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Abstract 

A Machian interpretation of Kaluza-Klein gravity is outlined, wherein the fifth coordinate is related to mass. It is shown 
that with an appropriate form for the metric, the usual law of inertial motion is obtained together with a cosmological 
variation of particle masses. This variation, however, is slow enough to be compatible with observation. When the 5D theory 
is reduced to 4D general relativity, a cosmological constant appears which is of acceptable size. 

1. Introduction 

The suggestion that spacetime should be extended 
from 4 to 5 dimensions as a means of unifying grav- 
ity and electromagnetism was made by Kaluza [ 1 ] 
and Klein [2] in 1921 and 1926, respectively. In 
recent years, the wish to develop a unified theory 
that includes the other interactions has led to a rapid 
growth in the literature of such theories, including 
10D string theory and 11D supergravity. In most ver- 
sions of Kaluza-Klein theory, the extra dimensions 
are assumed to be rolled-up or compactified lengths. 
However, such theories have well-known problems 
(for reviews of modem Kaluza-Klein theory, see 
Refs. [ 3 -6 ] ) .  This has led to an examination of 
non-compact Kaluza-Klein theories, which may help 
towards an understanding of the size of the cosmolog- 
ical constant and the masses of elementary particles 
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[7-11 ]. The smallness of the latter compared to the 
Planck mass has led to the idea of gravitational bags, 
where an extra dimension is small at most places but 
large in certain others, allowing for the existence of 
relatively light states [ 12-15]. There has also been 
recent interest in the idea that the extra dimension 
of basic Kaluza-Klein theory is not a simple length 
[ 16-19]. It may have the appropriate dimensions, but 
at least for soliton and cosmological solutions, the 
extra dimension and curvature in it are known to be 
related to the existence of mass-energy in ordinary 
4D spacetime [17,18]. In fact, any solution of the 
apparently empty equations of 5D Kaluza-Klein the- 
ory can be expressed as a solution with matter of  the 
4D Einstein equations of ordinary general relativity 
[ 19]. The situation appears to be that Kaluza-Klein 
theory is mathematically viable but has not met with 
universal acceptance because of uncertainties about 
the nature and effects of its extra dimensions. 

We aim in what follows to address this issue. We 
will take the basic version of Kaluza-Klein theory with 
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one extra dimension, and highlight the effects of  the 
latter by using appropriate forms for the metric, certain 
coordinate transformations, and relevant solutions of  
the geodesic equation. We will show that 5D Kaluza- 
Klein theory can be cast in a form which is Machian 
[20]:  it is compatible with known physics, but also 
provides a deeper rationale for mass. 

2. A spacetime-mass manifold 

In Newtonian mechanics, space and time are the 
arena for the interactions between particles, whose 
main characteristics are their masses. The lack of  a 
direct connection between the extrinsic properties of  
a particle (its position and velocity) and its intrinsic 
property (its mass) was noted by Mach [20].  Over 
the years, there have been various attempts to form a 
connection between space, time and mass, but none 
has been completely successful. Einstein was o f  course 
motivated by Mach's  ideas, but even in general rela- 
tivity spacetime remains separate as a concept from 
the masses of  the particles that move through it. In 
this section, we wish to attempt a unification of  these 
concepts via the idea of  a spacetime-mass manifold. 

That such a unification is possible in principle can 
be appreciated on dimensional grounds. Thus depend- 
ing on whether we are in the microscopic or macro- 
scopic regime, the rest mass m of  a particle can be 
parametrized using the constants provided to us by na- 
ture as a length: h/mc or Gm/c 2, respectively. (Here 
h is Planck's constant, G is Newton's constant and c is 
the speed of  light; we will keep these constants explicit 
in what follows to aid physical interpretation.) These 
scales become comparable in the regime of  quantum 
gravity [21 ], but we will use the latter parametrization 
in what follows because we are attempting to construct 
a classical (as opposed to quantum) theory of  mass. 
Our theory is based on the commonly-understood form 
of  Mach's  principle, wherein the local mass m is de- 
pendent on the averaged-out properties of  the rest of  
the matter in the universe. Thus we imagine that mass 
is defined at every point of  spacetime by a length pa- 
rameter f = Gm/c 2. And following earlier work which 
shows that matter can be related to an extra dimen- 
sion [ 17-19] ,  we imagine that f is in fact the extra 
coordinate in a 5D Kaluza-Klein theory. It should be 
possible to write the metric of  this model in the local 

