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We interpret the 15 equations of Kaluza-Klein gravity as 10 Einstein 
equations, 1 wave equation and 4 equations of motion. An exact cosmo- 
logical solution of the apparently empty 5D field equations describes a 
4D fluid with an  effective density and  pressure induced by the curvature 
associated with the fifth dimension. The rest mass of a particle in the 
fluid depends on the global solution and changes slowly with time. This 
approach to Kaltma-Klein theory in general results in Machian cosmolo- 
gies. 

1. I N T R O D U C T I O N  

Kaluza-Klein theory in more than 4 dimensions provides a possible scheme 
for the unification of the interactions of physics [1-5]. In its original and 
simplest form, it is a 5D theory that unifies classical gravity and elec- 
tromagnetism insofar as its field equations for vacuum give back those of 
Einstein and Maxwell (with one equation essentially rendered impotent by 
a condition on the metric: see Refs. 1,2). However, even if the electro- 
magnetic potentials are set to zero, Kaluza-Klein theory in the absence 
of other restrictions is a theory of gravity with 15 field equations. It is 
our purpose in what follows to suggest a new way of interpreting these 
equations. 

We will adopt the approach, recently investigated in several contexts 
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(see below), that the field equations for apparently empty 5D space are 
in fact equations for gravity with matter in 4D space. That is, we will 
adopt the view that  geometrical curvature in 5D induces matter in 4D. 
This idea is not entirely new (Ref. 6, p.129, Ref. 7), but should not be 
confused with related work in supersymmetry and superstrings [3,4]. The 
idea here is that  there is a classical 4D energy-momentum tensor which 
derives its existence and form from the geometry of an exact 5D solution; 
and that  the phenomenological properties of matter such as the density 
and pressure are determined by such a solution, as is their equation of 
state. This approach works well in a number of situations. For exam- 
ple, there is a well-known class of solutions in 5D which are the analogs 
of the Schwarzschild solution in 4D [8-10]. These 5D apparently empty 
solutions have effective pressures and densities in 4D that correspond to 
radiation, with the appropriate equation of state [11-15]. The viability 
of these solutions has been tested astrophysically [16-18]. Unfortunately, 
they have limited physical application because they do not involve the 
fifth dimension in a very significant way (the equation of state is restricted 
to be radiation-like because there is no dependence of the metric on the 
fifth coordinate: see below). Therefore attention has focused recently on 
a class of cosmological Kaluza-Klein solutions, which are simple enough 
to handle mathematically while general enough to be interesting physi- 
cally [19-21]. These are analogs of the 4D Friedmann-ltobertson-Walker 
(FB.W) solutions with fiat space sections, and have acceptable properties 
(see Ref. 20 and below). However, one can ask not only about exact solu- 
tions but about the general reduction of apparently empty 5D equations 
to 4D ones with an effective energy-momentum tensor. This has been in- 
vestigated at length from the mathematical side [22], and if the metric 
coefficients are allowed to depend on the fifth coordinate then it can be 
shown that  there is sufficient algebraic flexibility to ensure that the appar- 
ently empty Kaluza-Klein equations can always be reduced to Einstein's 
equations with an effective and well-behaved energy-momentum tensor. It 
should be noted that  this result depends on putting the fifth coordinate 
on the same footing as the others of spacetime, and does not necessarily 
presume that  the extra dimension is compactified to an unobservably small 
size. The former property leads one to infer that  the fifth coordinate is 
related to rest mass in cosmology [20], while the latter property helps alle- 
viate some problems of Kaluza-Klein theory as applied to particle physics 
[23-27]. In what follows, we wish to build on previous algebraic work 
[22,28], and suggest how the 15 field equations of 5D Kaluza-Klein theory 
might be related to the 4D physics of gravitating matter, rest mass and 
motion. 
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Our account will be brief, but  we will make contact with areas of 
physics where there is extensive literature, notably as regards wave equa- 
tions for particles [29-32] and a possible change in the strength of gravity 
over cosmological t ime [33-38]. We will also make contact with the exten- 
sive literature on other versions of 5D general relativity [39-48]. Of these 
latter, the best developed is that  of projective relativity [40-42,45-48]. 
Some of the relations in this theory are similar to ones derived below. But 
our treatment is different in that  we do not use a projection tensor, do not 
introduce an explicit energy-momentum tensor, and regard the constants 
of physics as merely dimensional conversion factors [11-22,32]. In this last 
regard, we will streamline the working by absorbing dimensional parame- 
ters such as the speed of light, the gravitational constant and Planck's 
constant via a choice of units that renders c = 1, 8~G = 1 and h / 2 z r  = 1 

