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It is argued that the ground state of the Kaluza-Klein unified theory is unstable against a 
process of semiclassical barrier penetration. This is related to the fact that the positive energy 
conjecture does not hold for the Kaluza-Klein  theory; an explicit counter-example is given. The 
reasoning presented here assumes that in general relativity one should include manifolds of 
non-vacuum topology. It is argued that the existence of e lementary fermions (not present  in the 
original Kaluza-Klein theory) would stabilize the Kaluza-Klein vacuum. 

In the Kaluza-Klein approach to unification of gauge fields with general relativity 
[1] - as seen from a modern point of view [2] - the starting point is general relativity 
in 4 + n dimensions. But instead of assuming the ground state to be M 4~" (Minkowski 
space in 4 + n dimensions) one assumes it to be a product M4x B, where M 4 is 
ordinary four-dimensional Minkowski space and B is a suitable compact manifold. 
The low-energy physics is then obtained by expanding around the presumed ground 
state M 4 × B. Apart from a massless graviton, one obtains among the small oscilla- 

tions around M4x B massless gauge mesons associated with all of the symmetries 
of B. 

With a suitable choice of B one might hope to get a realistic model of particle 

physics. A discussion of some of the possibilities has been given in ref. [3]. 
To pursue a program such as this, it is important to have some criteria for 

determining whether something of the form M n x B is really a reasonable candidate 
as the ground state of a given theory. We cannot answer this question in full because 
of our lack of understanding of dynamics-par t iculary  since general relativity in 
four or more dimensions is unrenormalizable. However, it is possible to impose 

the requirement that M 4 x B should be stable at the classical and semiclassical level. 
This leads to non-trivial conditions; the purpose of this paper is to begin to explore 
those conditions. 

In particular, we will examine the original five-dimensional theory of Kaluza and 
Klein. It will be argued that the ground state of the original Kaluza-Klein theory, 
although stable classically, is unstable against a semiclassical decay process. 

In the original Kaluza-Klein theory, it is assumed that the ground state of 
five-dimensional relativity is not five-dimensional Minkowski space M 5, but rather 
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is M 4 × S 1, the product of four-dimensional Minkowski space with a circle S ~. Being 

flat, M4× S a satisfies the classical Einstein equations regardless of what radius R 
is assumed for the circle. Because of the U(1) symmetry of the circle, this theory 
possesses a single abelian massless gauge meson. 

Is it possible that M 4 × S z could be the ground state of five-dimensional relativity? 
One cannot answer this question simply by comparing the energy of M s to the 

energy of M 4 × S ~. Both spaces have zero energy. However, the definition of energy 
in general relativity depends on the boundary conditions, and because M4× S a and 
M s have different asymptotic behavior, a comparison between the zero energy of 

M 4 × S ~ and the zero energy of M s would be meaningless. There is a way to assess 
the stability of M4× S ~ by an argument involving energy considerations, but it is 
slightly subtle; we will return to the point later. 

Instead of trying to compare M 4 × S 1 to Minkowski space, let us see what we can 
say about the properties of M 4 × S l itself. 

The first test of the stability of a space is to ask whether the space is stable, 
classically, against small oscillations. The Kaluza-Klein vacuum passes this test. 
The small oscillations around M 4 × S ~ consist of several massless states (a graviton, 

a photon, and a Brans-Dicke scalar) and an infinite number of massive, charged 
modes of spins zero, one and two. There are no exponentially growing modes with 
imaginary frequencies. 

Even if a state is stable against small oscillations, it may be unstable at the 

semiclassical level. This can occur if the state is separated by only a finite barrier 

from a more stable state. It will then be unstable against decay by semiclassical 
barrier penetration. The theory of such semiclassical instabilities in field theory has 
been developed in detail in the last few years [4]. Since it is not straightforward 
to assess the stability of M 4 × 8 1  by an argument based on energetics, let us simply 
look for evidence for a semiclassical instability. 

To look for a semiclassical instability of a putative vacuum state, one looks for 
a "bounce"  solution of the classical euclidean field equations. This is a solution 
which asymptotically, at infinity, approaches the putative vacuum state. If the 
solution is unstable (the determinant of small oscillations has negative modes), then 

the gaussian integral around this solution gives an imaginary part to the energy of 
the vacuum state, indicating an instability. Such considerations were first applied 
to gravity by Perry [5]. 