limit as 

71a#dxC' dx # q- df  2 , ( 1 ) 

where x '~ = (ct, x) ,  Greek indices run from 0 to 3, 
and the signature of  Minkowski metric is +2.  Let us 
first observe that the classical equations of  physics re- 
main invariant if (x~ ; f )  ~ (o-x'~;o-f); here tr is a 
scale factor which may be identified with a change of  
the basic classical units of  measurement. I f  electro- 
magnetic phenomena are included, then the electric 
charge must also be scaled by o- and the electromag- 
netic field by o -- l .  It is important to note that the fun- 
damental constants of  classical physics, i.e. G and c, 
are thereby unaffected. Secondly, imagine a "boost" 
or a "rotation" in the (t, m)-plane such that the met- 
ric (1) is invariant. In this way the observed masses 
of  the particles may be made to vary arbitrarily with 
time. This is contrary to experience, and leads us to 
infer that only certain choices of  the t-coordinate can 
correspond directly to mass. It does not appear pos- 
sible to consider arbitrary coordinate transformations 
in the 5D Lorentzian manifold and still interpret the 
fifth coordinate as representing mass. 

In order to arrive at a satisfactory interpretation 
of  the fifth coordinate, we adopt an approach based 
on the equations of  motion of  free test particles. In 
Minkowski spacetime, the equation of  motion of  a free 
particle of  mass m can be obtained from 

~ / - m c  ds = 0 ,  (2) 

where - d s  2 = ~l,adx~dx/3, and s/c = r has the inter- 
pretation of  proper time along the trajectory. Thus the 
associated Lagrangian is £4 = -mc2( 1 - v 2 / c  2) 1/2 in 
this case. Let us now generalize this action principle by 
introducing the fifth coordinate such that 8 f (5)ds = 
0, where 

f2 
-(5)ds2 = -~  [,~adx~dx ~ + f2(f)de2] , (3) 

and L is a constant length. When f is constant, (5)ds 
reduces to the Minkowski metric up to a multiplica- 
tive constant. Thus dimensional considerations make 
it necessary to introduce the universal length L. The 
function f(f)  is real and dimensionless but other- 
wise totally arbitrary. The corresponding Lagrangian 
for free particle motion in the 5D manifold is 
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£5 =-mc2 1--  ~ - T f 2 ( g )  (4) 

where m = c2g/G and g = dg/dt .  It will now be shown 
that £5 has essentially the same physical content as/ :4 
insofar as geodesic motion in spacetime is concerned. 
It follows from the equations of  motion that 

P = Fmv (5)  

is the conserved linear momentum with F = (1 - 
U2/C 2) --l/Z, U 2 = U2 ~ f2~2, and 

d (  I -~ c41 
-dt FmfZg  = m f  g 2 F z F ~  • (6) 

It is a consequence of  Lagrange's  Eqs. (5) ,  (6) that Fg 
is a constant of  the motion; this constant may be physi- 
cally interpreted in terms of  the particle's total energy. 
It is simpler, however, to find the conserved energy of  
the particle from the expression for the Hamiltonian 
and the result is 

m¢ 2 
E = Fmu 2 + - -  (7)  

F 

It follows from Eq. (7)  that E = Fmc 2. Thus Fm and 
v are constants along the path and Eq. (6) can be 
written as 

f2~" _[._ f~_~fg~2 = ::]:¢O2g , (8) 

where to = c5/GE;  the first integral of  Eq. (8) is, 
in fact, E = Fmc 2. Hence P = E v / c  2 and the action 
principle with Lagrangian (4)  implies inertial motion 
of  particles just as in Minkowski spacetime. It is useful 
to define the proper  mass mo as 

