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Abstract A  conceptual  introduction  to  the  Kaluza-Klein 
approach  to  a  geometrical  unification of gravity  and 
other  interactions is presented.  After  some 
considerations  on  the  structure of theories of 
fundamental  forces.  and  having  stressed  the  peculiarity of 
Einstein's  general  relativity.  close  attention is paid to  the 
conceptual  features of the  five-dimensional  Kaluza-Klein 
theory. which unifies  gravitation  and  electromagnetism in 
a common  geometrical  scheme.  Finally.  with a view 
towards  the  possible  geometrical  unification of all 
fundamental  interactions.  some  remarks  are  made  about 
Multidimensional  Unified  Theories.  which  are 
generalised  theories of a  Kaluza-Klein  type. 

1. Introduction 

The  aim of this article is to  present  a  conceptual 
introduction  to  the  topic of geometrical unification 
of the  fundamental  interactions in contemporary 
theoretical  physics. In  particular  there  are  at  present 
attempts  to  work  out  theories.  the  so-called 
Multidimensional Unified Theories ( M U T S ) .  in which 
gravity  and  other  forces  can  be  linked  together in a 
common  geometrical  scheme.  Here we deal mainly 
with the Kaluza-Klein theory. which is the  proto- 
type of modern M L ~ T S .  

In the next section we will consider  the  structure 
of  current  theories of the  fundamental  interactions. 
stressing  their  common  properties  and  differences. 
then  moving on to  summarise  the  most significant 
features of general  relativity.  Finally. in $ 3 ,  the 
structure of the Kaluza-Klein theory is introduced 
and  some of its interesting  and  deep  conceptual 
consequences  are  presented:  this  section  constitutes 
the main part of this  article. In conclusion  some 
remarks  are  made  about  the  extension of the 
Kaluza-Klein theory  performed by M L ~ T S .  
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Riassunto Si presenta  una  introduzione  concettuale 
all'approccio di Kaluza-Klein per  una  unificazione 
geometrica di gravita ed  altre  interazioni.  Dopo  alcune 
considerazioni  sulla  struttura  delle  teorie  delle  forze 
fondamentali,  una  volta  sottolineata la peculiariti  della 
relativita  generale  di  Einstein.  viene  prestata  una 
particolare  attenzione alle caratteristiche  concettuali  della 
teoria  5-dimensionale  di  Kaluza-Klein.  che unifica 
gravitazione  ed  elettromagnetismo in uno  schema 
geometric0  comune.  Infine. in vista di una  possibile 
unificazione  geometrica  di  tutte le interazioni 
fondamentali. si fanno  alcune  osservazioni  sulk  Teorie 
Unificate  Multidimensionali.  che  sono  teorie 
generalizzate alln Kaluza-Klein. 

In order  to  prevent  this  article  from  becoming  too 
large. we have  assumed  the  reader is familiar with 
the  conceptual  foundations of gauge  theories  and 
general  relativity;  however,  some  features of these 
theories  are  summarised  and  general  references  are 
recommended  (some of which have  recently 
appeared in this journal). 

2. Fundamental interactions and related theories 
After  the  recent unification of electromagnetic  and 
weak  nuclear  forces in a unique  gauge  interaction 
(the  electroweak  interaction) by Weinberg  and 
Salam.  one  can say that  today we recognise  three 
distinct  fundamental  interactions in the world of 
physical experience  (experiments),  namely  the 
electroweak  force,  the  strong  nuclear  force  and 
gravity.  Here it is interesting  to  compare  the  dif- 
ferent  theoretical  treatments of these  distinct  inter- 
actions ( in  order  to  understand  how  to  work  out a 
unified theory). 

The  theories  commonly  accepted  for  the  funda- 
mental  forces  are  the Weinberg-Salam theory (%ST) 
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Table 1 The  theoretical  situation  concerning  the  fundamental  interactions. 

Interaction  Gauge g r o u p  Theor! 

zak ) electroweak SU(2)  x U(  1) Weinberg-Salam 

strong SU,(3) v< 1) 
+ (IUTS 

gravit? - 

(Poincare) 
general  relativity 

for  the  electroweak  interaction.  quantum  chromo- 
dynamics (OCD) for the  strong  interaction  and 
general  relativity for gravity. I t  is well  known  that 
WST and OCD are  local  gauge  theories  with  gauge 
groups  SU(2) X U(1)  and SU,(3) of the  colour.  re- 
spectively.  General  relativity.  for  its  part.  was  not 
born  as  a  gauge  theory:  nevertheless  some  years  ago 
(see  for  example  Hehl et a/  1976) it  was  proved  that 
gravitation  may  be  described in terms of a  local 
gauge  theory  for  the  Poincare  group:  in  particular 
this  gauge  approach to gravitation  leads  to  a  geo- 
metry of spacetime  which is more  general  than  that 
o f  Einstein's theory:. We  can  thus  affirm  that all the 
fundamental  interactions  may  be  described  in  terms 
of local  gauge  theories:  the  situation is summarised 
in table l .  Note  that  there  have  been  attempts  to 
unify  electroweak  and  strong  forces  in  a  unique 
gauge  interaction by the  so-called  Grand  Unified 
Theories (c iu-rs) .  