Thus, to assess the stability of Minkowski space itself at the semiclassical level, 
one would look for a solution of the classical Einstein equations which at infinity 
is asymptotic to flat, infinite euclidean space. Such a solution, if it possessed negative 
modes for small oscillations, would indicate the instability of Minkowski space. 
However, it has been proved [6, 7] that such solutions do not exist, at least in the 
absence of matter fields. 

How would we search for a semiclassical instability of the Kaluza-Klein vacuum? 
We first analytically continue the Kaluza-Klein vacuum to euclidean space (i.e., to 
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a positive signature) so that the metric is 

ds  2 = dxZ  + d y 2  + d z Z  + dt2 + d O  2 . (1) 

Here  x, y, z and t run from -oo to +oo, but O is a periodic variable, which runs 
from 0 to 2~rR, R being the radius of the Kaluza-Klein circle. Introducing polar 
coordinates in the space spanned by x, y, z, and t, this can equivalently be written 

ds  z = d r  2 + r  2 dO 2 +dO 2, (2) 

where r runs from 0 to oo and dO 2 is the line element of the three sphere. We 
now want to look for a solution of the classical Einstein equations with the same 

asymptotic behavior  as (2). Actually, such a solution is [8] 

Of dr2 d O 2 + ( 1  ~ ) d &  2 (3) 
d s 2 -  1 ~Of~/r 2 + r2 - " 

(One may recognize this as the five-dimensional Schwarzschild solution, analytically 
continued, but the interpretation here will be different.) For any value of Of, this 
satisfies the classical Einstein equations except at the dangerous point r = ~/c~. Now 
we must discuss the behavior  at r = ~/Of. This exactly parallels recent t reatments [9] 
of euclidean black holes in four dimensions. If we make a change of coordinates 
r = ~ + A 2, then the dangerous terms dr2/(1 - Of/r 2) + (1 - a i r  z) d& 2 become, near 
A = 0, 2x/~a(dA 2+ (A2/a)d&2). This must be compared to the standard expression 

d p 2 + p 2 d &  2 for the metric of the plane in polar coordinates. We know that 
dp2 +p2 d&2 describes a non-singular space if (and only if) & is a periodic variable 
with periodicity 2~r. Hence the expression 2~/a(dAE+(A2/Of)d& 2) describes a 
non-singular space if and only if & is a periodic variable with periodic 27rx/Of. 

On the other hand, in the Kaluza-Klein vacuum, described by metric (1) or (2), 
is a periodic variable with periodicity 2¢rR. So we must set Of = R 2 to obtain a 

non-singular space which asymptotically (for large r) approaches the Kaluza-Klein 

vacuum. The metric of this space is 

dr 2 r 2 2 
d s 2 - 1 _ ( R / r ) 2 +  d O 2 + ( 1 - ( R ) ) d &  2. (4) 

This space is non-singular and geodesically complete.  However ,  one must note that 
r is restricted to run from R to oe, because we had r = ~/~ +)t 2 = R + • 2, where )t 

runs from 0 to oo. 
We now wish to see that the solution (4) actually represents an instability of 

M4x S 1. We therefore should look for negative action modes in small fluctuations 
around (4). Actually, for the analogous solution in one less dimension, this problem 
has been treated by Perry, who showed that there exists a unique negative action 
mode. Some implications have been discussed by Gross, Perry, and Yaffe [10]. 

The generalization of the calculations just mentioned to the metric (4) is discussed 
in the appendix to this paper. However ,  there is a much simpler way to see that 
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(4) describes an instability. This is simply to look for an appropr ia te  analytic 
cont inuat ion of (4) to Minkowski  space (that is, to a space of Minkowski  signature). 
Accord ing  to the general  theory  of semiclassical vacuum decay, the false vacuum 

decays into a real Minkowski  space solution which agrees with the euclidean bounce 
solution on a three-dimensional  surface which can be regarded as t = 0 .  Real  

euclidean solutions which can be analytically cont inued to real valued Minkowski  
solutions (the fields are still real after the continuat ion)  are always found to describe 

