not possible to predict the quark and lepton masses and mixing angles.
If we understood the dynamics that determines the metric of M”" (assuming that the
ground state really is M*xMP"?), we could predict the strong, weak, and elec-
tromagnetic coupling constants, since the gauge fields all arise, by the ansatz of eq.
(3), as part of the metric tensor in eleven dimensions, and the gauge field kinetic
energy is part of the Einstein action. [The most general SU(3)xSU(2)x U(1)
invariant metric on M depends on three arbitrary parameters. If we understood
the dynamics and could calculate the three parameters, we could predict the SU(3),
SU(2), and U(1) coupling constants.] Even though we do not understand this
dynamics (see below), it is possible to make a useful comment.

In a theory of this kind, the gauge coupling constants, which are determined by
integrating the action over the compact dimensions, would scale as a rather high
power of 1/(M,R), where M, is the Planck mass and R is the radius of the extra
dimensions. The fact that the observed gauge coupling constants in nature differ from
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one by only one or two orders of magnitude shows that R cannot be too much greater
than 1/M,; the extra dimensions really have a radius not too different from 10> cm.

The eleven-dimensional supergravity theory has no global symmetry that could be
interpreted as baryon number, so in this theory nucleons are almost surely unstable.
The mass scale in nucleon decay, however, would probably be 1/R, which is the mass
scale of the heavy quanta in this theory. Since, as just noted, 1/R cannot be much less
than M,, the nucleon lifetime will probably be very long, perhaps 10*° years, which is
far too long for nucleon decay to be observable. If the present nucleon decay
experiments give a positive result, the approach described in this paper would
become significantly less attractive.

It is now time to finally discuss the question of whether one can really sensibly
expect M* X M” to be the ground state of this theory.

The most attractive possibility would be that M* x M”* might be a solution of the
classical equations of motion, possibly with a suitable vacuum expectation assumed
for F,,.s. Unfortunately, a straightforward calculation shows that this is not true
(regardless of what vacuum expectation value one assumes). If one arbitrarily adds to
the lagrangian a cosmological constant (with a sign corresponding to a positive
energy density) then M* X M”" can be a solution. However, local supersymmetry
does not permit a cosmological constant in the eleven-dimensional lagrangian.

This problem is not necessarily fatal, since one can always hope that M* x M*",
although not a solution of the classical equations of motion, is the minimum of the
appropriate effective potential. In eleven-dimensional supergravity, there is no small
dimensionless parameter whose smallness could justify the use of the classical field
equations as an approximation. So the fact that M*xM"" does not satisfy the
classical equations, while not encouraging, is not necessarily critical.

In any case, there is absolutely no obvious reason that M* x MP?, rather than the
more obvious possibility of eleven dimensional Minkowski space, should be the
ground state of this theory.

It will be shown in a separate paper that even when Kaluza—Klein vacuum states
are stable classically, they can be destabilized by quantum mechanical tunneling [22].
However, unbroken supersymmetry (plus a technical requirement that the extra
dimensions be simply connected; this is not satisfied in the original Kaluza-Klein
theory) seems to be a sufficient condition for stability. This is another reason that
theories in which D,e = 0 has a solution and there is an unbroken supersymmetry at
the energies of compactification would be attractive.

As has been pointed out above, the most serious obstacle to a realistic model of the
type considered in this paper is that the fermion quantum numbers do not turn out
right. It is conceivable that this problem could be overcome if instead of riemannian
geometry one considered geometry with torsion or some generalization of torsion; in
such a theory the fermion transformation laws might be different.

How can one obtain torsion in eleven-dimensional supergravity? As has been
noted [11], the theory formally contains torsion in the sense that certain fermion
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bilinears enter, formally, in the way that torsion would appear. Of course, a *‘torsion”’
that is bilinear in Fermi fields does not have a classical limit. However, by analogy
with QCD, in which gq has a vacuum expectation value, one may be willing in
supergravity to assume a vacuum expectation value for the “torsion field” K ~ Y
(or perhaps for some other bilinears). Perhaps in this way the predictions for fermion
quantum numbers can be modified. This possibility is under study.

I wish to acknowledge discussions with V. Bargmann and J. Wolf.

Note added in proof

For a recent discussion of Dirac zero modes in Kaluza-Klein theories, see ref. [23].
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