I n  this  brief  article  we  cannot  deal  with  gauge 
theories  in  an  extensive  manner.  because  the  main 
topic  we  want  to  discuss is the  Kaluza-Klein  theory; 
moreover  a  good  paper  on  gauge  theories  recently 
appeared in  this  very  journal  (Kenyon 1986). For 21 
more  technical  treatment.  refer  to  (Abers  and  Lee 
1973) or other  review  articles  that  have  appeared 
during  the  last  few  years.  Here  we  want  to  stress  that 
ws1- and OCD are  both  Yang-Mills-type  theories 
(Yang  and Mills  1954). in which  particular  assump- 
tions  (spontaneous  symmetry  breaking.  the  Higgs 
mechanism  etc)  are  made.  It  should.  finally.  be 
remembered  that  the  Yang-Mills  theory  for  the 
group U(1) represents  the  theory of electromag- 
netism: in this  framework a local  gauge  transforma- 
tion is of the  kind 

I+$' = p exp(iL(x. [ ) e )  ( 1 )  

where e is the  charge of the  field y and ,i is a  phase 
change  depending  on  position  and  time. I f  we  want 
to  work  out a local  gauge-invariant  theory.  we  must 

i The  resulting  throrq is known a5 Einstein-Cartan 
theory ( E C T )  and  distinguishes itself from  general 
relativity  because i n  tc1 one  does not  require  the 
symmetry of connection  coefficients in the  louer Indices 
which  one  imposes i n  Einstein's  throry  (see  the  next 
section). I f .  in a coordinate basis. we call the 
antisymmetric  part o f  the  cvnnection  'torsion'.  one  can 
see  that in t < ' r  torsion is correlated  with  the  spin  density 
o l  matter. 

require  the  invariance of the  Lagrangian  density 
Y(q! .  a y )  of the  system  (that is. in practice,  the 
constancy of the  momenta).  introducing  a  gauge- 
covariant  derivative  and  requiring  the  transforma- 
tion 

A,,-+ A = A,, - di.ldx" ( 2 )  

for  the  electromagnetic  potential. 
Even if we  have  seen  that all the  interactions  are 

describable by local  gauge  theories,  there  are.  hou- 
ever.  two  fundamental  differences  between  general 
relativity  (or.  in  general,  any  existing  metric  theory 
of gravity)  and  the  other  theories.  which  one  should 
keep in mind  when  dealing  with  the  problem of the 
theoretical  unification of forces.  First of all.  SI- and 
o c m  are  quantum  theories,  while  general  relativity is 
a classical  theory  and  all  attempts  to work out ;I 
consistent  quantum  theory of gravity  have  failed. 
Secondly.  while  in w w  and OCD (as  well as in  special 
relativity)  spacetime  geometry  provides a rigid  and 
unchanging  background in which  bodies  and  fields 
mo\e .  with  general  relativity  this  geometry  becomes 
a  dynamical  variable of the  theory.  intrinsically 
linked to the  presence of matter.   as  one  can  see i n  
Einstein's  field  equations: 

R,,, - ig,,,.R = XxGT,,, . ( 3 )  

Simplifying  matters  as  far  as  possible.  in  equation 
(3) we  find  'geometry'  on  the  left-hand  side  (where 
the  metric  tensor g,,,., the Ricci  tensor R,,, and  the 
curvature  scalar R appear)  and  'matter'   (the  energy- 
momentum  tensor T,<>.) on the  right-hand  side: G is 
Newton's  constant  and in our  units c = 1. In  this wa! 
geometry  and  matter  are  dynamically  correlated: 
matter  (as  mass-energy)  influences  (curves)  space- 
time  and,  at  the  same  time. i t  is influenced by 
spacetime  geometry.  as  far.  for  example. a s  its  free 
falling  motion is concerned. 

