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Abstract

In this short introduction to Kaluza-Klein (KK) theories, we emphasize on the possibility to
obtain gauge fields from pure Einstein gravity in higher dimensions, a possibility introduced by
Nordström (1914), Kaluza (1919), and Klein (1926).

The original idea to introduce one extra space dimension to obtain electromagnetism and gravity
in four dimensions offers a way to unify the two known forces of the 19th century and give them
a common, geometrical origin. This idea is then taken further to show that non-Abelian gauge
fields can be obtained, corresponding to the weak and strong forces, by introducing more spatial
dimensions.

A modern kind of Kaluza-Klein theory is represented by the theory of a universal extra dimension
(UED), which can be seen as a generalization of the standard model of particle physics to five
dimensions. It is shown that the four dimensional theory, as we observe it today, can be obtained,
but with an extended particle spectrum that should be detectable at higher energies, depending on
the size of the extra dimension.

This work is part of a seminar course in theoretical physics given at KTH autumn 2005.

1 Introduction

The idea to unify concepts in physics is old. Already in the 19th century electricity and magnetism were
united in what culminated in Maxwell’s theory of electromagnetism. Due to the relativistic invariance
of Maxwell’s equations it was realized that the unification of electricity and magnetism was intimately
connected with a unification of our three-dimensional space and the parameter describing time, yielding
a continuous four-dimensional space-time. Just as space and time, being lower-dimensional objects in
themselves, joined together in a higher-dimensional framework, the three-dimensional objects describing
electricity and magnetism, E and B, joined together as components of a single six-component anti-
symmetric tensor Fµν and the corresponding potentials φ and A unified in the four-vector Aµ.

When Einstein’s gravitational theory of general relativity became available, efforts were made to unite
gravity with the electromagnetic force. The hope to see this unification manifested in higher dimension
was initiated by Kaluza [1] and Klein [2], in what today is known as Kaluza-Klein theories.

2 The five-dimensional theory

The results obtained in these sections follows that of Refs. [3, 4, 6]. The convention used is that the
space-time metric is expanded around a ground state where the four-dimensional part is given by

ηµν = diag(+1, −1, −1, −1).

The five-dimensional Kaluza-Klein theory starts from a generalization of the free, four-dimensional,
Einstein action of general relativity to five dimensions (one temporal and four spatial):

Î = − 1

16πĜ

∫

d5x̂
√

−ĝR̂, (1)

where the hat indicates five-dimensional quantities; Ĝ is the gravitational constant in five dimensions, R̂
is the scalar curvature formed from the five-dimensional metric ĝMN and ĝ = det ĝMN . Capital indices
M,N are used to denote components of the full-dimensional quantities and Greek indices µ, ν to denote
the ordinary, four-dimensional, components. The fifth dimension x4 will be denoted by y. A general
expression for the metric serving our purpose is given by

ĝMN =

(

gµν − ξ2AµAνφ ξAµφ
ξAνφ −φ

)

, (2)
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where φ is a scalar quantity and ξ is a factor that later will be used to normalize Aµ. In the most general
case the ten component, four-dimensional, metric gµν , the four-vector Aµ, and the scalar φ can depend
on all five space-time coordinates. To extract the Abelian gauge field, i.e., electromagnetism and gravity
from Eq. (2), it is, however, sufficient to remove all y dependence from Eq. (2) and also put φ equal to
a constant. This was Kaluza’s original approach, but he failed to give an adequate motivation to this
restriction.