[32]. Our conclusion will be that  this approach to Kaluza-Klein gravity 
leads to self-consistent Machian models in which the local properties of a 
particle depend on a global cosmological solution. However, more work is 
needed before we can say if this holds also in the non-cosmological case. 

2. ON THE PHYSICAL INTERPRETATION OF KALUZA-KLEIN 
EQUATIONS 

We take a 5D line element d s  ~ - g a b d z a d z  b where the metric coef- 
ficients can depend in any way on the 5 coordinates z a (a = 0, 1,2,3,4).  
However, it is convenient to use the degrees of freedom connected with a 
choice of coordinates to set the row and column bordering the 4• block 
g~s to zero via ga4 = 0 (a  = 0, 1, 2, 3: see Ref. 22). 4 ~ Also, we write 
g44 = _02 where ~b = O(z a) is a scalar function, which along with the 
other gab is to be determined by field equations. 

The latter are given in terms of the 5D Ricci tensor by 

Rab = O. (1)  

4 In principle, we could use the remaining degree of coordinate freedom to pu t  a con- 
stralnt on g44 such as g44 = - 1 .  This would Ucompress" the physics into the 4)44 
block gap, which if dependent on =4 would still not be identical to general rehLtivity. 
However, we do not  wish to do this, as we anticipate tha t  the resulting form of the 
field equations would be difficult to interpret. 

5 We take this opportunity to correct some minor misprints in Ref. 22: eq. (18) there 
is correct, but  holds also with a --* v, d --* la in the products of Christoffel symbols, 
and is more useful in this form; eq. (19) needs asterisks over gap and  gzp,~, in the 
middle line; and eq. (A2) needs the asterisk removing over g44,~ in F ~ .  These are 
merely cosmetic changes, and all major  results in Ref. 22 are correct. 
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Thus we are considering "vacuum" in 5D. However, the 15 independent 
components of (1) contain terms which depend on the fifth dimension via 
g44 and partial derivatives of the gap with respect to z 4. (Henceforth we 
will denote 0 / 0 z  4 by an asterisk, 0 / 0 z  a by a comma, and the covariant 
derivative by a semicolon as usual.) I f  we regard these extra  terms as 
relating to matter ,  and move them to the right-hand side of the first 10 
components of (1), a somewhat tedious algebraic manipulation [22] shows 
that  the equations can be written this way: 

G.p = T./~ 

(4) Rg~, 8 
G=P = (4)R~P 2 

2 
-~  r*lJv * t + Lg g . .  + �9 (2) 

Tha t  is, the equations of general relativity are satisfied in terms of an Ein- 
stein tensor defined with the conventional 4D Ricci tensor and scalar (indi- 
cated by a preceding superscript), and an effective 4D energy-momentum 
tensor. The latter involves derivatives w.r.t, z 4 in general. I f  there is no 
dependency on the extra coordinate it can be shown using (3) below that  
T = Tc,/3g ap -- 0, which implies a radiation-like equation of state. But for 
other equations of state we need the extra  coordinate to play a role. 