instabilities; this is usually obvious f rom the form of the Minkowski  solution. 
An  appropr ia te  Minkowski  cont inuat ion of (4) is easy to find. Lett ing 0 be one 

of the polar angles, one can write the line e lement  d O  z of the three sphere as 

d ( 9  2 = d O 2 +  s i n  2 0 d .O 2 , (5)  

where d.O 2 is the line e lement  of the two sphere.  
To cont inue from euclidean to Minkowski  space we should find a plane of 

symmet ry  of the metric which can be regarded as t = 0; then we rotate  t ~ it. In 
the case at hand, the plane 0 =~zr can play the role of t = 0 (recall that  in flat 

euclidean space we have t = r cos 0, if 0 is chosen appropria te ly;  see fig. 1). The  
step t ~ it is equivalent  to O ~ ½~- + i~b where ~ is a new real coordinate .  

Af ter  the replacement  0--, ~Tr + irk we obtain the Minkowski  signature solution 

of the Einstein equations,  

dr  2 
d s Z - ( 1 - ( R / r )  2) r z & b 2 + c o s h  2 t ~ d . O 2 + ( 1 - ( R / r )  2) d~b 2. (6) 

It is not  difficult to check that this space is nonsingular  and geodesically complete .  
The  coordinate  singularity at r = R is as harmless as it was before the analytic 

continuation.  
The  solution (6) is the space into which the Kaluza-Kle in  vacuum decays. 

However ,  what  is this space? On this score we will encounte r  a surprise. 

Fig. 1. Time and the polar angle 0 in flat euclidean space. 
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Fig. 2. The exterior of the light cone in Minkowski space. 
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Let  us m o m e n t a r i l y  d r o p  the  factors  ( 1 - ( R / r )  2) f rom (6) a n d  c o n s i d e r  the  

t w o - d i m e n s i o n a l  space  s p a n n e d  by  r a n d  ~/, on ly .  So we will e x a m i n e  

ds  2 = d r  2 - r 2 d~b 2 • (7) 

As  we migh t  expec t ,  this  de sc r ibes  flat t w o - d i m e n s i o n a l  M i n k o w s k i  space.  A f t e r  

the  c h a n g e  of c o o r d i n a t e s  

x -- r cosh ~ ,  t = r s inh ~ ,  (8) 

we f ind that  (7) is c o n v e r t e d  in to  

ds  2 = dx 2 - d t  2 , (9) 

which ,  of course ,  desc r ibes  M i n k o w s k i  space.  H o w e v e r ,  the  c o o r d i n a t e s  r a n d  ~k 

in eq.  (7) do  n o t  s p a n  all of t w o - d i m e n s i o n a l  M i n k o w s k i  space.  F r o m  (8) we see  

tha t  x 2 - t 2 = r 2, which  is pos i t ive  for real  v a l u e d  r, so r a n d  ~b o n l y  span  the  ex te r io r  

of the  l ight  cone ,  x 2 -  t 2 > 0  (fig. 2). T h e  ex te r io r  of the  l ight  cone  is, of  course ,  

n o t  a geodes ica l ly  c o m p l e t e  m a n i f o l d ,  b e c a u s e  geodes ics  in M i n k o w s k i  space  can  

per fec t ly  wel l  r each  x 2 - t 2 = 0 a n d  c o n t i n u e  to n e g a t i v e  va lues  of x 2 - t 2. 

N o w  we r e t u r n  to the  m e t r i c  of eq.  (6). W i t h o u t  the  fac tors  of ( 1 -  (r /R)  2) this  

w o u l d  be  the  K a l u z a - K l e i n  v a c u u m  in an  u n u s u a l  c o o r d i n a t e  sys tem,  which  does  

n o t  cove r  the  w h o l e  space ,  s ince  it omi t s  the  po in t s  of n e g a t i v e  r 2, w h e r e  n o w  

r 2 = x 2 - t  2. T h e  factors  of ( 1 - ( R / r )  2) are  u n i m p o r t a n t  if r is large,  so for large 

r - large x 2 - t 2 - the  space  of eq.  (6) co inc ides  wi th  the  K a l u z a - K l e i n  v a c u u m .  

