
International Journal of Theoretical Physics, Vol. 36, No. 8, 1997 

Mass and Charge from Higher Dimensional 
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We explore ways in which phenomenological physical quantities such as the rest 
mass and electric charge of a particle could be explained as properties of higher 
dimensional geometry. In 5D, it is shown that mass is related to the extra coordinate 
and charge is related to the extra momentum. This approach can be extended to 
supergravity and string theory. 

1. ~ T R O D U C T I O N  

Quantities such as the rest mass m and electric charge q o f  a test particle 
are still regarded as phenomenological ,  in the sense that we have no account  
of  their origin f rom fundamental  theory. However,  noble attempts to explain 
quantities such as rn and q have been made through the history of  physics. 
Mach 's  principle represented such an attempt, and still generates interesting 
discussion (Barbour and Pfister, 1995). Einstein's 4D general relativity is 
widely regarded as not properly incorporating Mach ' s  principle, but in its 
spirit Einstein in his later work continued to espouse the view that physics 
ought to be derived from geometry, as, for example, in 5D Kaluza-Klein  
theory [for a recent review of  this see Overduin and Wesson (1997)]. A 
related, though alternative view is that we should aim to derive m = m (x~), 
where ct = 0-3 ,  f rom a scale-covariant extension of  general relativity (Hoyle 
and Narlikar, 1974). This idea has merit because it is computat ional  rather 
than conceptual. However,  while to most  workers this is an advantage, we 
should not forget that symbols like m and q were introduced into physics a 

i Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3GI, Canada; e-mail: 
wesson @watsci.uwaterloo.ca. 

2GP-B, Hansen Physics Laboratories, Stanford University, Stanford, California 94305. 
3 Department of Physics, Zhengzhou University, Zhengzhou, Henan, China. 

1865 

0020-7748/9710800-1865512.50/0 �9 1997 Plenum Publishing Corporation 



1866 Wesson and Liu 

long time ago as convenient but somewhat ill-defined concepts (Jammer, 
1961). To that extent, they involve a certain element of subjectivity, as pointed 
out by Eddington (1939; see also Kilmister, 1994). The same comment applies 
to other quantities in common use in modern physics, such as the so-called 
fundamental constants (Wesson, 1992). Ambiguity in our concepts can be 
handled to a certain extent, but leads to puzzling physics. For example, in 
gravity we have to make a logical distinction between the inertial and active 
and passive gravitational masses of a particle, even though experiments to 
test the equivalence principle show that they are equal to remarkable accuracy 
(Will, 1993). And when we sum over a number of particles and include their 
interactions, we are led to several acceptable but inequivalent definitions of 
the mass of a macroscopic body and well-known problems to do with the 
(non)localizability of gravitational energy (Hayward, 1994). In particle phys- 
ics, there is no practical distinction between the mass of a particle and the 
energy of a resonance. And the electric charge of one particle depends on 
the energy of interaction or distance of approach of another one (this is 
commonly attributed to vacuum polarization, a mechanism which is supported 
by measurements of the variability of  the fine-structure "constant," but would 
have been anathema to Einstein). We conclude that symbols such as m and 
q are ill-defined, and that if they are to continue to be used in physics, they 
require some deeper justification than they have been given before. 

Recently, there has been remarkable progress in explaining phenomeno- 
logical properties of matter, such as the density p and pressure p of a fluid, 
as consequences of higher dimensional geometry. The basic idea is to rewrite 
the 10 4D Einstein equations with matter as a subset of the 15 5D Kaluza- 
Klein equations in vacuum. In this way, it is possible to derive p = p(xa), 
p = p(x~), where a = 0-4, thereby explaining matter as a consequence of 
pure geometry. This approach is not restricted to 5D, but as the algebraically 
simplest extension there has sprung up a considerable literature on this space- 
time-matter theory (for a review see Wesson et  al., 1996). It differs from 
previous versions of Kaluza-Klein theory in that the metric can depend on 
all five coordinates, the extra dimension is not necessarily compactified, and 
the reduction to 4D occurs via a hypersurface condition related to a solution 
of the 5D geodesic equation (Mashhoon et  al., 1994). This theory agrees 
with the classical tests of relativity, and while it is not our intention to justify 
it here, its success does suggest that there may be a way to connect the rest 
mass of a particle to the geometry of a higher dimensional space. We explore 
this possibility in what follows. 