( - ~ ) 2  =~C2--U 2 = to2g2q- f2~  2 ' (9)  

so that E = •m0 C2 and P = ymov,  where y is the 
Lorentz factor y = ( 1 - v2 /c 2) -½. The mass m varies 

along the path while the proper  mass mo remains the 
same. The requirement that proper mass m0 should 
turn out to be a (positive) real constant would impose 
limitations on the function f ( g )  if  the lower sign were 
chosen in Eq. (9) .  However, i f  the mass of  a particle 
is determined from local momentum conservation as 
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in Newtonian mechanics [ 20],  then in terms of  space- 
time physics the Lagrange function/25 is essentially 
equivalent to Z]4. 

It is a remarkable fact that geodesic motion in ac- 
cordance with metric (3)  in the spacetime-mass man- 
ifold reduces to inertial motion in spacetime together 
with a temporal variation of  the fifth coordinate g = 
g(t)  given by Eq. (9) .  The issue of  how the mass 
coordinate £ actually enters physical measurements is 
beyond the scope of  this investigation; however, it is 
necessary to ensure that any variation of  mass with 
the proper time of  an observer is not in conflict with 
observation. 

To show this, we note that the mass coordinate £ 
is arbitrary in the 5D theory like the spacetime coor- 
dinates x '~ in the 4D theory and that this is reflected 
in the arbitrariness of  f ( g ) .  It is this latter function 
which has to be chosen to be compatible with obser- 
vation. Since the geodesic equation in the spacetime- 
mass manifold should reduce to the equation of  mo- 
tion of  a test particle in spacetime, it is natural to start 
with the fundamental Newtonian equation of  motion 
of  a particle under gravitational attraction, namely, 

d 
--~(mv) = --mXTeP , (10)  

where ~ is the Newtonian gravitational potential. This 
equation may be written in geodesic form (i = 1,2, 3) 

d2 x i 1 dm dx  i 
dt  2 + C9i¢~ "~ = 0 ( 11 ) m dt dt  ' 

which suggests that a natural fifth coordinate rep- 
resenting mass - that would be on a par with the 
spacetime coordinates - would be proportional to /~  : 
-<x~ ~ + c ~  such that d/z = d m / m .  Let us there- 
fore set f ( g )  = L /g  in Eq. (3)  so that f ( g ) d g  = 
Ldlx; the natural fifth coordinate is then L ln  ( e l L ) .  
Eq. (9) can be easily integrated in this case. I f  the 
upper sign is chosen in the metric (3) ,  the result is 
g = g0/cosh [ I ly( t  - to)], where to is the epoch at 
which the coordinate mass of  the particle is the proper 
mass m ( t  = to) = mo. Here [l~, = wgo/L  = c / y L .  
Similarly, if the lower sign in Eq. (3)  is chosen, 
g = g0/cos [fl~,(t - to)]. It is reasonable to assume 
that L = G M / c  2, where M is the total proper mass- 
energy content of  the universe. It follows that T~ = 
2~r/II~ = 2~rGMy/e  3 > 1011 yr. This ensures that 
masses only vary slowly, in agreement with observa- 
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tional data [ 22,23 ]. Of  the two possible metrics in Eq. 
(3) ,  we choose the first alternative ("upper sign") in 
the rest o f  this paper; therefore, we can safely proceed 
on the assumption that in every local spacetime region 
the metric can be taken to be 

g2 
-~5)dsZ = ~ (ri~/3dx~dx/3) + dg 2 , (12) 

for a particle of  proper mass m0. Particle masses 
can monotonically decrease in this picture; how- 
ever, no conflict with observations is expected since 
the effect would be only of  second order in E = 
27r (t - t o ) /T  r << 1. It is interesting to consider the 
limiting case of  m0 --~ 0 and v/c ---, 1. In this case 
g ~ 0 and hence the propagation of  rays of  radiation 
is confined to the spacetime domain. 