The extra  metric coefficient g44 = _~2 can be elucidated by expanding 
the component of (1) that  reads R44 = 0. This can be written 

D ~ = ~  4 + - -  2 (3) 
~v  

That  is, the scalar wave equation is recovered, with a source if there is 
dependency on z 4 but no source if the extra coordinate does not play a 
role. In this regard, we note that  the 4D scalar curvature is given by 
(4)R = _ [ ~ v ~ , ~  + (g~,V~,v)2]/4~b2 ' and so is finite or zero depending on 
whether there is z4-dependency or  no t .  

The other 4 components of (1) read R4a = 0. They may be manipu- 
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lated into the form 

p a;a = 0 

1 
= - 

(4) 

That is, there is a 4x4 symmetric tensor that obeys 4 relations that  look 
like conservation laws. The tensor Pa~ has no analog in general relativity 
since it vanishes if there is no dependency on the extra coordinate. We will 
make a tentative identification of this tensor below, but note here that  P ~  
of (4) can hardly be related to Ta~ of (2): they have different algebraic 
forms, and physically Pop has dimensions L -1 while T~/~ has dimensions 
L -2. Thus while T~/~ relates to the properties of the gravitating fluid that is 
described by (1), Pa~ appears to require a different physical interpretation. 

Such an interpretation is greatly aided by using exact solutions that 
are algebraically simple but include z4-dependency. A one-parameter class 
of such solutions is given by 

ds 2 = ~2dt2 - t 2 / a ~ 2 1 ( 1 - " ) ( d z  2 + dy 2 + dz 2) - a2(1 - a)-2t2d~b 2. (5) 

Here a is a constant, and we have assigned the coordinates in the normal 
way and written z 4 = ~. On hypersurfaces ~b = constants, (5) reduces 
to the standard FRW metric with flat 3D space sections . The solution (5) 
was first found by Ponce de Leon [28] in earlier work. That it is indeed 
a solution of (1) may be verified by computer. (This shows that  (5) is 
actually fiat in 5D, though it has non-trivial implications in 4D and a 
conventional curvature scalar (4)R = 6(a - 2)/a2t2~b 2 which is in general 
non-zero.) Alternatively, it may be verified that (5) is a solution of (1) by 
substituting it into the set (2),(3),(4) . 

As regards these equations, (2) gives the components of the effective 
energy-momentum tensor in 4D as 

3 TO = a2t2~ 2 '  T11 = T2 _- T~ a _ ( 3 -  2a)  2t2 2 . (6)  

For a perfect fluid, these give the effective density and pressure (p = T~0 , 
p = -T11 etc.). In terms of the time coordinate T = ~bt of a locally inertial 
observer with metric (5), both decrease as 1 / T  2. The equation of state 
between them is 

(2a - 3) 
P = 3 P" (7) 
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The class of solutions (5) thus includes two cases relevant to the early 
universe and the late universe. The former has p = p/3, ~ = 2 and an 
expansion factor proportional to tl/~. The latter has p = 0, a = 3/2 
and an expansion factor proportional to t ~/a. The metric (5) has other 
acceptable features [20], so we feel justified in regarding it as the standard 
Kaluza-Klein cosmology. 

Let us now move from the gravity equations (2) to the wave equa- 
tion (3). The former set of 10 equations successfully links geometry with 
the macroscopic properties of matter (such as the density and pressure), 
and it seems to us reasonable to expect that  the other 5 equations (3),(4) 
will in an analogous way elucidate the microscopic properties of matter 
(such as the rest mass of a particle in the fluid). We therefore propose 
that  (3) may in fact be the quantum wave equation for a particle in the 
fluid. A problem with this is that  if we wish to match (3) to known 
physics, the latter has several different wave equations (see Refs. 29- 
32 e ). However, this problem with uniqueness may merely reflect the 
fact that  we are using the simplest Kaluza-Klein theory (one extra di- 
mension with no electromagnetic potentials). If so, the philosophy of our 
approach may be valid, and the logical match is between (3) and the sim- 
plest relativistic quantum wave equation, namely that  of Klein-Gordon: 
VIe = m2~b. (Here 1"1 is defined as in (3), and we have used the comma- 
goes-to-semicolon rule to go from flat to curved space: see for example 
Ref. 31.) If we match the equations, the mass of a particle in general is 
given by 

m 2 1 { g ~ g ~ + g ~ g ' ~  ~ g ~ g ~ }  
= - T -  2r  ' (8) 

