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The effective 4D properties of matter of 5D solutions of the empty Einstein equations have been calculated by Davidson and 
Owen. We adopt an alternative approach, which leads to similar asymptotic forms for the density and pressure, but allows us to 
obtain expressions for these parameters in closed algebraic form. We discuss some possible differences in interpretation of the 
properties of 5D solitons. 

1. Introduction 

An important class of solutions in Kaluza-Klein 
theory is provided by metrics that are static, spheri- 
cally symmetric and satisfy the empty 5D Einstein 
equations. These solutions are 5D analogs of the 4D 
Schwarzschild one. They were derived by Dobiasch 
and Maison [ 1 ], Chodos and Detweiler [ 2 ], Gross 
and Perry [ 3 ] and Davidson and Owen [ 4 ]. The last 
two references discussed the effective 4D properties 
of these 5D solitons, where we use the latter phrase 
as in ref. [3] rather than black holes as in ref. [4 ] 
since some solutions at least of this type do not have 
event horizons of the sort familiar from the 4D 
Schwarzschild solution [ 5-7 ]. The effective energy- 
momentum tensor of these solutions was worked out 
using an approach based on Kac-Moody symmetries 
[ 8 ] by Davidson and Owen [ 4 ]. The latter authors 
found in particular series expressions for the effec- 
tive 4D density and pressure valid in the asymptotic 
limit of large (3D) distances. In what follows we will 
use an alternative approach based on a physical 
interpretation of the 5D Einstein tensor to obtain the 
4D density and pressure in closed algebraic form [ 9- 
11 ]. While our results are elegant mathematically, it 
is not clear how to interpret any higher-dimensional 

Address for correspondence. 

Elsevier Science Publishers B.V. 

theory physically [ 12 ], and for this reason our dis- 
cussion will be brief. 

2. The effective 4D density and pressure of 5D 
solitons 

For ease of comparison of our results with those of 
Davidson and Owen [ 4 ], we will mainly follow the 
terminology of the latter reference. Then the metric 
is 

ds2=--A2(r)  d t2+B2(r )  d x i d x i + C 2 ( r )  dr,/2 , 
(1) 

where the coordinates are t, x, y, z, V and r2= 
x 2 +y2+ z z. The use of cartesian spatial coordinates 
results in somewhat unfamiliar components of the 
Ricci tensor, but we have confirmed the following: 

Rtt = B2 + -~7 + --ff + , (2a) 

R, _FL {A'~_A + ~3B' +_~)+C' - f f  O' ~-~- + --~-)J ~ o [ A '  c ' \ l  
~l ~ L  r 

+ -h--+-k-+ 

-\r+ B l \ a  P ' (2b) 
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R ~ -  B2 + -A + --ff + C ' ] "  (2c) 

Here a prime means the total derivative with respect 
to r and i, j run from 1 to 3. The one-body problem 
in 5D involves solutions of  the set of  equations where 
the components (2) are set equal to zero. The solu- 
tions are 

A ( r )  a r -  1 ~k 
=(a - - -~ - )  ' ,3a)  

1 ( a r + l )  "(k-l)+1 
B ( r )  = aZr2 ( a r -  1 ) , ( ~ - l ) - I ,  (3b) 

C(r)  = C o ( ~ ) ' .  (3c) 

Here a is a constant related to the central body, and 
E, k are arbitrary except for obeying e z (k  z -  k+  1 ) = 1. 
The constant Co in (3c) was not set to unity 
by Davidson and Owen [ 4 ] like the equivalent con- 
stants in (3a) and (3b). This because they formed 
an effective 4D metric tensor by writing g ~  = [ C(r)  / 
Co]gu~ as in ref. [8], prior to working out an effec- 
tive energy-momentum tensor Tefr-- R err 
_1 r, effioeff26tjv,,. , and the size of  Co is significant in this ap- 
proach. However, we will not need to be concerned 
about the size of  Co below, because we will use a fully 
covariant 5D approach in which the fifth dimension 
is treated on the same footing as the other four and 
which gives results for T ~  that are independent of  
the size of  Co. To implement this alternative ap- 
proach we will need to calculate components of  the 
Einstein tensor in 5D, namely GAs = RAn-- ½gas-R, and 
for this we will need the 5D Ricci scalar which can be 
calculated from (2) and is 

4A' 2A" 2A' B' 2A' C' 8B' 
R =  + + + + 

2(B ' )  2 4B" 4C' 2B 'C '  2C" - -  + + (4) B 4 

Since we will be concerned with the relation between 
5D solitons and the effective 4D density p and pres- 
sure p of  a fluid, we note here that we will adopt units 
in which the speed of light is 1 and the (4D) gravi- 
tational constant is 1/8ft. 

Then the 4D field equations with matter are 
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G~ + T~ = 0. I f  we assume as in ref. [ 4 ] that T~ here 
is a manifestation of the extra dimension, we can 
compare the 4D equations with the 5D ones in vac- 
uum G~ = 0. Most terms are the same, of  course. But 
there are extra parts which depend on the new di- 
mension (i.e., on C), and which we collect here: 

G~( C) = - B2 ~. rC + ~ + ' 

1(c' A'c' 
+ + T), u 

1 + )Clx'x' 
T J  ' 

= 0 .  