The special form of the five-dimensional metric (2) allows for coordinate transformations in the fifth
dimension to be interpreted as gauge transformations. Consider a transformation of the fifth dimension
given by

y → y′ = y + ξǫ(x). (3)

For a general coordinate transformation

ĝAB = ĝ′A′B′

∂x̂′A′

∂x̂A

∂x̂′B′

∂x̂B
(4)

the invariance of the metric is assured if Aµ transforms as

Aµ → A′
µ = Aµ + ∂µǫ(x). (5)

This is recognized as an Abelian gauge transformation of Aµ, and thus, the extra dimension displays a
symmetry in coordinate transformation equal to the one that classically results in the electromagnetic
four-vector. It would, however, be wrong to call Aµ a photon just because of this symmetry, after all it has
to obey Maxwell’s equations. This was the remarkable thing about Kaluza’s approach. Upon splitting
the five-dimensional Einstein equations in vacuum R̂MN = 01, where R̂MN is the five-dimensional Ricci
tensor derived from the metric (2), into its lower-dimensional components he arrived at the equations

Rµν = 0, (6)

∂µFµν = 0, (7)

∂λFµν + ∂µFνλ + ∂νFλµ = 0, (8)

where Fµν = ∂µAν − ∂νAµ. These are precisely the four-dimensional Einstein and Maxwell equations in
vacuum. Thus, Maxwell’s theory of electromagnetism can be considered as an inevitable consequence of
general relativity, if there is an extra dimension.

However, some obvious questions appears if this is to be a physical theory. For instance, there is no
obvious reason why the five-dimensional metric should be independent of y or, a much larger problem,
where is the fifth dimension?

3 A compact fifth dimension

The next step in higher-dimensional unification was taken by Klein in 1926, who continued Kaluza’s
work by imposing that the fifth dimension was compactified on some scale R̃, i.e., the fifth dimension
forms a circle with radius R̃ (we can think of the five-dimensional manifold as M = M4×S1 with a four-
dimensional space-time manifold M4 and S1 being the circle). This enables any field quantity F (x, y)
to be expanded in a Fourier expansion:

F (x, y) =

∞
∑

n=−∞

Fn(x) exp
(

iny/R̃
)

, 0 ≤ y ≤ 2πR̃. (9)

If the field quantities gµν , Aµ, and φ are expanded in this way and only the zero mode of the expansions
are considered, one naturally obtains fields that only depend on x, such as Kaluza’s original fields.
Shortly, we will motivate that the higher modes correspond to mass eigenstates with masses on the
Planck scale, thus motivating why only the zero mode harmonics need to be considered in the effective,
low-energy four-dimensional theory.

To obtain the effective four-dimensional theory we insert the metric anzats (2) in the free Einstein
action (1), compute the five-dimensional curvature scalar R̂ for the zero mode fields (keeping φ constant
equal to unity), and integrate over the extra dimension. The result is [3]:

I = − 2πR̃

16πĜ

∫

d4x
√
−g(R +

ξ2R̃2

4
FµνFµν), (10)

1In vacuum, the Einstein equations Gµν = 8πGTµν reduces to Rµν −

1

2
gµνR = 0 since the energy-momentum tensor

Tµν is zero. Multiplying this by the inverse metric gµν turns the vacuum equations into Rµν=0, which, in five dimensions,

is generalized to R̂MN = 0.
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where R is the four-dimensional curvature scalar. From this the gravitational constant in four dimensions
G can be identified as

G =
Ĝ

2πR̃
. (11)

If we further make the normalization
ξ2 = 16πG, (12)

Eq. (10) turns into

I = − 1

16πG

∫

d4x
√
−gR − 1

4

∫

d4x
√
−gFµνFµν , (13)

which is the four-dimensional Einstein-Maxwell action. One can note that if the extra dimension had
been timelike, there would have been a wrong relative sign between the gravity and electromagnetic part
of the action.

If we allow for the scalar field φ in the metric (2) to depend on the coordinates x, then, after
compactification, there will also be a contribution to the four-dimensional action (13) with density
proportional to ∂µσ∂µσ, where σ is proportional to lnφ.