The fifth coordinate of  the fiat metric in its Cartesian 
form (1) clearly has little to do with mass. On the 
other hand, the preceding considerations provide the 
motivation to look for a form of  the fiat metric in 
which the fifth coordinate would be closely related to 
mass. It is therefore interesting to consider a fiat 5D 
manifold in spherical coordinates, 

-c2dT 2 + dR 2 + RZdf~ 2 + d ~  2 , (13) 

and to show explicitly how one can bring out the mass 
coordinate as in Eq. (3) .  Let us consider the coordi- 
nate transformation (R, ~ )  ~ (r,  ¢ ) ,  where 

R = r O / L  and x I ' = O ( 1 - r 2 / L 2 )  1/2 , (14) 

for r < L. The fiat 5D metric takes the form 

0 2 (  d r 2 1  - - -~ /L  2 ) - c 2 d T 2 + - ~  + r 2 d l )  2 + d O  2 , (15) 

which for constant O reduces to a static k = 1 
Robertson-Walker spacetime. Next, let us choose 

cT=gs inh  (CL) and 0 = g c o s h  (CL) , (16) 

so that under the transformation ( T , 0 )  ~ (t,g) the 
metric (15) becomes 

g2 [ ( c t ) (  dr 2 ) ]  
L --'~ -c2dt2 + c°sh2 L 1 - rZ/L 2 + r2df~2 

+ dg 2 , (17) 

which for constant g is an expanding k = 1 Robertson- 
Walker spacetime. For r << L and ct << L, this metric 

reduces to (12) once spherical coordinates are trans- 
formed to Cartesian coordinates. 

The metrics (3) and (12) which we have used 
in this section are generalizations of  4D Minkowski 
spacetime; our purpose has been to illustrate how mass 
may be introduced into Kaluza-Klein theory. How- 
ever, we have not so far considered the field equations 
which any metric should satisfy; and we should in this 
regard clearly generalize our treatment to take into ac- 
count the curvature associated with matter by the re- 
placement r/,~# ~ g~#(xU; g). We now proceed to do 
this, paying particular attention to the cosmological 
constant since it has been a subject of  controversy in 
Kaluza-Klein theory. 

3. Field equations and the cosmological constant 

Let us consider a spacetime-mass manifold with 
metric - (5)ds2 = ~ABdxAdx B, where X A = ( ct, x; g) 
and A, B = 0, 1,2, 3,5.  In the case where there is no 
explicit cosmological constant, we already know that 
the source-free Kaluza-Klein equations (5)gAB = 0 
contain the source-full Einstein equations G~,~ = 
( 8 ~ G / c 4 ) T / z v  [19].  Here T~, is an effective 4D 
energy-momentum tensor, representing the induction 
of  matter in 4D via the fifth dimension. We now wish 
to examine the effective 4D physics in the case where 
there is an explicit cosmological constant. That is, we 
wish to compare (5)RAB = 0 with 

1 87rG T 
(4)R~v - 7 (4)Rguv + Ag~v = c4 ~u (18) 

so as to identify the effective 4D cosmological constant 
A. 

The spacetime-mass manifold is assumed to have a 
smooth but otherwise arbitrary metric tensor g A B  sat- 
isfying the Kaluza-Klein equations. The metric form 
(5)ds is invariant under the group of  general coordi- 
nate transformations; therefore, it is possible to choose 
canonical coordinates in the spacetime-mass manifold 
such that gl,5 = 0 and ~55 = 1. That is, the five ar- 
bitrary functions associated with the freedom in the 
choice of  coordinates may be so chosen that the metric 
takes the form -(5)ds2 = ~ ( x ;  g)dx~dx ~ + dg 2. It 
is then possible to define the spacetime metric tensor 
to be g~v (x; g) such that guy = (g /L)  2g~v; hence, 
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~2 
- (5)ds2 = -~ (g~#dx~dx/3) + de 2 , (19) 