(5a) 

(Sb) 

( 5 c )  

Following previous suggestions, we now simply iden- 
tify the extra parts of  the 5D Einstein tensor with the 
density and pressure terms of  the 4D energy-mo- 
mentum tensor ( [ 9 - I  1 ], see also refs. [ 13,14 ] ). 
Mathematically, this is well defined, and simply 
amounts to a classification of terms into those which 
depend on C and those which do not. Physically, this 
way of obtaining T f  was suggested in connection with 
an earlier version of Kaluza-Klein theory [ 9,15 ]. It 
avoids the conceptual problems otherwise encoun- 
tered with this kind of theory [2 ]. And it is known to 
work for certain cosmological models ( [ 10,11 ], see 
also refs. [ 16,17 ] ). Specifically, it gives back the usual 
4D properties of  matter for 5D Friedmann-Robert-  
son-Walker models that reduce to the usual 4D ones 
on hypersurfaces V=constant [ 11,16]. In the pres- 
ent context, we cannot in general expect to recover 
known properties of  matter because the 5D solutions 
(3) do not have this property (the 4D Schwarzschild 
solution is only recovered as an embedding in 5D for 
e~0 ,  k--.oo, ~k~ 1 ). That is, the solutions (3) are es- 
sentially 5D ones and we cannot expect to recover 
known 4D solutions or properties of  matter. How- 
ever, we will find that the method of  splitting the 5D 
Einstein tensor does give expressions for the density 
and pressure that are functionally similar to those 
found using the method of Davidson and Owen. 

For the density, identifying T$ with G~ (C) of  (5a) 
and using (3) gives after some algebra 
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4E2ka6r4 (ar_ l ~ 2`(k-1 
P= (ar-  1 )4(ar+  1 )4 ka--~--1] 

(6) 

This implies p--,4e2k/a2r 4 for r--,oo, which involves 
the same r-dependency as that of  the series expres- 
sion found by Davidson and Owen [4]. Their pre- 
scription for recovering the Schwarzschild solution 
(~--,0, k--,oo, ek--, 1 ) implies p- ,0 ,  as expected. They 
noted that the solution (3) is invariant under E~ - e, 
a-, -a ,  k-,k. For (6), this invariance is manifest and 
means that p is unaffected by the signs of  e and a. 
However, it is affected by the sign of k, and we need 
k >  0 for p > 0. For the pressure, a similar calculation 
using (5b) and (3) yields the three-tensor 

~_ 1 ( 2Ea 
PJ- -~ \r(ar--1)(ar+ 1) 

4~a2( Ek--E--ar) "~ ,~ 

1 ( 6Ea 
i 

B 2 \ r ( a r - 1 ) ( a r + l )  

4~a 2 (2Ek-- 3 e -  3ar)~ xix j 
+ ~ i - ~ ] r  2 .  

This has parts similar to those of  the series expres- 
sion found by Davidson and Owen (ref. [4] eq. 
(13) ). These authors did not comment on it explic- 
itly, but it is clear that their pressure tensor and ours 
both imply off-diagonal components of  the 4D en- 
ergy-momentum tensor, which therefore in general 
must be a sum of a material (perfect) fluid and a free 
electromagnetic field. The terms "density" and 
"pressure" have therefore to be treated with some 
caution. The same applies to any relation between 
them, as Davidson and Owen realized when they put 
in quotes the phrase "equation of state" (ref. [4] p. 
249). However, we need an equation of state for a 
physical interpretation (see below), and for this we 
need a scalar p to compare to the p of  (6).  To obtain 
a scalar pressure, we follow previous usage [ 4 ] and 
take ~ of the trace of  the pressure three-tensor to 
obtain 

4e 2ka 6r4 (ar-- 1 ~2e(k- 1) 

p=~p~:= 3(ar_l)4(ar+l)4ka----r-~] . (7) 

This with k>  0 means p >  0. 
The equation of state obeyed by (6) and (7) is 

p = ~p, which is of  course the familiar one for relativ- 
istic particles including photons. This is a physically 
reasonable result, and should be contrasted with the 
p = - -~p found by Davidson and Owen [ 4 ]. Thus it 
appears that while the two approaches involve func- 
tions of  the same form mathematically, they differ in 
their end results physically. Actually, it is not known 
if either approach is valid physically [ 12 ]. But we feel 
that the approach adopted here is at least as plausible 
as the one used by Davidson and Owen [ 4 ]. It should 
also be noted that the approach adopted here is con- 
sistent, in the following sense. Above, we used the ex- 
tra part of  G~ in (5a) to obtain p and the extra part 
of  Gj in (5b) to obtain p, but passed over the wholly 
new component G~ because it was zero. This is ac- 
tually remarkable, because if it had not been zero we 
would have been faced with the problem of identify- 
ing it with an unknown property of  matter in the ap- 
proach adopted here. There is, of  course, an extra field 
equation due to the presence of the fifth dimension, 
namely R ~  = 0 of  (2c). This is not trivially satisfied, 
however, so we should ask about its meaning. It turns 
out that R ~ = 0  is functionally equivalent to 
G ~ + G ~ = 0, or p -  3p = 0 in the present approach. This 
means that the extra field equation in the 5D case is 
equivalent to what we normally call the equation of 
state in the 4D case. 

3. Conclusion 

We should remind ourselves that the soliton or 
black-hole solutions of  refs. [ 1-4 ] are canonical for 
5D Kaluza-Klein theory in the same way that the 
Schwarzschild solution is for 4D general relativity. It 
is therefore important to explore ways of  interpreting 
the properties of  the 5D solutions in a 4D world. One 
way that was based on symmetry considerations [ 8 ] 
was investigated by Davidson and Owen [ 4 ], who 
found expressions for the effective density and pres- 
sure. Another way that is based on a splitting of the 
Einstein tensor [ 9-11 ] has been investigated here, 
and found to lead to results which are similar math- 
ematically but appear to differ physically. The pres- 
ent discussion has been brief, and has not gone into 
questions to do with compactification and the nature 
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o f  the vacuum.  Fu r th e r  s tudy of  these an d  related 
subjects  should  make  it  clearer  what  is the best  way 
to get 4D proper t ies  o f  ma t t e r  f rom 5D geometry.  
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