W h a t  h a p p e n s  w h e n  we i n c l u d e  the  factors  ( 1 - ( R / r ) 2 ) ?  W e  k n o w  that  n o w  r 

r u n s  no t  f rom 0 to ~ b u t  o n l y  f rom R to oe. T h e r e f o r e ,  if we are  to t h ink  of (6) 

as a sor t  of d i s to r t ed  M i n k o w s k i  space,  it is a space  in which  no t  jus t  the  i n t e r i o r  

of the  l ight  cone  x 2 -  t 2 <  0 b u t  the  i n t e r i o r  of a h y p e r b o l o i d  x 2 -  t 2 <  R 2 has  b e e n  

d e l e t e d  (fig. 3). 
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Fig. 3. The exterior of a hyperbo|oid in Minkowski space. 

The Kaluza-Klein space is, of course, a five-dimensional space, with four non- 

compact dimensions and one compact dimension. However, the spirit of the Kaluza- 
Klein theory is that the fifth dimension is microscopic and too small to be directly 

observed. 
From the "macroscopic" point of view, for observers who are not able to detect 

the existence of the fifth dimension and who do not probe too closely near 
x 2 -  t 2= R 2, (6) describes ordinary four-dimensional Minkowski space with the 
points x 2 -  t2< R 2 omitted. Of course, if one just removes from Minkowski space 

the region x 2 -  t2< R 2, one obtains not a nice, smooth space but a manifold with 

a boundary. Here the existence of the fifth dimension is very important. Looking 
at the term ( 1 -  (R/r) 2) d~b 2 in (6), one sees that the radius of the fifth dimension, 
while equal to 2~-R asymptotically, is in general 2rcR~/1-(R/r)  2. The fifth 
dimension shrinks to zero size as r approaches R in such a way as to smoothly seal 
off the would-be boundary, giving a non-singular and geodesically complete space. 

But looking at (6) as an observer unable to directly see the fifth dimension would 

look at it, (6) is just Minkowski space with x 2 -  t2< R 2 omitted. It is now easy to 

describe intuitively what is going on. In the decay of the Kaluza-Kiein vacuum 
into the metric described by (6), a hole spontaneously forms in space. At time zero, 
when it forms, the hole is microscopic, of radius R. However, the hole rapidly 
expands. At time t the boundary of the hole is at x 2 = R 2 + t  2 so its radius is 
r(t) = ",/-Rs-~-~. The boundary of the hole is in a state of uniform acceleration, 
just like the bubble wall in conventional vacuum decay. After a very brief time, 

of order R, the hole is expanding to infinity at the speed of light. 
In a way, this is even more shocking than the conventional decay of a false 

vacuum. Ordinarily, a false vacuum decays into a more stable state. Here, the 
Kaluza-Klein vacuum decays - literally - into nothing. A hole spontaneously forms 
in space and rapidly expands to infinity, pushing to infinity anything it may meet 
(unless it meets an obstacle massive enough to stop the expansion of the hole). 
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Actually, the hole will not literally expand to infinity. Because the Kaluza-Klein 
vacuum is unstable against the formation of holes, holes will form spontaneously 
at a certain rate per unit volume per unit time. The holes will expand until their 
boundaries meet.  The evolution beyond that point would be difficult to determine,  
but because of the large energy in the colliding boundaries, one might expect 

gravitational collapse. 
Now let us discuss some lessons that can be learned from this example. One 

thing that we know about semiclassical vacuum decay is that, like other physical 
processes, it conserves energy. In conventional false vacuum decay, the energy 
liberated in the decay to the true vacuum goes into accelerating the bubble wall; 
the total energy is conserved in this process. Moreover,  since no signal travels faster 
than light, a vacuum decays into another  space with the same asymptotic behavior 
at spatial infinity. Since the Kaluza-Klein vacuum has zero energy, the space (6) 
into which it decays must, by conservation of energy, also have zero energy. It is 
easy to check explicitly that this is true. According to the canonical definition (which 
can be generalized to the Kaluza-Klein theory), the total energy of a system in 
general relativity is defined as a surface integral in terms of the asymptotic behavior 
of the gravitational field at spatial infinity. The integral is to be evaluated on an 
initial value hypersurface, which in (6) can be taken as the surface ~0 = 0. In the 
surface integral that defines the energy, only the terms in the metric of order 1/r 
are relevant (in a world of 3 + 1 non-compact  dimensions). But in (6) there are no 
terms of order 1/r; the departure from the fiat space metric (coming from the 
factors (1 - (R / r )2 ) )  is of order 1/r  2. Hence (6) describes a space of zero energy. 