4 Mass eigenstates and charge quantization

The idea of introducing the extra dimension as compactified on a circle allows for an expansion of any
field in Fourier modes as in Eq. (9). Consider the five-dimensional wave equation of a scalar field φ(x, y),
i.e., a massless scalar field in five dimensions, expanded in Fourier modes:

(∂2
t −∇2

x − ∂2
y)

∑

n

φn(x) exp
(

iny/R̃
)

= 0. (14)

Taking the derivative of the y-dependent part yields for the Fourier modes:

(∂2
t −∇2

x + m2
n)φn(x) = 0, (15)

where

m2
n =

(

n

R̃

)2

. (16)

Thus, the fields φn(x) are massive eigenstates in four dimensions with mass mn. To find the scale of
these massive fields, we note that the coordinate transformation (3) leads to another feature of the fields
φn. The transformation y → y′ = y + ξǫ(x) yields for φn:

φn(x) → φ′
n(x) = exp

(

inξǫ(x)/R̃
)

φn(x). (17)

This transformation leaves the action resulting in the Klein-Gordon equation (15) invariant, and thus,
since the fields Aµ transform according to the gauge transformation (5), an infinitesimal local coordinate
transformation ǫ(x) of the fifth dimension associates, trough Nöther’s theorem, a charge qn to the fields
φn(x), with

qn = −nξ

R̃
= −n

4
√

πG

R̃
. (18)

One remarkable feature of the theory is that the charge is quantized in units of 4
√

πG/R̃. If we dare to
identify the charge q1 with the elementary charge e, the scale of the fifth dimension is given by

R̃ =
4
√

πG

e
≈ 10−32 m, (19)

which is indeed close to the Planck scale of about 10−34 m. The fact that the extra dimension is
compactified on such a small scale is indeed a triumph for the theory as to motivate why the extra
dimension never has been observed. It is, however, apparent that the five-dimensional theory obtained
so far cannot describe electromagnetism. According to Eqs. (16) and (18), the lightest particle with a
charge would acquire a mass close to the Planck mass. All known particles have, however, a very low
mass on that scale.
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5 Higher-dimensional Kaluza-Klein theory and non-Abelian gauge

fields

As we have seen, it is possible to retain an effective four-dimensional theory of electromagnetism and
gravity, starting from only gravity in five dimensions. The next step would be to try and unify gravity
with the two other known forces of Nature, the weak and strong forces.

To do this we need the extra dimensions to form a compact manifold with isometries. An isometry
of a manifold, with coordinates yn, is a coordinate transformation yn → y′n such that the metric, hmn,
of the compact manifold is invariant, i.e.,

yn → y′n : h′
mn(y′n) = hmn(yn). (20)

It can be shown that isometries form a group with generators ta and structure constants Cabc with a
general, infinitesimal coordinate transformation given by

yn → y′n = yn + ǫaξn
a (yn), (21)

where ξn
a are the Killing vectors with higher indices running over the N extra dimensions and lower indices

running over the dimensions of the isometry group and ǫa is an infinitesimal parameter independent of y.
The Killing vectors that are associated with the independent infinitesimal isometries obey the algebra:

ξm
b ∂mξn

c − ξm
c ∂mξn

b = −Cabcξ
n
a . (22)

From this it can be showed that the generators of the symmetry group obeys

[ta, tb] = iCabctc. (23)

The isometry groups of the manifolds S1 (circle) and S2 (sphere) are given by the groups SO(2) and
SO(3), or U(1) and SU(2), respectively. To reproduce the standard model of particle physics, it would
be necessary to chose a compact manifold with isometry group containing SU(3)×SU(2)×U(1), which
is the observed gauge group of the electroweak and strong interactions.

The non-Abelian gauge fields may arise from a generalization of the metric (2) in 4 + D dimensions
given by

ĝMN =

(

gµν(x) − hmn(y)Bm
µ Bn

ν Bn
µ

Bm
ν −hmn(y)

)

, (24)

where xA = (x, y) = (xµ, ym) with µ = 0, ..., 3, m = 4, ...,D − 1. We have thus added to the metric
D − 4 four-vectors

Bn
µ = ξn

a (y)Aa
µ(x) (25)

and it is the transformation of these vectors, under a xn-dependent isometry of the same kind as Eq.
(21), which will give the non-Abelian gauge fields. Under a coordinate transformation

yn → yn + ξn
a (y)ǫa(x), (26)

the elements of the higher-dimensional metric transform as

Aa
µ → Aa ′

µ = Aa
µ + ∂µǫa(x) + Cabcǫ

b(x)Ac
µ, (27)

which can be recognized as the usual Yang-Mills gauge transformations, i.e., the Aa
µ’s are non-Abelian

gauge fields.
In a similar way as in five dimensions, the effective four-dimensional theory can be obtained by

inserting the anzats (24) as the metric in the 4 + D-dimensional Einstein gravity action