After  these  simple  considerations i t  becomes 
clear  that  there is at  present  a  dichotomy  in  the 
theoretical  treatment of the  fundamental  interac- 
tions.  Leaving  aside  the  obvious  difference  between 
the  classical  and  quantum  characters of the  theories 
shown  in  table  1  (one  may  arrive  at  a  preliminar! 
classical  unified  theory.  only  imposing  the  quantum 
character  at  a  later  stage).  we  must  stress  that  the 
really  strange  result  is  the  success of ws I and O(.D in 
a flat  spacetime  uncorrelated  with  the  presence o f  
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matter,  when  general  relativity  requires  a  curved 
and  dynamical  geometry  for  the  universal  spacetime 
(remember  that  gravitation  is  the  only  universal 
force:  it  acts on everything). Of course  this  result  is 
due  to  the  weakness of gravitation  in  our  laboratory 
situations. so that  here  spacetime is practically  flat  to 
a  high  degree of accuracy. In spite of this  a  unified 
theoretical  framework  has  to  be  found i f  we  want  to 
establish  a  field  theory in which  gravitation  and 
other  interactions  are  linked  together on an  equal 
footing: of course it becomes  experimentally  very 
important  where  gravity is strong. 

I t  has  been  shown  that  non-metric  theories of 
gravitation. in which  one  inserts  the  gravitational 
field.  like  any  other  field.  into  a  flat  and  constant 
spacetime.  violate  the  Eotviis  experiment  (see Schiff 
1Y60. Thorne et (11 1973.  Lightman  and  Lee  1973). 
So we  can  imagine a unified  theory  as  a  theory 
where  gravitation  and  other  interactions  'live' in  a 
dynamic  geometrical  'scenario'  and  where  matter 
with a l l  its  properties  (mass-energy.  electric  charge. 
quarks'  colour  etc)  influences  (and is influenced  by) 
the  geometry of spacetime.  sticking  to  the  model 
provided  by  Einstein's  general  relativity. In  this 
sense.  as  we will see,  LIL'TS simply  represent  the 
maximum  generalisation of the  Einsteinian  theory, 
while  the  Kaluza-Klein  theory  gives us a first model 
suggesting  how  one  can  operate  this  generalisation 
a n d  also shows  the  advantages of this  treatment. 

3. Essential features of general relativity 
Before  dealing  with  the  Kaluza-Klein  theory  we 
need  to  recall  certain  features of general  relativity. 
As with  gauge  theories.  we  cannot  deal  with 
Einstein's  theory of gravity  extensively in this  arti- 
cle;  we  shall  thus  only  be  dealing  with  those  results 
which  are  useful  for  understanding  at  best  the  'con- 
ceptual  evolution'  from  general  relativity to the 
Kaluza-Klein  theory.  A  more  pedagogical  treat- 
ment of the  Einsteinian  theory  may  be  found in an 
article by Bondi  reprinted in this  journal  (Bondi 
1986): see  also  the  bibliography  recommended by 
PiGut in the  preface  to  the  same  paper. 

I t  is knoa.n  that in general  relativity  spacetime  is 
curved:  more  precisely  we  can  say i t  is the 
Riemannian  manifold V,; the  fundamental  elements 
o f  its  geometry  are  the  symmetric  metric  tensor 
g(,,( = g , , ! )  and  the  symmetric  affine  connection 
r;(,( = r:#(). We  want  to  point  out  that  in a flat 
spacetime (for example in the  Minkowskian  one o f  
special  relatiLity) g#<, is reduced to 

while  all  the  coefficients r:,,, become  zero. In  a  more 
general  (curved)  spacetime  the  metric  tensor g,,, has 
ten  independent  components  (because of the  sym- 
metry  condition),  while I-;, determines  the  parallel 
transport  in  the  manifold via the  covariant  deriva- 
tive  (see,  for  example,  Kenyon  1986).  Moreover  the 
treatment of freely  falling  particles  shows  that  the 
field determining  the  gravitational  force is precisely 
the  affine  connection r;,, (Weinberg 1Y72). See  how- 
ever  (Bondi  1986).  where i t  is stressed  that  the 
observable of the  gravitational  field is the  curvature 
tensor. 

Now the  metric  tensor  and  affine  connection  are 
linked  together  by  the  following  simple  relation in a 
coordinate  system x " :  

In this  way  the  metric  tensor of the  theory is corre- 
lated  with  the  gravitational field l-:!>,: more  exactly 
g,,, represents  its  potential.  When.  as  has  happened 
in thi: case.  the  potential of a physical  field is found 
to  be all or part of the  components of the  metric 
tensor of the  theory.  then  we  say  that  the field itself 
is geometrised.  because it is  nothing  but ;I derivation 
of the  metric  and so it is regarded a s  a purely 
geometrical  entity. I n  this  sense  we  can  affirm  that 
Einstein.  with  his  general  relativity.  performed a 
geometrisotion of the  gravitational field (interac- 
t ion).  

Of course  one  can  also  consider  other  interactions 
in the  framework of general  relativity;  for  example i t  
is possible to  insert  an  electromagnetic  field F,,, in 
the  vacuum.  reaching  the  so-called  Einstein- 
Maxwell  theory. in which  the  field  equations  are 

where o n  the  right  the  source is just  the  energy- 
momentum  tensor of the  electromagnetic  radiation. 
It is clear.  moreover.  that in this  framework our  
electromagnetic  field is not  geometrised. 