2. MASS, CHARGE,  AND G E O M E T R Y  

In this section we will draw on results proved in the references quoted 
in the preceding section, to see how far the rest mass of a particle m, and 
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also its electric charge q, may be related to geometry. We will proceed in 
accordance with Occam's razor, concentrating on the 5D extension and adding 
assumptions as to interpretation only as they are required. 

Let us consider dynamics in 4D and 5D, assuming that the former has 
to be embedded in the latter, but using only the metric and neglecting con- 
straints that might derive from a set of field equations. 

In 4D, we have a line element that is given in terms of a metric tensor 
by ds 2 = g~f~ dx ~ dx r (Throughout, Greek letters will run 0-3 and Latin 
letters 0-4; and we will usually absorb physical constants via units wherein 
the speed of light, Newton's constant, and Planck's constant are c -- l, 
G = l, h = 1, respectively.) The Lagrangian is commonly defined as 

ds dx ~ 
= m - ~  + qA~ dX (1) 

where h is a parameter and A~ is the electromagnetic potential. This is 
acceptable, but clearly rn and q are introduced ad hoc. Overlooking this for 
the moment, we form the momentum 4-vector: 

o ~  dx~ 
P~ - O(d~/dh)  - m g ~ - ~ s  + qA~ (2) 

That is, p,~ = m g ~ u  ~ + qA~ and p~ -- g ~ p ~  = mu ~ + qA% where u ~' -- 
dx~/ds is the 4-velocity. The product is 

p~p~ = m2u~u ~ + 2rnqA~u ~ + q2A~A~ (3) 

which is just +m z when we choose the signature to be g~,~ = (+  1, - 1 ,  - 1 ,  

- 1 )  and put q = 0. Locally g ~  -~ "q~t3, and for a charged particle moving 
with a 3-velocity v 123 = dxlZ3[dl we have 

pO = m dt + qA o _ m 
MS ( |  - -  1)2) 1/2 -{- qAO (4a) 

d x  123 m-i) 123 
p123 = m T + qA123 - qA123 (1 - v2) u2 + (4b) 

which we call the energy and (3D) momenta. 
The preceding is of course a covariant formulation of a special-relativity, 

no-charge argument that is simplistic, but instructive. It consists in writing 

(5a) 

= ( d t )  2 [(dx)2 + (dY] 2 ( d z )  2] (5b) 
1 \ d s ] -  

ds 2 = dt 2 - ( d x  2 q- 622 q- dz  2) 
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That is, Minkowski space plus the definitions u ~ =- E /m  and U 123 ~ pl23[m 

result in the relation E 2 = p2 + m 2. This is the basis of particle physics, and 
is in excellent agreement with experimental data. But, as pointed out above, 
the introduction of m is purely ad hoc. We should aspire to explain the origin 
of m, and relations (1)-(5), in terms of some more sophisticated theory. We 
will attempt this below, but as an intermediate step, let us see what algebraic 
opportunities occur if we extend the geometry. 