Î = − 1

16πĜ

∫

d4+Dx̂
√

−ĝR̂. (28)

Reducing R̂ to a four-dimensional curvature scalar R will give some extra terms and after separating
the integrals over four and D dimensions, the action (28) becomes [3]

I = − 1

16πG

∫

d4x
√
−gR − 1

4

∫

d4x
√
−gF a

µνF aµν (29)

with
F a

µν = ∂µAa
ν − ∂νAa

µ − CabcA
b
µAc

ν . (30)
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In Eq. (29), the gravitational constant in four dimensions have been identified as

1

G
=

1

Ĝ

∫

dDy
√
−h, (31)

where h = dethmn(y) and the Killing vectors must obey

1

16πĜ

∫

dDy
√
−hξm

a ξn
b hmn = δab. (32)

The action (29) is indeed the standard action for gravity and non-Abelian gauge fields in four dimensions.
The metric (24) can be made more general by including x and y dependence in all fields. This will
typically lead to more fields present in the effective four-dimensional Lagrangian.

The problem with the scenario above is, however, that it implies that our four-dimensional space
cannot be flat. The Einstein equations in vacuum read R̂MN = 0 where the Ricci tensor is formed
from the metric (24) but with all gauge fields set to zero. If four-space is to be flat R̂MN must vanish
for the space time indices and thus it must vanish for the higher dimensional indices as well. This can
however not be the case if the higher dimensional space is curved, which is the case for manifolds with
non-Abelian isometry groups.

6 Universal extra dimensions

The model of universal extra dimensions (UED) is basically a higher-dimensional generalization of the
standard model of particle physics (here we will disregard the strong force). As a consequence, all the
ordinary standard model particles are accompanied by a tower of massive states originating from the
same kind of reasoning which led to Eq. (16). This is referred to as the Kaluza-Klein (KK) tower and
its masses are given by:

Mn =

√

M2
EW +

(

n

R̃

)2

, (33)

where MEW is the original electroweak mass. Instead of deriving the gauge fields from a special kind
of higher-dimensional metric, trough compactification, we can obtain the gauge fields from a higher-
dimensional Lagrangian:

L̂ = −1

4
F̂MN F̂MN − 1

4
F̂α

MN F̂αMN , (34)

where F̂MN and F̂α
MN are the five-dimensional U(1) and SU(2) field strengths, respectively. The M,N

indices ranges from 0 to 4 and α over the dimensions of the symmetry group, 1 to 3 in the case of
SU(2). The four-dimensional theory is regained after inserting the appropriate expansions of the higher-
dimensional fields, in analogy with Eq. (9), integrating over the extra dimension, and keeping only the
zero modes from the expansions.

There is, however, a problem with compactification on a circle this time which originates from the
fact that the fifth component of the five-dimensional vector field transforms as a scalar under four-
dimensional Lorentz transformations. Hence, the zero mode contribution from the fifth component of
the vector field will give rise to light scalar fields. Such fields are, however, not observed, and thus,
they must be prevented from appearing in the effective four-dimensional theory. This can be done by
compactifying on the orbifold S1/Z2 instead of on the circle S1. This orbifold not only has a symmetry
under y → y+2πR, but also a symmetry under y → −y, so we have selected a point on the circle around
which we have a mirror symmetry. The field can either transform odd or even around this point and
depending on which there will either be a sine or cosine expansion of the fields, instead of a combination
as in the S1 compactification, cf. Eq. (9). By imposing an odd transformation on the fifth component
of the vector fields, there will be no zero modes, and thus, none will appear in the 4D-theory.