This is the difference between Minkowski space and the Kaluza-Klein space 
M4× S ~. Minkowski space has zero energy, and every other solution of Einstein's 
equations that asymptotically approaches Minkowski space has positive energy. 
Consequently semiclassical decay of Minkowski space cannot occur (whether matter  
fields are present or not); the decay would have to produce a space of zero energy 
that would be asymptotic to Minkowski space, and no such space exists. The key 
to the instability of the Kaluza-Klein vacuum is that in the Kaluza-Klein case there 
exist s p a c e s -  such as (6 ) -  with the same energy as the Kaluza-Klein vacuum and 
the same asymptotic behavior. 

The statement  that every non-flat solution of the Einstein equations that 
approaches Minkowski space at spatial infinity has positive energy is known as the 
positive energy theorem. The first full proof was given by Schoen and Yau [11]. 
A recent review has been given by York [12]. For an alternative proof, and 
references to the literature, see ref. [7]. 

What  we have discovered, in the explicit counter-example of eq. (6), is that the 
analogue of the positive energy theorem is not valid for the Kaluza-Klein vacuum. 
There  are states other than the vacuum itself which asymptotically approach the 
vacuum and which have zero energy. Moreover,  there are solutions of the Einstein 
equations with the asymptotic behavior of the Kaluza-Klein vacuum that have 
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negative total energy. This can be seen by using methods that were introduced by 
Brili and Deser [13]. They determined the conditions under which a space can be 
a stationary point of the energy functional. The space of eq. (6) does not satisfy 

the Brill-Deser conditions (because the initial value surface 4/= 0 is time-symmetric 
and is not Ricci fiat). Hence this space is not a stationary point of the energy 
functional, and its energy can be raised or lowered by small variations. A variation 
that makes the energy negative can easily be constructed with the methods of Brill 

and Deser. 
We can now return to a matter that arose at the beginning of this paper. Given 

an arbitrary Kaluza-Klein type space M 4 × B which is stable against small fluctua- 
tions, how can we assess its stability at the semiclassical level by considerations 

based on energy? 
The answer is not simply to examine the energy of M 4 × B; lacking terms of order 

1/r in the metric, M a × B  automatically has zero energy. The key is to compare 

the energy of M 4 × B to the energy of other states with the same asymptotic behavior. 
If the positive energy conjecture holds for Max B, in the sense that every other 
classical solution with the same asymptotic behavior has positive energy, then 

M ~ x B is stable semiclassically. 
In general, it may not be easy to decide whether for a given space MAx B the 

positive energy theorem holds. In some cases, one might hope to answer this 
question using the methods of ref. [11] or [7], or other methods in the literature. 
For example, it is interesting to ask why the methods of ref. [7] do not apply to 

the Kaluza-Klein space. 
Because energy is conserved, it is defined not in terms of the whole space-time 

but as an integral on an initial value surface. For M 4 × S 1 this surface can be taken 
to be t = 0, which defines R 3 x S 1 (R 3 being three-dimensional euclidean space). If 

one considers excitations of the M 4 x  S 1 vacuum which have the same topology as 
the vacuum, so that the initial value surface is topologically R 3 × S 1 (but is flat only 
asymptotically) the methods of ref. [7] apply. By considering solutions of the Dirac 
equation on the initial value surface, one can prove that all excitations of the 
geometry of M 4 × S I in which the topology is not changed have positive energy. 

It is therefore not an accident that the space of eq. (6) differs from the Kaluza- 
Klein ground state in topology and not just in geometry. In fact, the initial value 
surface 4/= 0 in eq. (6) has topology R 2 × S 2, although in its geometry it is asymptotic 

to the flat metric on R 3 ×S ~. The problem that prevents the proof of ref. [6] from 
applying to the space of eq. (6) is related to this topology. The problem is not that 
spinors do not exist on R 2 × $2; they do. Rather, there is a more subtle problem. 