We  want to stress  two  final  points about the 
essential  conceptual  features o f  general  relativity. 
But first of all a  more  technical  piece of information: 
the field equations of the  theory  (equation (3)) may 
be  derived  through  the  application of a  variational 
principle,  requiring  the  invariance o f  the  action 
under  variation of the  metric: in a  generalised  con- 
text  this  method  represents a standard  way of acting 
for  the  Kaluza-Klein  theory  and M ~ . I . S .  

At  the basis of Einstein's  general  relativity  there is 
the  principle of equivalence:  we  can  formulate i t  as 
the  following  statement:  at  every  spacetime  point in 
an  arbitrary  gravitational field i t  is possible to  
choose a locally  inertial  coordinate  system such that.  
within a sufficientlv  small  neighbourhood o f  this 
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point.  the  laws of nature  take  the  same  form  as in 
special  relativity,  that is t o  say as  in  unaccelerated 
Minkowskian  coordinate  systems in the  absence of 
gravitation. Of course  in  these  locally  inertial  coor- 
dinate  systems all the  coefficients rC, of the  connec- 
tion  are  equal  to  zero. I t  is important  to  note  that 
the  formalisation of the  equivalence  principle for the 
problem of freely  falling  particles  in  a  gravitational 
field  leads to the  derivation of their  equations of 
motion:  one  finds  their  trajectories  are  the  lines of 
extrema1  length  in  Einstein's  curved  spacetime.  the 
so called  geodesics in  V,. Hence  we  can  reformulate 
the  equivalence  principle as follows: in the  presence 
of an  arbitrary  gravitational  field,  and in the  absence 
of other  interactions.  the  real  trajectory  of  test 
particles  coincides  with  the  geodesics o f  the  metric 
of the  spacetime V,. A s  a n  example  we  can  affirm 
that  the  planets'  orbits  around  the  Sun  are  the 
projections on the  three  spatial  dimensions of geo- 
desics in the  four-dimensional  spacetime. 

An  important  consequence  for  the  behaviour of 
bodies in a gravitational field derives  from  the 
following  fact:  geodesics  do  not  depend on the 
mass-energy of bodies in  free  fall. So in the  same 
gravitational  field. if one fixes  the  same  initial  con- 
ditions,  everything  falls in the  same  manner  and 
with  the  same  trajectory.  As  we  have  seen.  the 
gravitational field is the  connection r. substantially ;I 
derivation of the  metric g :  i t  is geometrised.  We  can 
say.  then.  that  the  motion of test  particles is 
uniquely  determined by the  topology of the 
Einsteinian  spacetime V,: i t  is a  really  fine  result. 

4. The Kaluza-Klein theory 
At  the  end of 92  we  hinted  at  the  possibility of 
working  out  a  unified  theory in which  matter.  and  its 
every  property. is dynamically  correlated  with  the 
geometry of universal  spacetime.  But  now. by allow- 
ing  matter to have  other  properties  besides  mass- 
energy  we  are  'switching on' other  interactions in  
addition  to  gravity:  for  example.  as soon as  we 
consider  electrically  charged  matter  we  are  automa- 
tically  in the  presence of an  electromagnetic  field. So 
the  actual  problem  is  that  the  geometry of V,  ( the 
four-dimensional  spacetime of general  relativity) is 
completely  'saturated' by the  gravitational field and 
does  not  allow  the  insertion o f  other  interactions in 
a  unified  geometrical  way.  The  search  for  a  solution 
to  this  problem  led  to  extensions of the  four- 
dimensional  Riemannian  geometry of general  rela- 
tivity  being  considered:  in  this  section  we will be 
dealing  with  that  generalisation  which  revealed  itself 
to  be  the  most  advantageous  and  rich in  develop- 
ments: in  doing so we  shall  not  follow  the  story of its 
birth  and  growth  (see  Orzalesi 1983 for  this  aspect). 
but  describe i t  in a  general  geometric  language  as i t  
is established  today. 

The  basic  idea of the  so-called  Kaluza-Klein 
theory  (Kaluza 1Y21. Klein 1926) is to  add  a  further 

~ t " '  

Figure 1 Example of' a fibre  bundle. ;I projects  cvery 
point in V ;  along  its  own  fibre o n  the  point  in V ,  whcrc 
this  fibre is 'at tached' .  

spatial  dimension  to  the  spacetime V ,  of general 
relativity in order  to  realise  the  derivation of gravita- 
tional  and  electromagnetic  fields  from a single 
universal  tensor of the  new  five-dimensional  geo- 
metry. If we  take  the  existence of the fifth dimension 
'seriously'.  we  have  to  consider  the  new  five- 
dimensional  extended  spacetime  thus  obtained  as 
the  real  one  and.  at  the  same  time.  the  four- 
dimensional  appearance of the  universe  has t o  be 
explained.  In  actual  fact  the  extended  spacetime in 
the  Kaluza-Klein  theory  has  a  particular  structure. 
which  represents.  however. a simple  example o f  
very  general  kinds of spacetirnes: \ve will try t o  
describe  this  structure. 