In 5D, we have a line element that is given in terms of a metric tensor 
by dS 2 = gab dx ~ dx b. As in other versions of 5D (Kaluza-Klein) theory, we 
choose to write this as a sum of a 4D part (ds 2 = g ~  dx  ~ dx ~) and an extra 
part that depends on a scalar field (+) and a vector field (A~): 

dS 2 = g,~ d ~  dx ~ - ~2(d~ + As d ~ )  2 (6) 

This split is of course motivated by the Kaluza-Klein "miracle," wherein the 
field equations in vacuum for metric (6) split naturally into Einstein's equation 
for g~ ,  Maxwell's equation (for A,0, and a scalar wave equation (for ~).  
We note in passing that while we will employ (6) because we wish to 
gain insight eventually into the nature of electric charge, it is historically 
conditioned by our development of gravity and electromagnetism as two 
different subjects. The strength of Kaluza-Klein theory lies actually in the 
fact that these interactions may be mixed by coordinate transformations: it 
is a truly unified theory, and while (6) is convenient, it is not unique. Having 
made this observation, we note that with the metric in the form (6), the 
Lagrangian is commonly defined as 

[ dS d ~  dx f~ dO 2 + A,~ (7) 
= m ~ - ~  = m g'~ dk dh 

Here m is still introduced ad hoc, but the theory has one extra parameter 
associated with the fifth coordinate t% and the charge q does not appear 
explicitly (see below). From (7) we can form the 4-part of the momentum 
5-vector: 

fi" O(dx'VdK) - m g~f~--~ + BA~ (8a) 

B -- -f~2(d~\dS + A,~ --~dx~) (8b) 

This is the 5D analog of the 4D relation (2). The extra or fifth component is 

1~4 = mB (8c)  

We see that the scalar function B of (8b) is just the momentum in the extra 
dimension (this was known in a simple form to Kaluza, Klein, and others, 
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but the above derivation is general). We might expect B to be small in many 
situations, because from (6) and (8b) we have 

ds 1 + (9) 
dS 

so ds = dS in this case. To get the contravariant forms of the covariant 
vectors (8a) and (8c), we note that 

gab r g~,f3 _A,~ ] 
= I - A "  (Ar ~ _ 0_2) (10) 

with A ~ = g~A~. This gives/~ - g~b/~ b = mfi ~ and ,04 - ~4b/~ b = mfi4 where 
fia - dx~/dS is the 5-velocity. The product is 

fi~/~a = m 2 ( l l )  

This is the 5D analog of the 4D relation (3). However, q does not appear in 
the former, whereas it does in the latter, so we need to inquire where this 
parameter fits into the extended geometry. To answer this, we rewrite (8a): 

p~, = m[g~,f3~ f3 + BA,~] (12) 

Although it is the 4-part of a 5-vector, the metric (6) from which it is derived 
is invariant under the 4D subset of general 5D coordinate transformations 
x" ~ ~ (xa), and so therefore (12) must be also. That is, p~ is a 4-vector. 
To recast it in 4D form, we use (9) and find 

13~ = m g ~ u  ~ + (1 + B20-2) uzA~ ~ (13) 

This can be compared with the purely 4D relation (2): 

pc,= m(g~u~  + q-- (14) 

Clearly the vectors are related v i a /~  = p~(dsldS) and the charge/mass ratio 
of the test particle is 

__q= B 
m (1 + 920I)-2) I/2 (15) 

Since in (8b) and (6) B and �9 will in general depend on x ~, the charge will 
in general be a function of coordinates times the mass. To fix q exactly would 
need �9 and A.  to be determined by field equations and fia to be determined 
by the Lagrange equations, or equivalently the geodesic equations. 
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The latter with 5D Christoffel symbols are 

d2x ~ dx b dx c 
d--~ + F~,~ dS dS 0 (16) 

and have been much studied in the literature, along with associated solutions 
of the field equations. [In terms of the Ricci tensor these are usually taken 
to be given by R~b = 0; see Overduin and Wesson (1997) for a review.] We 
do not wish to repeat what is known about (16) here, but we do wish to 
make a few comments relevant to what we have done above. 