where g~(x;g)  refers to the 4D spacetime. In the 
canonical system of coordinates, the mass coordinate 
lines are geodesics normal to the hypersurfaces g = 
constant. Therefore, starting from a suitable initial 
spacetime hypersurface, we can choose the mass co- 
ordinate lines to be the congruence of geodesic lines 
normal to the initial hypersurface. Along each such 
line, the spacetime-mass interval corresponds to the 
canonical mass coordinate. The geometric construc- 
tion of the canonical coordinate system is thus straight- 
forward and can be described as the 5D analogue of 
the construction of the synchronous coordinate system 
in 4D spacetime [24]. Once a canonical mass coordi- 
nate g has been chosen, the corresponding spacetime 
coordinates could still be subjected to arbitrary trans- 
formations that are, however, independent of g. 

A canonical coordinate system for the flat 
spacetime-mass manifold has already been given in 
Eq. (17). The spacetime part is independent of g 
and is a k = 1 Robertson-Walker metric that satisfies 
the gravitational field equations for a perfect fluid 
with p = - p  = 3c4/8~rGL 2. Alternatively, one may 
recognize the spacetime part as the de Sitter metric 
with a cosmological constant A = 3/L 2. That is, the 
flat 5D spacetime-mass manifold corresponds to the 
empty expanding de Sitter spacetime. It turns out 
that whenever, the spacetime part of the 5D metric in 
canonical coordinates is independent of g, the Kaluza- 
Klein equations reduce to the vacuum gravitational 
field equations with a cosmological constant. To 
demonstrate this fact, consider the metric in canonical 
coordinates as in Eq. (19) ; the components of the 5D 
Ricci tensor can be written as 

(5)Ru ~ _..=(4) Rgu - Su~ , (20a) 

OV~ (20b) (5)R~s = A~ ;,~ Og ' 

(5)Rss - OA~ 2 -~a ~ - A~#A ~ (20c) 
og 

where St,~ is a symmetric tensor given by 

e 2 [oa,~ 2A2A~  ] S ~ = - ~  [ - - ~ +  ( ~ + A ~ ) A ~ z u -  

+~-51 (3 + gala) guy . (21) 
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Here (4)R~, and F~p are, respectively, the 4D Ricci 
tensor and the connection coefficients constructed via 
g,~& Moreover 

A~# = 10ga# 
2 3g ' (22) 

where A f  = g#SA~8, and the semicolon in F_x 1. (20b) 
represents the usual covariant differentiation in 4D. It 
follows from Eqs. (18), (20a) and the Kaluza-Klein 
field equations that 

T, ,  - 87rG c4 [S~, - ½gu- (S - 2A)] . (23) 

This result is general, insofar as g~,~ can depend on all 
5 coordinates. 

If  the 4D metric g,,# does not depend on the fifth 
coordinate g, then Aal3 = 0 and this ensures that (5)R~,5 
in Eq. (20b) and (S)R55 in Eq. (20c) vanish. Fur- 
thermore, the 4D Ricci tensor is then (4)R~,~ = St,,, = 
3L-2g~. It is possible to satisfy Eq. (23) by setting 
Tu~ = 0 in this case, and the cosmological constant is 
then 

3 
A = L~ .  (24) 

With L as above, this gives A = 3c4/GaM 2 .~ 
10-56cm-2, in agreement with the standard inter- 
pretation of cosmological data. Thus we find that 
the cosmological constant appears naturally from the 
reduction of the 5D empty equations when the space- 
time metric is independent of  the fifth coordinate, and 
that it has an acceptable size. 

An immediate consequence of this result is that 
from any vacuum solution of Einstein's equations with 
cosmological constant (24) we can directly obtain a 
corresponding 5D solution of the Kaluza-Klein equa- 
tions. A well-known example is the Schwarzschild-de 
Sitter solution, from which we get an exact 5D Ricci- 
fiat metric 

g2 [ dr2 1 -(5)ds2 = ~ -c2F(r)  dt2 + ~ + r2d~ 2 

+ dg 2 , (25) 

where F(r) is given by 

F(r) = 1 rg r 2 (26) 
r L 2 "  
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Here rg is the constant gravitational radius of the 
source and is related to the proper mass of the 
Schwarzschild spacetime. In this way, 5D "black 
hole" solutions [25] can be recovered. 