I f  we call V ;  the  Riemannian  manifold  considered 
as  the  spacetime of the  Kaluza-Klein  theory. we can 
say i t  is a simple  example of a  principal  fibre  bundle 
(for  a  rigorous  definition  see  Kobayashi  and  Nomizu 
1963); in particular V ;  is made  up by the 
Riemannian  manifold V,  'plus' another  one- 
dimensional  manifold  n)hich is also a Lie g r o u v  
more  precisely,  the  group U(  1 )  of electromagne- 
tism.  Moreover  there  exists  a  differentiable  map ;I 

from V< to V, which is the  projection of the  extended 
spacetime  onto  the  usual  four-dimensional  one  and 
it  is  possible to introduce  a  rule of horizontalit! in  
vector  fields  by  a  bundle  connection+. In short V ,  is 
imaginable  as  the  ordinary  spacetime VI where  at  
each  point p E V,  one  has  'attached'  a  line.  the so- 
called  fibre:  figure l .  where  the  usual  four  dimen- 
sions are  reduced  to x '  only. can  help  to  clarify  the 
situation (S.  S'. S". R .   R ' .  R " E  V ,  are  the  extrema1 
points of the  fibres). 

We  have  introduced V ;  as a Riemannian  manifold 
even  though  we  never  considered  what  the  metric of 
the  Kaluza-Klein  theory  is.  We  can  now  specify  that 
this  metric  derives  from  two  constraints  (the  Ansatz 

;.Then  a  horizontal  vector field is a  field  having  its  lifth 
componcnt  equal t o  zero. hhi lc  a vertical  field h'ls thc 
four  ordinary  spacetime  components  equal t o  zcro 
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Figure 2 The five-dimensional  spacetime of the 
Kaluza-Klein  theory 115 a hypercylinder. 

of Kaluza  and  Klein): first of all Kaluza  required all 
the  components of the  five-dimensional  metric 
not to depend on the fifth dimension:  secondly  Klein 
required  the  component y55 to  be  a  constant?.  With 
these  requests. in local  coordinates S"= (x".  xi) the 
five-dimensional  metric  can  be  written  as 

where g((,. and a,, depend  only on x "  and  not on xi. so 
that  they  are  effectively  fields  in V,. While g,,, is the 
metric of general  relativity.  during  the  physical 
development of the  theory  one  can  see  the  four- 
vector (l , ,  is algebraically  related  to  the  electro- 
magnetic  potential A,<: in fact, if c =  l$.  

(l , ,  = \ lhrrGA,,. (8) 

I n  this  way  gravitational  and  electromagnetic  poten- 
tials (g,,l, and A,!) are  now  both a part of the five- 
dimensional  metric: on the  basis of what  was  said in 
the  previous  section  we  can  affirm  that  gravitational 
and  electromagnetic  fields  (interactions)  are  geome- 
trised  in  the  Kaluza-Klein  theory. 

W e  n i l 1  before  long  see  what  the  consequences of 
this  new  situation  are.  but  before  continuing.  we 
want  to  stress  that.  because of Klein's  constraint. all 
the  fibres o f  V ;  become of the  same  length L = L,. 
which  we c m  consider  as  the  length of the fifth 
dimension. So if  we  suppose L, -=  dx'< + x and  we 
make  the  identifications R =  5. R '  = S ' ,  . . . .  in 
figure 1. we  can  represent  our  multidimensional 
universe  as  a  hypercylinder  where  at  each  point o f  
the  usual  spacetime  a  circle  (the  fibre) is 'attached'. 
Figure 2 shows  this  situation as it can  be  seen by a 
space of higher  dimensionality:  the  usual  four 
dimensions  are  reduced  to  only S '  to  make  the 
picture  possible. I n  the  Kaluza-Klein  theory  the 
typical  value of the  fibre  radius is r -  lO-"  cm.  This 

+- Here a n d  afternard\  capital  italic  indices  refer  to  the 
mhole Vi ( that  is t o  say .M. .A'. . . , = 1 .  . , .. 3 ) .  while 
Greek  ones  refer. a s  usual. t o  the  lour  dimensions o f  
ordinary  spacetime ( U .  v. . , . = l ,  . . .. 4). 
$The  identitication  set  up in equation ( X )  comes o u t  in  ;I 
natural \vay  only  after  the  insertion of a Lagrangian 
densit! In the  theory:  moreover i t  w 1 1  also alloa one t o  
affirm  that  coordinate  transformations  involving  the f i f th  
dimension  are  essentially  the  gauge  transformations o f  
electromagnetism.  These  aspects  arc  di\cussed  later i n  
this  \ectlon. 

value  can  be  obtained  through  the  insertion o f  a 
matter field  in the  theory;  thus  we  can  think o f  the 
fifth  dimension as really  existing  and  only  invisible 
because of it5 smallness. 