Because R3× S ~ is not simply connected, there are inequivalent ways to define 

spinors on this space. One can require the spinors to be periodic functions on S ~ 
up to a phase e i~. The allowed values of the phase are discussed below. In applying 

the proof of ref. [6] to the Kaluza-Klein theory, one must use spinors with a = 0, 

because only such spinors can be covariantly constant. 
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R2× S: is simply connected, so on this space the spinor structure is unique. So 
the surface 4' = 0 in eq. (6) admits a unique spinor structure. This unique spinor 
structure corresponds, in the asymptotic region where the 4' = 0 surface approaches 
R3×S  1, to a unique choice of a o n  R 3 × S  1. That  choice turns out to be c~ =Tr. 

Since only spinors of ct = 0 can be used in the proof of ref. [7], and only spinors 
of a = ~r exist in the space considered here, the proof of ref. [7] does not apply. 

In claiming that the bounce solution of eq. (4), and its Minkowski continuation 
of eq. (6), describe the decay of the Kaluza-Klein vacuum, one must assume that 
it is appropriate  in general relativity to consider manifolds with topology different 
from the topology of the vacuum. This point should be controversial, because in 

general relativity, unlike other field theories, cluster decomposit ion cannot be used 
to prove the necessity of including varying topologies. In Yang-Mills theory, for 
instance, magnetic monopoles  and instantons must be considered, because a widely 
separated monopole -an t imonopole  or instanton-anti- instanton pair can be formed 

smoothly from the vacuum configuration. Cluster decomposit ion then forces one 
to consider isolated monopoles  or instantons. Because no analogous argument  
demonstrates  in general relativity the need to include varying topologies, it may 
be that the interpretation given in this paper  is not valid. If, on the contrary, spaces 
of topology other than the v a c u u m  M 4 × S  1 should not be considered, then the 
Kaluza-Klein vacuum is stable, for we have noted that the positive energy theorem 
holds in the Kaluza-Klein theory as long as variations in the topology are not 

considered. 
It should also be noted that in this paper  we have considered the "pure"  

Kaluza-Klein theory, without fields other than the five-dimensional metric. Elemen- 
tary fermions, if present in the lagrangian, could stabilize the Kaluza-Klein vacuum. 

This could arise as follows. We must r emember  that in defining fermions in the 
Kaluza-Klein theory, an angle c~ enters. It enters as follows. One conventionally 
expands a Fermi field (or other field) in terms of the periodic coordinate ch of the 
fifth dimension as 4'(x, ch)= ~ ,  4 ' , (x )exp  (inch~R). With non-zero t~, the expansion 
is instead 4'(x, ch)=Y., din(x)exp (i(n-a/2~r)ch/R), and the mass squared of the 
nth state is proportional  not to n 2 but to (n -o~/27r) 2. 

What  values of a are allowed? The basic requirement  for an allowed value of 
o~ is that the lagrangian of the theory must be invariant under 4' ~ e'~4', so that the 
lagrangian is single-valued and well-defined even though d, changes by a phase e i" 
when ch goes from zero to 27rR. The value a = 0 is trivially allowed, and for fermions 
the value a = 7r is also always allowed, because 4 ' ~ - 4 '  is a symmetry  of every 
Lorentz invariant lagrangian (the total number  of fermions is always conserved 
modulo two). If the lagrangian has additional symmetries,  other values of a may 
be permitted. For instance, if the theory possesses a continuous U(1) law of fermion 
number  conservation, the value of a is completely arbitrary. 

Suppose that we construct the Kaluza-Klein vacuum with a ~ ~r (the most obvious 
choice is tr = 0). Since in the spaces of eqs. (4) and (6), the definition of spinors is 
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unique and corresponds asymptotically to a = zr, these spaces would not contribute 
to the same Hilbert space that contains the vacuum. They would contribute to the 
a = zr Hilbert space, which has a different spectrum of the elementary particles. 
Only the vacuum state with a = zr could decay according to eqs. (4) and (6). One 
can also see that the fermion determinant with a = ~r vanishes relative to the 
determinant with a # zr like the exponential of the space-time volume. So in the 
infinite volume limit, the contribution of (4) to the path integral vanishes relative 
to a # rr contributions. 