Wave equa t ions  for par t ic les  wi th  sp in  a n d  charge a re  given in Ref. 32, while the  
K le in -Gordon  equa t ion  a n d  o the r  scalar  wave equa t ions  are  distrained there  a n d  in 
Refs.  29-31.  Of  t h e  la t ter ,  we no te  t h a t  an  equa t ion  of  the  fo rm [-}~b = rn2~b+4~b s [29], 
wi th  a self-coupling t e rm  involving a scale ~, would in  our  approach  necess i ta te  the  use  
of a 5D solut ion descr ib ing the  in terna l  s t ruc tu re  of  the  particle,  and  th is  is b e y o n d  the  
scope of the  p resen t  paper .  Similarly, an  equa t ion  of the  forml-I~b = C ( z ~ ) ~  [30], wi th  
a scalar  field C(z~), would go beyond  our  approach,  t h o u g h  m a y  be  compat ib le  wi th  
it .  However, an  equa t ion  like [-I~b = (4)R~b/6 [29,30], which incorpora tes  con:formal 
invariance via  the  (4D) scalar  curvature ,  is perfectly compat ib le  wi th  our  approach.  
T h i s  can  be  seen  by  no t i ng  f rom t he  m a i n  t ex t  t h a t  (4)R = 6(c~ - 2)~(arab) 2, which  is 
zero for a -- 2, a n d  is therefore compat ib le  wi th  t he  equa t ion  of s t a t e  p = p/3 of (7), 
which m e a n s  t ha t  the  fluid consis ts  of  pho tons  w i t h  zero res t  m a ~ .  We no te  also t ha t  
while our  m a t c h  of (3) to  the  s imple  K l e i n - G o r d o n  equa t ion  f'l~b ---- m ~ b  implies  t h a t  
[g44 [ is t he  square  of t he  q u a n t u m  mechan ica l  wave funct ion,  o the r  identif icat ions (e.g. 
[g44[ = ~b) lead  to  re la t ions qui te  s imilar  to (9), insofar  as  t he  cons t an t  is different 
b u t  the  m a s s  still depends  on 1/djt. 
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and for the cosmological solutions (5) this gives 

( 3 ~  1/2 1 
m = ( 9 )  

We interpret this to mean that  the absolute value of the mass of a particle 
is set by @, but that  all particles decrease their mass at the same rate in 
inverse proportion to t. This kind of behaviour is reminiscent of certain 
4D theories in which the strength of gravity changes with time because 
G and/or  m depend on the epoch [33-38]. However, in addition to this 
behaviour we see from (9) that  m depends on a and thereby on the global 
fluid. (From (9) and (6) we have m = (otp) 1D actually.) Generally, it is 
clear from (8) that  the rest mass of a local particle is determined by the 
global solution for the universe. Thus in this approach to Kaluza-Klein 
gravity, cosmology is Machian. 

The final 4 equations of the theory are the conservation laws for the 
4-tensor Pa# of (4). Having accounted for the macroscopic fluid via (2) 
and the rest mass of a particle in it via (3), a natural assumption is that  
the conserved quantities associated with the particle should figure in Pa#. 
Algebraically, it transpires that an acceptable identification of the Pap of 
(4) requires two scalar functions, as did the Ta~ of (2). In the previous 
case they were the density p and pressure p of the fluid. In the present 
case, since we are discussing the origin of mass and there are two logically 
distinct kinds of this [20,32], we tentatively take the functions to be the 
inertial mass mi and the gravitational mass mg of the particle. And if k 
is a constant and v a = d t a / d s 4  are 4-velocities, we suggest looking at 