At  this  point  one  could  make  the  geometry of Vi 
completely  explicit,  deriving  the  connection  coeffi- 
cients l -c f , .  the  curvature  tensor R\+,\,+ the  Ricci 
tensor R,/ ,  and  the  curvature  scalar R'" in five 
dimensions:  we  are  not  interested in this  operation. 
Instead  we  want  to  stress  that  the  Kaluza-Klein 
theory  (or  at  least  its  original  version) is a  theor) 
without  matter  fields:  therefore  for  'implementing' 
physics on the  geometrical  background  described 
above it is sufficient to  write  an  action  for  the five- 
dimensional  spacetime  continuum  and  to  derive  the 
tield  equations  by  the  application o f  the  variational 
principle  referred  to in the  previous  section. I f  u e  
consider R"' det(y\,,)I'  as  our  Lagrangian  density 
in five dimensions  (it is the  Lagrangian o f  a general 
relativity in five dimensions).  the  action is automati- 
cally  reducible  to  the  four-dimensional  one o f  the 
Einstein-Maxwell  theory  (via  the  identification  set 
up in equation (8) )  and  the field equations  are 

a n d  

When  we  decompose  the  five-dimensional  geo- 
metric  objects  appearing  in  equations (9) and  (10) 
making  explicit  their  ordinary  spacetime  parts. 
equation (9) becomes  the  equation ( 6 )  of the 
Einstein-Maxwell  theory for a n  electromagnetic 
field  in the  vacuum  and  equation ( 1 0 )  represents 
those  Maxwell  equations  which. in the  electromag- 
netic  theory.  would  become  inhomogeneous in the 
presence of charges  and  currents.  The  other  two 
Maxwell  equations  are  automatically  satistied 
because  they  are a n  identity  for  the  geometry o f  the 
Kaluza-Klein  theory. 

I n  such  a  way  we  have  worked  out  a  theory.  the 
results o f  which  seem  equivalent to those of the 
Einstein-Maxwell  theory.  i.e.  the  theory o f  electro- 
magnetic  fields in general  relativity.  Now.  instead. it 
is important to stress  explicitly  their  differences. a t  
least  as  far  as  formal  points of view  and  physical 
principles  are  concerned.  First of all we  can  say  that 
in a Kaluza-Klein  context  the  electromagnetic  inter- 
action in V ,  comes  out of the  adopted  multidimen- 
sional  geometry  and  the  choice of a n  action  which is 
that of a  general  relativity  in five dimensions. I n  
particular.  while  equation (6)  represents  the  inter- 
action  between  electromagnetic  radiation  and  four- 
dimensional  geometry  in  the  Einstein-Maxwell 
theory. now. in our  five-dimensional  context.  the 
same  equation is purely  geometric  (in  more  compact 
terms it is equation ( Y ) )  because F,,, is nothing  but B 
derivation of A,, (which is a part of the  metric ;',,\): 
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therefore  an  electromagnetic field in the  vacuum is 
an expression of our multidimensional  geometry. 

In  addition  to  this last property  about  the  'maxi- 
mum  geometrisation'  occurring in the field equa- 
tions of the Kaluza-Klein theory.  there  are  import- 
ant  features  suggesting  that  this  theory  represents  a 
first step  towards  a  better  understanding of the 
structure of our universe. For example,  from  con- 
siderations  about  the  geometry of Kaluza-Klein 
extended  spacetime  one  can  see  there exist only  two 
classes of coordinate  transformations on VC respect- 
ing its  fibred  structure:  the first is the  'translation' of 
points  along V, (these  are  the  general  coordinate 
transformations of general  relativity):  the  second is 
the  translation of points  along  the  fibres,  that is: 

l! ~ I !< - - " 

r 5 + x ) i  - (11) 
- x.5 + L ( x " ) ,  

It is not difficult to  prove  that  the  transformations 
( 1   1 )  are precisely those  leading  to  the  gauge  trans- 
formations (2) of the  electromagnetic  potential A,, 
and  consequently ( F ! , ,  = 8, ,A, .  - d,,A,,) to  those of the 
electromagnetic field F,,,,. So. in the Kaluza-Klein 
theory  the  gauge  transformations of electromag- 
netism  emerge  from  the  geometric  structure of the 
theory  as a consequence of spatial  translations in the 
fifth dimension. In this way one  internal  symmetry 
and  the  ordinary  spacetime  ones  are  put  on  the  same 
footing as the  effects of spacetime  coordinate  trans- 
formations in a  generalised  spacetime  and  they 
appear  to  be of a very  similar nature. 