The extra component of  (16) can be written in once-integrated form 
using the scalar B of (8b) as 

dB 10gab d ~  d.~ 
- (17a) 

dS 2 0e dS dS 

B ~ - ( I ) 2 ( / , i  4 -]- A~fi '~) (17b) 

Thus B is a constant of the motion if the 5-metric is independent of  x 4 = ~. 
Then by (8.3), ,04 = mB is a constant momentum in the extra dimension. 
However, even in this case if the scalar potential g44 = _ ~ 2  depends on x% 
the q/m ratio of a particle (15) will not be a constant. This means that the 
charge of a test particle can vary in ordinary (3D) space, providing in principle 
an alternative to the mechanism of vacuum polarization mentioned in Sec- 
tion 1. 

The 3D components of  (16) in general consist of  terms identical to 
those of geodesic motion in the Einstein sense, plus scalar-field terms and 
electromagnetic terms. The latter include the Lorentz force, provided q/m for 
a test particle is identified as in (15). That is, the 5D equations of  motion 
include those we are familiar with from general relativity and classical 
electromagnetism. 

The zeroth or time component of  (16) can be written in once-integrated 
form using a scalar function C as 

dC 1 Og~b dx a dx b 
- (18a) 

dS 2 0 t  d S d S  

C = (1 - -  V2)1/2 1 + (i32 J q'- BAo (18b) 

Thus C is a constant of  the motion if the 5-metric is independent of x ~ = t. 
This expression is similar to the 4D one for the energy E of a test particle 
in a static spacetime 

g~2 

E - (1 - v2) I/2m + qAo (19) 
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We will make a detailed comparison of these relations below, but we note 
here that they are algebraically compatible. 

The 5D geodesic equation (16) splits naturally into a 4D part and an 
extra part when the metric has the form called canonical (Mashhoon et 
al., 1994): 

2 

dS2 = ( ~ ) g , ~ f ~ ( x ' l , e ) d ~ d x f ~ - d f 2  (20) 

Here L is a constant introduced for dimensional consistency, which would 
be identified with some physical parameter in an exact solution of the field 
equations Rab = 0. An example is the 5D Schwarzschild-de Sitter solution 

r 1 - 2 M I r -  Ar2/3 

- r2(d02 + sin20 dqb2)] - de 2 (21) 

where L = (3/A) ~/2 is related to the cosmological constant. We do not wish 
to indulge in a detailed discussion of metrics with form (20), but do wish to 
note a couple of  things. First, any 5D metric can be put into form (20) in 
principle, because the five coordinate degrees of  freedom can be used to set 
g0~ = 0, g44 = - 1 .  However, this may not be convenient in practice, since 
the previously overt electromagnetic and scalar interactions become "hidden" 
in the spacetime part of the metric. Second, the real significance of metrics 
with form (20) is when Og~/Oe = 0. To appreciate this, we can write the 
a = 0123 and a = 4 components of  the geodesic (16) for metric (20): 

d2x~ + F ~  - - g r  . . . .  (22a) 
ds 2 -~s ds  , + 2  ds ds l ds ds Oe 

a s  -i \ a s /  + - - \ a s /  j as as oe 

We see that when Og~/Oe = 0, the motion in 4D is geodesic in the Einstein 
sense. The motion in the extra dimension is solved by e = e0/cosh[(s - So)/ 
L] -- e0 e-soL (s > > So, L, where So and e0 are constants). That is, the motion 
in 4D is identical to what it is in general relativity, and the motion in the 
extra dimension is damped toward the hypersurface e = 0 asymptotically. 

So far, we have derived q as a function of coordinates times m, but we 
have yet to tackle the more fundamental question of the nature of  the latter 
parameter. It may be wise before proceeding to review the argument to this 
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stage and where we hope it will lead. The 4D Lagrangian (1) introduces m 
and q ad hoc, as constant coefficients for separate interactions due to gravity 
and electromagnetism. This leads to relations (2)-(5), which are experimen- 
tally verified, at least in the limit of local physics. The 5D line interval (6) 
introduces m ad hoc but not q. This is clearly a significant step forward, and 
the ensuing relations (8)-(14) lead to an expression for the charge/mass ratio 
of a particle (15) that is essentially geometric in nature: q/m is defined at 
every point ofa  5D manifold, and can in principle be evaluated given solutions 
of the field equations and the geodesic equations. The latter are (16), and 
have a fifth and time components (17) and (18) that are associated with 
charge and energy. Both these components, and the 3-space components, agree 
with known physics, including in particular the 4D energy (19). However, any 
5D metric can be put into the so-called canonical form (20), and many 
solutions of the field equations have this form, such as the basic Schwarz- 
schild-deSitter solution (21). The geodesic equations (16) for the canonical 
metric result in relations (22) for the spacetime dimensions and the extra 
dimension that have interesting properties, including a natural selection of 
4D geodesic motion and evolution to a hypersurface. 