In analogy with the electroweak theory, a complex SU(2) doublet

Φ =
1√
2

(

χ2 + iχ1

H − iχ3

)

, χ± =
1√
2
(χ1 ∓ iχ2) (35)

in the five-dimensional Lagrangian

L̂Higgs = (DMΦ)†(DMΦ) − V (Φ), (36)

can be introduced to provide masses for the gauge fields by spontaneous symmetry breaking provided
by the prototype ’mexican hat’ potential:

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2, λ =
µ2

v2
=

m2
H

2v2
, (37)

5



where mH is the mass and v the vacuum expectation value of the scalar Higgs field H. The covariant
derivative in Eq. (36) is given by

DN = ∂N − iĝAα
N

σα

2
− i

2
ĝY BN , (38)

where we have set the hyper charge to 1/2, ĝY and ĝ are the higher-dimensional U(1) and SU(2) coupling
constants, respectively, and σα are the three Pauli matrices. To arrive at the correct four-dimensional
theory after integrating over the fifth dimension, the four- and five-dimensional coupling constants always
have to be related as

g =
1

√

2πR̃
ĝ. (39)

Through mixing angels the gauge fields can be combined to give rise to the photon and the three
vector bosons of weak interaction:

W±
M =

1√
2
(A1

M ∓ iA2
M ), (40)

AM = cwBM + swA3
M , (41)

ZM = cwA3
M − swBM (42)

with

sw = sin θw =
ĝY

√

ĝ2 + ĝ2
Y

, cw = cos θw =
ĝ

√

ĝ2 + ĝ2
Y

, (43)

so that the elementary charge is given by e = swg = cwgY . The full spectrum of particles in the effective

four-dimensional theory will be given by the KK vector modes A
(n)
µ , Z

(n)
µ , and W

±(n)
µ together with four

Goldstone bosons to generate their masses. In contrast to the standard model, there will also be four
scalar fields present. By picking the orbifold transformation in an appropriate way we can, however,

retain only the three Goldstone bosons, giving mass to the zero mode vector fields A
(0)
µ , Z

(0)
µ , and W

±(0)
µ ,

and the zero mode scalar Higgs field H(0) of the observed standard model.
Since none of the particles introduced by UED ever have been observed, this sets a restriction on the

mass scale of the KK excitations, and hence, on the size of the extra dimension. There is an interesting
possibility that some of the KK excitations might be dark matter candidates, so-called WIMPs. One
such would be the first excitation of the weak hyper charge gauge boson, B(1). Indeed, if the extra
dimension would be on the TeV scale, the relic density of the B(1) from the Big Bang would be just
right today. By studying cosmic rays from, for instance, the galactic center, one can look for signatures
of B(1) annihilations which, if they were found, would support a theory with extra dimensions and help
solving the dark matter problem. A study of this, and more on UED aspects on cosmology, can be found
in Ref. [7].

7 Summary and outlook

In this short introduction to Kaluza-Klein theory, we have seen the possibility to obtain Abelian and
non-Abelian gauge fields starting from Einstein gravity in higher dimensions. We have seen that if the
extra dimensions are compactified on a small scale, it is possible to obtain many of the features of our
observed, four-dimensional physics on small energy scales. All coupling constants of the effective theory
can be seen to depend on the size of the extra dimensions, and in the UED theory, the extra dimensions
are expected to reveal their presence in form of a large particle spectrum carrying high masses, inversely
proportional to the size of the extra dimensions which is expected to be small.

There are, however, strong reasons to believe that our physical world cannot be derived from higher
dimensions where there are no fields but gravity present. Besides the problem to obtain non-Abelian
gauge fields, mentioned in section 5, there is a problem to obtain light, chiral fermions. One way of
resolving both these problems may be to assume that some gauge fields are already present in the higher-
dimensional theory and that the connection between these elementary gauge fields and gravitational fields
will form a consistent theory. A promising gauge group to achieve this is given by E8 × E8 or SO(32),
which is a supergravity limit of superstring theory. Although the pure Kaluza-Klein theory might not
be the final answer as to unify all the forces of physics, the concept of extra spatial dimensions seams to
play a very important role in modern, theoretical physics.
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