Of course  the  trajectory of a  charged  particle in 
general  relativity is not  a  geodesic in V,: in particu- 
lar it depends on the  ratio eirn. The Kaluza-Klein 
theory  leads  one  to  suppose  the following generali- 
sation of the  equivalence  principle  holds: in the 
presence of arbitrary  gravitational  and  electromag- 
netic fields. and in the  absence of other  interactions. 
the  real  trajectory of test  particles  coincides with the 
geodesics of the  metric of the  extended Kaluza- 
Klein  spacetime V$, Assuming  the validity of this 
principle we obtain  interesting  consequences. In  
short, we re-discover  the  equation  governing  the 
motion of a  charged  particle in V, as a  projection of 
a  geodesic in Vi and  at  the  same  time we derive the 
law of charge  conservation. In this  context  the 
electric  charge of a  test  particle is nothing but the 
fifth  component of its momentum. so that  the fifth 
component of its  velocity is just  the  ratio eirn. 

At the  end of the  previous  section we saw that  the 
general-relativity  trajectories of freely falling 
particles do  not  depend on their mass-energy and. 
as a  consequence,  under  the  same initial conditions 
everything falls in the  same  manner in V,: in particu- 
lar we can say the  motion is uniquely  determined by 
the  topology of V,. With  the  introduction of an 
electromagnetic  tield.  the  situation  seems to be 
different.  because  the  trajectory of a  charged  test 
particle  depends on its ratio eirn and so in principle. 

under  the  same initial conditions in V,. there exist 
infinite distinct  trajectories  corresponding  to  the 
infinite values  the  ratio eim can  assume  for  different 
particles.  Geometrically  speaking, we are in the 
following situation:  departing  from  the  same initial 
conditions  about  the  four-position x" = (X';. .x!. x.':'. t " )  
and  the  four-velocity 0'' we find different  trajector- 
ies:  the  motion is not  uniquely  determined by the 
topology of V4. But  here  comes  the  interesting 
point! In the Kaluza-Klein theory. we have  to look 
at  the  problem in five dimensions:  there rim is just 
the fifth component of five-velocity, that is to say i t  
is an  initial condition in V;. On the basis of this 
crucial  observation i t  is possible to affirm that. initial 
conditions  being  equal in Vi. every  particle falls in 
the  same  manner in fixed gravitational  and  electro- 
magnetic fields and  therefore  (these fields are  geo- 
metrised)  the  motion of test  particles is uniquely 
determined by the  topology of the  extended  space- 
time V, of the Kaluza-Klein theory: we have  gener- 
alised the  beautiful  result  obtained in general  relati- 
vity. Figure 3. where  the usual spacetime is reduced 
to  two  spatial  dimensions.  can  help to clarify the 
situation. 

If we now insert  a  scalar  matter field 1 1 ,  in the 
theory.  other  interesting  properties may be 
obtained. First of all. owing  to  the  form of ou r  
extended  spacetime  (see figure 2 ) .  t+' is naturally 
periodic in  the fifth dimension.  that is 

l#l(X", S + L+) = $!I(X". S) (12) 

and  therefore i t  admits  a  Fourier  expansion. On 
these  grounds it  is possible to  derive  a set of 
Klein-Gordon  equations  for  particles  (minimally 

Figure 3 The  mot ion  of two  charged  test  particles of 
equal  mass  in  an  arbitrary  gravitational field and  in B 

magnetic field directed  along  the  third  spatial  dimension 
of V,. OA and  OB are  geodesics in V ;  ( they are disJinct 
because o f  the tv.o different  initlal  condition5 in o ' ( 0 ) ) :  
OA' and OB' are  their   projections  on V,. U': = U\ = U" 

(four-dimensional  initlal  velocity). 
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coupled  to  the  electromagnetic  field)  having  quan- 
tised  charges. In  this  framework  the  quantisation 
of the  charge is due to the  cylindrical  geometry 
of Vi; since V ,  is closed  along  the fifth dimension. 
the fifth component of the  momentum  operator .  
p ;  = - i didr.  has  a  discrete  spectrum. If we  remem- 
ber  that  the  charge of a  test  particle is nothing  but 
the fifth component of its  momentum.  we  obtain  for 
the  spectrum  (in  units of (16xG)” ’. where c =  1) 

pc!, = e,, = n e .  (13) 

We  cannot  go  further  in  this  direction  without  going 
beyond  the  aims of this  paper:  we  only  want  to  stress 
that.  together  with  a  ’geometrical  explanation’ of 
charge  quantisation.  the  theory  leads  one  to  envis- 
age  the  existence of a  tower of particles  (with  very 
heavy  masses)  which  are  not  observed  in  nature. 