There are several aspects of the preceding argument that are worthwhile 
noting before proceeding. For example, the 5D interval (6) is devoid of 
constants, while the m which is attached to the associated Lagrangian (7) is 
a constant that multiplies the whole expression: it gives an action with the 
conventional 4D physical dimensions, but serves no algebraic purpose. The 
fact that the analysis based on the Lagrangian (7) gives the same result as 
that based on the metric (6) and geodesic (16) for the ratio q/m is due to the 
innocuous way that m is introduced. A related observation is that in 4D 
general relativity, where the geodesic gives accelerations and not forces, there 
is no way to introduce m except as a constant. It cannot be derived. In 5D 
Kaluza-Klein theory, the situation is more promising. For, besides being a 
unified theory of gravity and electromagnetism that yields the ratio q/m, the 
extension of the geometry necessarily includes a scalar interaction which we 
can in principle employ to explain the origin of rest mass (we can view it 
as the classical analog of the Higgs field of quantum field theory). The 
extension of the geometry also raises the option of identifying historical 4D 
physical quantities as manifestations of 5D physics on (or close to) a 4D 
hypersurface. Of course, any 5D manifold with an extra coordinate f will 
define a 4D manifold on a hypersurface f = f0 (say). In general, the net 
result of interpreting 5D physics on a hypersurface is to introduce a constant 
f0 into 4D physics. In addition, in the local weak-field (or special relativity) 
limit of such a theory, the velocity in the extra dimension will enter as a 
parameter into 4D physics. It is reasonable to expect that if the local limit 
of a 5D theory introduces in this way two geometrical parameters, then they 
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be related to 4D physical quantities such as m and q. The question is not 
whether we can explain m and q in principle, but whether, given the constraints 
of  known physics, we can do it in practice. 

A basic question to be answered before we get to technicalities is whether 
mass can in fact be geometrized. The answer to this is in the affirmative (Hoyle 
and Narlikar, 1974; Wesson, 1992). Nature provides us with parameters such 
as the speed of light c, Newton's  constant of gravity G, and Planck's constant 
of action h. These allow us to write 

G m  h 
or Xm -- - -  (23) 

Xm ~ C 2 m c  

depending on whether we use gravitational or atomic units. The question of 
whether G or h (orc)  is constant is irrelevant, as only the noted combinations 
of symbols have geometrical significance. This is also why we can choose 
(Planck) units with c = 1, G = 1, and h = 1. The important thing is that 
the rest mass can be regarded as a length if we so desire. (To this extent, 
the above is just the analog of regarding ct  or time as a length.) Charge can 
be treated this way also, but even at this elementary level a difference becomes 
apparent: we can only geometrize q by including the gravitational constant 
G, via Xq =-- x/--Gc-2q. Equivalently, the combination eZ/hc which defines the 
fine-structure constant for an (asymptotic, large-range) value of the electron 
charge e is dimensionless. This is presumably connected to the trite but 
irrefutable fact that charged particles have mass, but not the other way around. 
The implication is that mass is more fundamental than charge. This conclusion 
agrees with what we derived previously on the basis of 5D geometry: q /m  

as defined by (15) allows us to set q to zero while leaving m finite. 
Technically, the expression of the 4D phenomenological parameters m 

and q in terms of 5D geometrical quantities like x a and ~a leaves little room 
for maneuvre. This can most readily be seen by a detailed comparison of the 
5D quantity (18b) with the 4D quantity (19). 