Pa/~ = k (miva~  + mggalJ).  (10) 

This has the algebraic properties we need, and implies that  the 4 field 
equations P~;~ = 0 will be equations of motion (see below). We can gee 
that (10) makes general physical sense, since in most situations m i  ~ rag, 
and (10) includes kinetic energy (from the diagonal elements of the first 
term), gravitational binding energy (from the second term), and linear 
momenta (from the zeroth row or column). However, we need to ensure 
that (10) is accepti~ble in the specific case of the cosmological solutions 
(5), which means that  the components of (10) should match those of (4), 
which are 

3 
P~176 -- w~,t' P~ = P22 : "P~ = -  ~--~. (11) 
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These components are reproduced if (10) takes the form 

N -- - (mlv~v. + mz6~), (12) 

with masses given by 

(3)  1/21 ( - ~ - ~ - )  {' 3'~ 1/2 1 (13) 

It should be noted that  mi here is the same as m in the wave-derived 
relation (9). This agrees with our expectation that  the wave function 
of quantum theory should involve inertial mass. Also, mi ~-- mg when 
tr = 3/2, which by (7) is the condition for the pressure of the cosmological 
fluid to be zero. This agrees with our expectation that  the mass of a 
particle should be unique when it is embedded in a background whose 
inertial mass density is the same as its gravitational mass density [20,32]. 
In fact most situations involve p << p, so mi -- m s = rn and (10) gives 
P ~  ~- km(vav~+g=~). However, the field equations (4) still read P~;~ = 0, 
and since rn = rn(~b,t) an important question is whether these laws of 
motion are in fact acceptable. 

We proceed to investigate this, but note that it is closely connected 
with another issue. Real particles have motions close to those given by 
the 4D geodesic equation, dv't/ds4 + F..~.~vav/3 = 0, which follows from the 
assumption that the 4D interval is a nnmmum. Whereas we have equations 
of motion derived from the field equations (4). This is an economy of 
assumptions, but raises the question of whether our relations 

(mvav ~ + rng.a0);~ = 0 (14) 

are compatible with those of geodesic motion. We have considered the 
latter (see Appendix), and proceed to show that the two things are indeed 
compatible, at least in the cosmological case. Thus we expand (14) to give 

vat3v ~ + vav~ ~ = _ m  ~ (v%~ -F ga[3). (15) 
m 

We can contract this with v~ where as usual we assume that  the 4-velocities 
have inverses defined by 1 = g~,pv~'v ~ = vpv~, whose covariant derivative 
yields v~,v~;~ = 0. Using this in the contracted form of (15) shows that 
v~;~ = - 2 m ~ v ~ / m  (=  - 2 t h / m  where ,h = dm/ds4). Eliminating the 
divergence in (15) causes this to become 

= (16) 
m 
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The left-hand side of this is in fact equal to the usual 4D geodesic equa- 
tion and is zero if the motion is geodesic, while the right-hand side is the 
projection of the mass change into the surface orthogonal to r a. For the 
class of cosmological solutions (5), and indeed for any spatially homoge- 
neous cosmology, the mass m depends only on the time. Also, in (5) the 
coordinates axe comoving (see Appendix). Then (16) yields 

va;~v ~ - 0 (~ -- 0, 1, 2, 3), (17) 

confirming that  the motion is indeed geodesic. 