Finally.  we  must  stress  that  there  are two generali- 
sations of the  Kaluza-Klein  theory  in  the  same  five- 
dimensional  framework.  namely  the  so-called 
Einstein-Bergmann  theory  (Einstein  and  Bergmann 
1938). kvhere Kaluza‘s  constraint is given  up.  and  the 
Jordan-Thiry  theory  (Jordan 1948. Thiry 1948). 
where.  instead,  Klein‘s  constraint is not  imposed. 
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5 .  Multidimensional Unified Theories 
On the  basis of the  models  given by the 
Kaluza-Klein  theory  and  its  five-dimensional  gener- 
alisations  one  can  think of trying  to  unify  all  the 

I n  particular.  extending  the  dimensionality of the 
fibres  recently  resulted in the  birth of the  so-called 
Multidimensional  Unified  Theories (VLTS) (see for 
example  Cho 1975 and  Orzalesi  1981). In  these 
theories  one  tries to reach  a  unified  treatment  for 
gravitation  and  the  Yang-Mills  gauge  interactions 
considering a fibre  bundle  with  a  non-Abelian  Lie 
group as the  space  ’added‘  to  the  usual  spacetime. 
Today  many  theoretical  physicists  think  the  real 
dimensionality of our universe is 4 + 7 = 1 1 .  even  if. 
in actual  fact.  there  are  still  problems  concerning  the 
working  out o f  a  realistic  multidimensional  theory of 
the  Kaluza-Klein  type  (see.  for  example.  Witten 
1081). I n  another  context.  using  superstrings.  the 
dimensionality  problem  must  also  be  reconsidered 
(Duff 1985). 

At  present.  we  cannot  say  which is the  group 
leading to a Kaluza-Klein  unification of gravity  with 
electroweak  and  strong  nuclear  forces.  However.  we 
want to stress  that  the  standard  theory of gravity  and 
general  Yang-Mills  interactions is achieved:  this is 
an  important  step  because.  as  we  have  already 
noted. WST and o m  are  nothing but theories of the 
Yang-Mills  type in which  particular  assumptions  are 
made.  

\ILITS. also  called  generalised  Kaluza-Klein  theor- 
ies. carry  good  and  bad  qualities  typical of their five- 
dimensional  models.  together  with  some  further 
difficulty due  to  the  multidimensionality of the 

b. ‘MC .’ interactions  in  a  common  geometrical  scheme. 

fibres. I n  particular  the  gauge  transformations on 
Yang-Mills  potentials  (which  are  present in the 
D-dimensional  metric on the  same  footing  as  the 
gravitational  potential g,,,,) emerge  as  the  effect of 
spatial  translations  on  the R.’= D - 4 internal  dimen- 
sions of the  extended  D-dimensional  spacetime: 
thus  internal  and  spacetime  symmetries  are now o n  
the  same  footing  and  they  appear to be of a  very 
similar  nature.  On  the  other  hand.  in ML’TS we  re- 
discover  the  problem  concerning  the  prediction of 
the  existence of particles  with  very  heavy  masses 
which  are not observed  in  nature:  for  two  possible 
approaches  to  the  solution of this  problem  see 
Witten  (1981)  and  Bergia er a1 (1983). 

Finally  we  stress  that  the  modern  approach  to 
generalised  Kaluza-Klein  theories  aims to derive 
(and  not  to  impose)  a  Kaluza-Klein-type  metric as a 
vacuum  solution of field  equations  under  certain 
initial  conditions  in  a  maximally  symmetric 
D-dimensional  extended  spacetime:  the  situation is 
like that of general  relativity  when  one  derives  the 
Schwarzschild  metric  from  the field equations  under 
the  generic  conditions of isotropy  and  staticity. 

What  we  have  presented  here is an  account of the 
‘classical’  Kaluza-Klein  theor!  and \ I L T S ,  both in 
the  sense  that.  except  for  the  brief  mention  just 
made.  we  have  not  tried  to  present  the  modern 
approach  (spontaneous  compactification)  and in the 
sense  that  we  have  disregarded  quantum  aspects, 
which  can  give  rise to  interesting  effects  (see.  for 
instance.  Appelquist  and  Chodos  1983).  Developing 
these  features  would  have  implied  a  much  n.ider 
treatment,  which would have  greatly  exceeded  the 
scope of this  paper. 

In  conclusion  we  can  say  that MCTS represent  the 
overcoming of the  dichotomy  concerning  the  theore- 
tical  treatment of the  basic  forces  we  described in 
% 2: geometrically  speaking.  they  give us the  possibi- 
lity of thinking of our  universe  as  a  hypercylinder 
with  very  small  fibres of more  than  one  dimension. 
Today.  research is very  active in this field and  only 
the  future will tell whether  these  beautiful  ideas 
about  a  geometrical  unification of fundamental 
interactions  are  realistic. 
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