Let us first look at these expressions for the case of  an uncharged test 
particle (q, B ~ 0). In (18b), g00 refers to a 5D metric coefficient, and for 
illustration we take the basic metric (21). Reintroducing L and considering 
the weak-field limit L > >  r > >  2M, we obtain the metric dS  2 = (~/L) 2 ds 2 

- d/? 2, where ds 2 = ~q~ dx  ~ dx ~ and "q,,~ = (+  1, - 1 ,  - 1 ,  - 1 ) ,  so g~2 = 
e/L.  In (19), g00 refers to a 4D metric coefficient, so in the corresponding 
limit g~2 = 1. Then we obtain 

e 
C = (24a) 

L(1 - v2) m 

m 
E - (24b) 

(1 - v2) 1/2 
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Here C is dimensionless, while E has the dimensions of  a length (due to the 
ad hoc introduction of m). Thus we make the identification 

E = CL - (25) 
( l  - -  V2) 1/2 

We see that the role of the 4D rest mass m is played in 5D geometry by the 
coordinate x 4 = e. 

This may seem surprising, but when we examine possible objections 
they resolve themselves. For example, on a hypersurface ~ = e0 of a 5D 
metric we can in principle always identify the 4D parameter m with (o, but 
there is no guarantee that the motion in the fifth dimension will remain close 
to this hypersurface, so in general 4D rest mass ought to be variable. However, 
for many metrics the motion does evolve to a hypersurface asymptotically; 
and for metrics in the canonical form whose spacetime components do not 
depend on x 4, we saw in (22) that the 4D motion is perfectly geodesic, so 
even if rest masses do vary (slowly), there is no way to detect this dynamically. 
Another possible objection is that nature gives us two dimensionally consistent 
choices for x 4, namely x4 = m and x 4 = l/m of  (23). The present analysis 
implies the first, so we might worry about the status of the second. However, 
the 5D theory is fully covariant, so x 4 = f and x 4 = l /e (or any other choice) 
are admissible. This latter observation does, though, raise an important point: 
by 5D coordinate transformations we can change the form of any metric, 
and it is only in the case where the metric is in the canonical form (or close 
to it) that we can make the identification (25) with x 4 = /? -- m. (Another 
way to see this is to note that the 4D action of particle physics m f ds only 
agrees formally with the 5D action of Kaluza-Klein theory f dS = ~o f ds 
when we are on the hypersurface and the metric is in canonical form.) This 
is analogous to what happens in 4D, where we commonly identify quantities 
like the energy and momenta of  a particle only in coordinate frames that are 
close to the special-relativity form. Our conclusion is that there is a special 
(canonical) system of coordinates where we can write x 4 = m, but in general 
we should regard x 4 as a mass-related coordinate rather than the mass itself. 

Let us now look at (18b) and (19) for a charged test particle in the 
weak-field limit. A comparison of these relations shows that we now have 
to make a distinction between the mass of an uncharged particle (which we 
have above labeled m) and the mass of a charged particle (which we here 
label mq). The appropriate definitions are 

( 82 ,,2 
mq ~ f 1 + ~2j  

q=- B~ 

(26a) 

(26b) 
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The ratio of these gives a charge/mass ratio that agrees exactly with the ratio 
(15) found from a Lagrangian approach and the coefficient of the Lorentz 
force term in the spatial components of the geodesic (16). This is of course 
as expected, since the mass of a charged particle or the mass that feels the 
Lorentz force should include both the neutral rest-mass energy and the energy 
of the charge. Again, however, the identifications (26) presume a special 
(canonical) system of 5D coordinates. 