3. CONCLUSION 

We have taken the 5D Kaluza-Klein field equations for apparently 
empty space (1) and cast them into the form of 10 equations for general 
relativity with matter (2), a scalar wave equation (3), and 4 conservation 
relations (4). The last 5 equations have no analogs in 4D general relativity. 
To help interpret them, we have looked at a class of cosmological solutions 
(5) that has properties of matter (6) and an equation of state (7) that give 
good models for the early and late universe. The density and pressure 
of the macroscopic fluid are the result of curvature associated with the 
fifth dimension, and adopting the same viewpoint for the microscopic level 
suggests to us that the rest mass of a particle in the fluid is governed 
by the Kaluza-Klein wave equation according to (8) in general and (9) 
for the cosmological solutions. This mass changes slowly as the universe 
evolves, and depends on the global solution in a Machian manner. Our 
last 4 equations suggest to us that a particle in the fluid has conserved 
quantities involving mass and velocity that  can in general be put into the 
form of the 4-tensor (10). Its components for the cosmological solutions are 
given by (11), which match the general expression if a constant is identified 
as in (12) and the inertial and gravitational masses of the particle are as 
given in (13). These masses are the same in the usual case where the 
pressure is negligible, which results in the equations of motion (14). For 
the cosmological solutions at least, these are seen by equations (15)-(17) 
to imply geodesic motion. 

Our results are preliminary, in the sense that we have used the sim- 
plest Kaluza-Klein theory (one extra dimension with no electromagnetic 
potentials) and the ~imp!est instructive solutions (cosmological ones with 
dependence on the fifth coordinate). We do not know if our interpretations 
and results are robust to changing the dimensionality of the theory or the 
complexity of the solutions, and urge further work on these things. How- 
ever, it seems to us that the general idea of interpreting matter and mass 
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as a consequence of the curvature of an extra dimension is a promising 
way of incorporating Mach's principle into physics. 
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A P P E N D I X  

Geodesic motion in the 5D metric of (5) can be investigated by defin- 
ing 5-velocities uadza /dss  and solving the 5D geodesic equation 

duC t- XabU u = 0. (A.1) 
dss 

We find that we can (as in 4D) choose the space components to be comov- 
ing with the fluid via u 1 = u 2 = u s = 0. However, the zeroth and fourth 
components of (A.1) then read 

du o 2 a2 $ U4U 4 
ds5 + -~ u~ + ~ ( 1  ~2 = 0 

( 1 - ~ ) 2  ~ u~ ~ 0. du 4 2 uOu4 + ~ = 
ds5 + t a 2 t ~ 

(A.2) 

(A.3) 

Solutions of these must be compatible with the condition 

~2t2 
_ _  U4U 4 1 = ~b2u~ v (1 - a)  2 (A.4) 

set by the metric, and we find 

0t O~ 

uo - (2c~ - 1)1/2 r u4 - ( 2a  - 1)1/2 t. (A.4)  

Thus u4 ~ 0 in general, and a particle cannot be comoving in the extra 
dimension. This could actually have been inferred from the symmetry 
between the first and last parts of the metric, but  it is helpful to have 
the explicit result for u4, since it shows that  the "motion" in the extra 
dimension is a free translation with a speed fixed by the constant a.  Also, 
the big bang in 4D is when u4 is momentarily zero. 
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I t  is n a t u r a l  to  ask how 5-velocities re la te  to  the  convent ional  4- 
velocit ies v a - dza /ds4 .  This  is easi ly worked ou t  by  not ing  t h a t  the  
velocit ies are re la ted  by  u a = va(ds4/dss) ,  and t ha t  the  intervals  are  re- 
la ted  in general  by dss 2 = ds4 ~ -t-g44d~ 2. For the  met r i c  (5), ds4/ds5 = 
a ( 2 a  - 1) -a /2  and  

v~ _ ( 2 ~ -  1) 1/2 u~" (A.6) 
ot 

If  a par t ic le  is eomoving in 3D, so u0 is given by  (A.5),  then  (A.6) gives 
v ~ = 1/~b. This  m a y  seem s t range,  as in 4D the zeroth  componen t  of  the  
4-veloci ty is r e la ted  to  the  energy of  a par t ic le ,  and  in the  comoving case 
to i ts rest  mass.  However,  vo --  goov ~ = ~b, so we recover v~ --- 1 as 

usual.  
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