Another way to satisfy Eq. (23) is to set A = 0. It 
then follows from (4)R/, v = SI~ v = 3L-Zgu~(x) that 

3c 4 

Tt,v = 8¢rGL2 g,,v , (27) 

which can represent a perfect fluid with an equation 
of state p = - p .  The energy density of the fluid 
is given by p = 3c4/8~rGL 2. An interesting exam- 
ple of this situation is provided by the standard infla- 
tionary cosmological model with a spatially flat (k = 
0) Friedmann-Lema3tre-Robertson-Walker spacetime. 
The associated 5D exact solution of the Kaluza-Klein 
equations is 

g2 
_(5)ds 2 = -~  [-c2dt 2 + e 2m (dr 2 + r2dfl2)] 

+ de 2 , (28) 

where the Hubble constant is H = c/L. The 4D part 
of the fiat metric (28) describes an exponentially ex- 
panding space and is locally equivalent to the metric 
of de Sitter spacetime. 

Finally, it is interesting to discuss the geodesic equa- 
tion for the metric form (12) with the Minkowski 
metric replaced by g~/~(x; e). The considerations of 
the previous section involved the local trajectory of a 
free test particle in the spacetime-mass manifold (3). 
We now proceed to extend those results to the whole 
trajectory. Using 

[ e2 ( d e ~ 2 ] d s 2 ,  (29) (S)ds2 = - ~ -  \ a s /  ] 

where - d s  2 = g~/3dx~dx/~, it is possible to reduce the 
5D geodesic equation to the 4D equation of motion 

d2xU F~ dx~ dx# = F ~ (30a) 
ds ----'-T- + fl ds ds 

Here c2F/" is the force experienced by a test particle 
per unit proper mass and is given by 

1 dx ~ dx ~ ~ de dx/3 ag~ e 
F / ~ = -  g ~ +  2 ds ds ] ds ds Be (30b) 

It is important to note that the acceleration is not 
orthogonal to the velocity of the particle. That is, 

gu~FZ*dx~/ds ~ 0 since gt, v depends explicitly upon 
e(s) .  Furthermore, the geodesic equation for the fifth 
coordinate reduces to 

d2g 2 i'de'~ 2 g 
ds 2 g / - - / \  ds ] + g --5 

1 [g2 ( d g ~  2] dx" dx ~ Ogal3 (31) 
-U-k jj as as ae 

If the spacetime metric is independent of g, so 
Og~a/ag = 0, then the path of the test particle in 4D 
is a geodesic given by Eq. (30a) with F u = 0. More- 
over, Eq. (31 ) can be solved completely in this case 
and we choose 

g = go/cosh ( ~ - 2 )  , (32) 

where sic is the proper time along the geodesic path 
of the particle and so/c is the epoch at which the mass 
coordinate of the test particle equals its proper mass. 
These results, when restricted to a local spacetime re- 
gion, are in complete agreement with those derived in 
the preceding section. 