If we use instead of the canonical form of  the metric (20), a 5D analog 
of Minkowski space (5), then 

dS 2 = dfl - (dx 2 + @2 + dz 2 ) _  de2 (27) 

and A,~ = 0, ~2 = 1 in (6), so B = - d f / d S  by (8b) and ds/dS = (1 + B2) 1/2 
by (9). These relations with (27) allow us to define a mass 

moo dt 
mvw (1 - -  y 2  - -  W2)1/2 moo dS (28) 

which boosts a constant moo by velocities v, w in ordinary space and the extra 
dimension. For v 4 : 0  and w = 0 we have mm = moo (1 - v2) -~/z, agreeing 
with the usual definition of the energy. For v = 0 and 

w -- d~/dt = d~/ds = (d~/dS)(dS/ds) = -B(1  + B2) -1/24:0 

we have mow = moo (1 - w2) -1/2 = moo (1 + B2) 1/2, agreeing with the above 
definition (26a) for the charged mass. This argument, while it does not identify 
the "raw" rest mass because the metric is not in an appropriate form, confirms 
that charge is due to motion in the extra dimension and that the mass is 
augmented thereby as expected from an extra Lorentz boost. 

To this point, our considerations have involved classical dynamics, 
because it is from the paths of test particles in spacetime that their masses 
and charges are determined in practice. To conclude, however, we wish to 
make some observations involving quantum mechanics and the field equations 
that bear on our problem and may be of interest in theory. 

In 5D Kaluza-Klein theory, as mentioned before, the 15 field equations 
split naturally into sets of 10, 4, and 1. The last is a wave equation in the 
scalar potential g44 = _~2 .  If the field equations in terms of the 5D Ricci 
tensor are Rab = 0, the component R44 = 0 for a convenient form of the 
metric yields 

[ - ] ~ -  g-uv~.~;v = ~1 [g.~g_xl3,4 q_ gX13gM3.4,42 tI)'4gM3gM3"4]'~ j (29a) 

Here a comma denotes the partial derivative and a semicolon denotes the 
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(4D) covariant derivative. The above relation bears some resemblance to the 
Klein-Gordon equation 

[--]t~ = m2~I/ (29b) 

which is the relativistic wave equation for a spinless particle of mass m. If 
there were some argument for relating the scalar potential �9 of (29a) to the 
wave function t~ of (29b), a comparison would define the rest mass m in 
terms of the geometry of a 5D manifold. 

In 5D Kaluza-Klein theory, the 5D Ricci scalar R is perforce zero if 
the field equations are Rab = O. The theory is to this extent inherently scale- 
free in 5D. However, the 4D Ricci scalar (4)R is n o t  in general zero, and in 
the notation introduced above has the value 

1 (4) R --  ~v 4(i)Z [g,4 g~v,4 -I- (grtVgo.v,4)2 ] (30a) 

That this is in general finite means that hypersurface conditions introduce 
scales in 4D. This raises an interesting option, analogous to spontaneous 
symmetry breaking in quantum field theory. It is simply that a 5D space can 
contain a curved 4D subspace with a standing matter wave which, by Planck's 
law, defines a particle of mass m where 

m - h ~  (30b) 
c 

in physical units. This would define the rest mass m in terms of the local 
curvature of the 4D part of a 5D manifold. 

The ideas presented in the two preceding paragraphs need to be investi- 
gated in detail. Both involve an amalgam of quantum mechanics and field 
theory, and an objection to both is that there is not yet unanimity about the 
field equations of the underlying theory. For this reason, we have concentrated 
in the above on dynamics as derived from the Lagrangian or the geodesic. 
(Our view is that while field equations may be a subject of discussion, it is 
difficult to conceive of any way to derive the paths of particles other than 
from an action principle.) But there is not necessarily any conflict between 
the dynamics we have discussed in the bulk of this section and the ideas we 
have presented latterly, and in a complete theory the dynamics and field 
equations would be consistent. 