Finally, leaving aside elementary fermions, let us ask at what rate the Kaluza- 
Klein vacuum decays. The action of the five-dimensional theory is 

1 
f dSxv/-gR +surface term (10) I = 327r2G R 

where a surface term is added to cancel second derivative terms in the action. The 

gravitational constant in five dimensions is taken to be 2,rRG, where R is the 
radius of the fifth dimension. For the bounce solution, the scalar curvature vanishes, 
and only the surface term in the action contributes. It can be evaluated to give 

• rR2/4G as the action, so the decay rate of the false vacuum, per unit volume per 
unit time, is of order exp (-zrR2/4G). 

Note that the false vacuum is long-lived if R is much greater than the Planck 
length. Indeed, only in this case is the semiclassical calculation that we have carried 

out reliable. If the distances entering are as small as the Planck length, a semiclassical 
calculation is not reliable quant i ta t ively-al though it still strongly indicates an 
instability. 

At the classical level, the radius of the fifth dimension is undetermined. Quantum 

corrections will give an effective potential that will, in general, determine the radius 
of the fifth dimension; this effective potential will depend on which matter fields 
are present. The quantitative validity of the calculation in this paper depends on 
what the radius of the fifth dimension turns out to be, when quantum effects are 
included. 

For another aspect of Kaluza-Klein dynamics, see ref. [14]. A recent paper on 
topological aspects of spinors in Kaluza-Klein theory is ref. [15]. 

I wish to thank D.J. Gross and M. Perry for discussions. 

Appendix 

In this appendix we will briefly discuss the existence of a negative eigenvalue in 
the functional determinant obtained in expanding around the euclidean Einstein 
solution of eq. (4). 

As discussed by Perry [5], in a convenient gauge one works with transverse 
traceless metric fluctuations: 

g~'"h,, = D,h"" = 0 . (11) 
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The appropriate  eigenvalue problem is then 

A Lh .~  = ) th .~ ,  (12) 

where At. is the Lichnerowicz laplacian for small fluctuations in the gravitational 

field. 
The most general traceless metric perturbation that preserves the rotational 

symmetry and time symmetry of eq. (4) is 

h,~ dx"  dx" A ( r )  d r 2 + B ( r ) ( l _ ( r / R ) 2 ) d &  2 
(1 - ( r /R)2)  

- ~(A(r)  + B( r ) ) r  2 dO 2 , (13) 

where A ( r )  and B(r )  are two arbitrary functions. 
As in the four-dimensional problem treated by Perry, B can be expressed in 

terms of A by using the second part of eq. (11) (transversality). The resulting 
eigenvalue equation for A [eq. (12)] is a Schr6dinger-like equation - a second-order  
differential equation with an hermitian "hamil tonian".  

The existence of a negative eigenvalue of this operator  follows from a general 
argument  by Callan and Coleman [4]. If instead of looking at the sector of zero 
angular momentum,  one looks at fluctuations with unit angular momentum,  the 
appropriate  ansatz can be obtained from (13) by the simple substitution 

A ( r ) ~ A ( r ) c o s O ,  B ( r ) ~ B ( r ) c o s O ,  (14) 

where 0 is any one of the polar angles. (For angular momen tum bigger than one 
such a simple substitution would not give the most general ansatz.) Again one 
obtains an eigenvalue equation for A. In the angular momentum one sector, there 
exists a zero eigenvalue - i t  represents the f reedom to translate the position of the 

instanton solution. 
At this point the argument  of Callan and Coleman can be applied. The eigenvalue 

problem (12) in the angular momentum one sector differs from the problem in the 
angular momen tum zero sector only in the presence of a strictly positive angular 
momen tum contribution, analogous to I(I + 1)/r 2 in the Schr6dinger equation. The 

existence of a zero eigenvalue for angular momentum one therefore implies that 
there is a negative eigenvalue for angular momentum zero. 

This agrees with explicit calculation in the four-dimensional problem [5], and 
with the existence of the unstable minkowskian continuation discussed in this paper.  
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