4. Discussion 

Following Mach's basic insight, we have adopted 
an approach to Kaluza-Klein theory in which the 
fifth dimension represents the mass generated by the 
matter in the universe. Generalizing the action prin- 
ciple for the motion of a test particle in Minkowski 
spacetime, we have studied in detail the geodesics 
of the 5D metric (3) in which the 4D metric is 
Minkowskian. This 5D metric is conformally flat but 
not Ricci fiat, so that the Kaluza-Klein equations 
are not in general satisfied in this case. However, 
the metric form (3) is only intended to represent 
the manifold around any local event in spacetime. It 
has been demonstrated that geodesic motion in this 
5D metric actually gives the same results as inertial 
motion in 4D Minkowski spacetime. In addition, the 
relative rate of change of the mass coordinate is fixed 
by the constant L which is independent of space and 
time. There are, of course, observational limits on the 
variation with time of the rest masses of particles and 
the strength of gravity [22,23]. These indicate that 
any such variation would have to be very slow and 
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of  cosmological origin. Therefore L is chosen to be 
o f  the order of  the Hubble radius (c/H). A judicious 
choice o f  the 5D metric form as in Eq. (12) can give 
a variation compatible with observational limits. Thus 
we can assume that the mass coordinate of  a free 
particle (with proper mass too) varies with the proper 
time r along its path as mo/m -- c o s h [ c ( r  - ro)/L], 
where r0 is the epoch at which the mass coordinate 
equals mo. (This assumes that the extra dimension 
of  Kaluza-Klein theory is spacelike.) It follows that 
for r - ~'0 << L/c, m-l ( dm/dr) ~- - c 2 ( r -  ro) / L2; 
hence, Im -l(dm/dr)] < 10-1Syr - l  consistent with 
observations that have extended over a period of  
time, r - r0, that is less than a century. Replacing the 
Minkowski metric with g~#(xa;g), we arrive at the 
metric form (19) in canonical coordinates in which 
the fifth dimension is related to mass via g = Gm/c 2. 
The form of  the metric (19) in the canonical co- 
ordinate system is invariant under 4D coordinate 
transformations that are independent o f  g but not un- 
der arbitrary 5D transformations, so we must restrict 
ourselves to transformations in ordinary spacetime to 
maintain the interpretation of  the fifth coordinate as 
mass. In regard to field equations, we have adopted 
the view [ 17-19] that matter in 4D is the result of  
Kaluza-Klein theory in 5D. For the metric (19),  we 
have used the empty 5D Kaluza-Klein equations to 
find an effective source for the 4D Einstein equa- 
tions. An immediate consequence of  this reduction 
is that an effective cosmological constant A = 3/L 2 
appears when the 4D metric is independent of  the 
fifth coordinate, i.e., ag~/3/Og = 0. This suggests that 
in our canonical coordinate system the condition 
Og~a/ag = 0 defines a Kaluza-Klein vacuum. Thus 
the introduction o f  any vacuum Einstein spacetime 
(with cosmological constant A = 3/L 2) in the metric 
form (19) generates a solution of  the Kaluza-Klein 
equations in canonical coordinates. 

Space and time are classical manifestations of  ex- 
tension and movement of  physical systems. 

The concept of  spacetime-mass manifold, via the 
introduction of  a fifth dimension g = Gm/c 2, con- 
stitutes an attempt at a classical unification of  space, 
time, and matter. This classical matter involves classi- 
cal fields as well as particles. Classical particles follow 
geodesics of  the spacetime-mass manifold; however, 
this would not be the case for elementary particles. 
Only in the correspondence limit (m ---, cx~) could 

one ascribe a trajectory to an elementary particle; in 
this limit the ratio of  the Compton wavelength of  the 
particle ( h / m c )  to its gravitational length (Gm/c 2) 
tends to zero. Moreover, the inertial properties of  an 
elementary particle are determined by its mass as well 
as spin; our theory only involves classical particle 
masses since the spin degrees of  freedom can be ne- 
glected in the correspondence limit. In the absence of  
a proper quantum theory of  gravitation, the relation- 
ship between our classical theory and the quantum 
description of  the gravitational field cannot be eluci- 
dated at present. Furthermore, our theory needs to be 
supplemented with further hypotheses in order to be 
viable even at the classical level since the reduction 
of  the spacetime-mass manifold to the spacetime is 
not unique. For instance, a flat spacetime-mass mani- 
fold can correspond to a spacetime with metric gg~ = 
(L/g)2rl~ as well as the de Sitter spacetime. 

The results we have derived above indicate to us that 
it is possible, at least in principle, to realize Mach's  
principle in a 5D Kaluza-Klein theory in which the 
extra coordinate is related to mass. However, more 
work remains to be done to see how far this idea is 
viable. The non-uniqueness of  the canonical coordi- 
nate system, the properties of  solutions of  the 5D field 
equations with ag~/Og v~ O, and the consequences 
of  extending our approach to include electric charge 
require further investigation. 
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