3. SUMMARY AND DISCUSSION 

Physics has traditionally proceeded by formulating equations which, 
though experimentally verifiable, contain parameters which are introduced 
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ad hoc. The rest mass and electric charge of a test particle are prime examples. 
Progress has often occurred through explaining such ad hoc parameters in 
terms of some more sophisticated theory. Mach's principle, though it exists 
in various versions, is basically a statement of the desire to write m -- rn(x ~) 
where x ~ denotes a general set of coordinates (a = 0, l, 2, 3 . . . .  ). The same 
motivation, though it has gained less attention, applies to q = q(x~). Some 
progress with the latter problem was made by Klein, who, following Kaluza, 
realized that gravity (involving m) and electromagnetism (involving q) can 
be treated as parts of a unified approach to physics based on 5D geometry. 
This was, of course, an extension of 4D general relativity, and as such was 
endorsed by Einstein. However, the algebraic complexity of 5D Riemannian 
geometry invited restrictions, notably the cylinder condition (which banned 
dependence of the metric on the extra coordinate) and compactification (which 
hobbled the topology of the extra dimension). These led to physical shortcom- 
ings to do with the masses of elementary particles and the value of the 
cosmological constant. Only recently has it become clear that if we relax these 
artificial conditions, we arrive at a 5D theory of gravity, electromagnetism, and 
a scalar field that contains 4D general relativity and agrees with its classical 
tests. This unrestricted version of 5D general relativity is already known to 
generate expressions for the density p -- p(x ~) and pressure p = p ( x O  of a 
fluid which explain these 4D phenomenological quantities in terms of 5D 
geometry. What we have done in the present work is to extend this to the 
properties of discrete particles. 

If the world is 5D in nature, we can write its line element (6) as a 4D part 
(general relativity) plus parts that involve a scalar field and electromagnetism: 

d S  2 = g~f~ d x  ~" d x  f~ - dP2(df, + Ar d ~ )  2 

There is a quantity (Sb) associated with this metric which is not present in 
general relativity and depends among other things on the velocity in the 
extra dimension: 

B------- \~-~ + Aa - ~  

It is a constant of the motion if the 5D metric is independent of x 4 = f, but 
has significance otherwise. Another quantity (l 8b) associated with the metric 
is  present in general relativity in a simpler form, and depends on the velocity 
in ordinary (3D) space: 

g~2 ( B2~ l/z 
c = (1 - -  1 + + 8Ao 

It is a constant of the motion if the 5D metric is independent of x ~ = t. A 
study of dynamics based on the Lagrangian or the geodesic shows that B is 
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related to charge and C is related to energy (including rest mass). Of these, 
the latter is more fundamental. In an appropriate (canonical) system of coordi- 
nates in the weak-field limit, the energy or mass of a neutral particle (25) is 

e 
E -  (1 - v2) In 

The rest mass of a charged particle (26a) is 

mq = e 1 + -@] 

and its charge (26b) is 

q = Be 

The ratio q]mq which appears in the Lorentz law and figures prominently in 
particle physics is 

q__= B 
mq (1 + B2(I)-2) 1/2 

and is in general coordinate-dependent, as are mq and q. Modulo covariant 
versions of the 5D metric, the conclusions to be drawn from the equations 
quoted in this paragraph are that rest mass is related to the extra coordinate 
and electric charge is related to the extra momentum. 

The above results have been derived on the basis of 5D geometry, but 
we are under no illusions that this is a unique choice of dimensionality. It 
just so happens that m and q can be accommodated by this (minimal) extension 
of general relativity. This is presumably because both parameters are mechani- 
cal in nature. If we wish to include other parameters such as the ones used in 
particle physics, we expect to need higher order manifolds. In N-dimensional 
Riemannian field theory N is promiscuous, to be chosen in the most convenient 
way necessary to explain a given physical situation. In a way, what we have 
done in the present work is to outline a mode of interpretation that can be 
applied in extenso to supergravity and string theory. As long as we follow 
the legacy of Einstein, the overriding principle is that all physical parameters 
have to be expressible in geometrical terms. 
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