
Kaluza-Klein Theories: An Overview 

The aim of this Comment is to provide for the nonexpert a descriptive overview, 
colored with a certain amount of personal prejudice, of the basic ideas underlying the 
Kaluza-Klein approach to unification, and a very brief survey of some of the more 
recent developments. The treatment is nonmathematical in the extreme; it is hoped 
that the references are sufficiently comprehensive (although they are nowhere near 
complete) that the interested reader can delve into those aspects of the subject that 
seem most worthy of further attention. 

I. HISTORY 

If we disregard a precocious attempt by Nordstrom in 1914, 1 the 
history of Kaluza-Klein theories begins, properly enough, with Ka
luza,2 whose paper entitled "Zurn Unitatsproblem der Physik" was 
communicated to the Prussian Academy by Einstein in 1921. Klein 3 

and others4 kept the idea alive during its "classical" period, which 
extended roughly into the mid-sixties or early seventies. All of this 
work had as its goal the unification of gravity with electromagnetism 
at the classical level by assuming the formal existence of a single 
extra spatial dimension. 

It was realized, as early as 1964 by DeWitt, 5 that by adding more 
than one extra dimension one could encompass non-Abelian gauge 
theories as well. In the late seventies, spurred by recent progress in 
higher-dimensional supergravity theories, 6 and by the fact that the 
grand-unified scale was only a few orders of magnitude above the 
Planck length, the Kaluza-Klein idea suddenly acquired widespread 
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notoriety, with the result that by now the diligent researcher who 
wishes to become acquainted with the field is faced with a reading 
list of several hundred papers, all written within the last few years. 

II . BASIC STUFF7 

Since there is, as yet, no compelling experimental evidence in favor 
of the Kaluza-Klein idea, the decision to work on it requires a certain 
a priori belief in the likelihood that it is correct. As with all acts of 
faith, the leap is made easier by the existence of a miracle or two. 
In this case, the miracle comes about in the following way. 

Let us assume, as the simplest nontrivial example, that we are 
studying general relativity in five space-time dimensions. The action 
IS 

(l) 

where g0 b is the five-dimensional metric, R is the curvature scalar: R 
= gA8RA8' and G5 is the five-dimensional version of Newton's con
stant, with dimension of (length)3• We take the topology of our five
dimensional manifold to be not that of five-dimensional Minkowski 
space, M5, but rather that of M4®S', where S' is a circle of some as 
yet unspecified radius r. It is then convenient to write the metric in 
the following form: 

g - ,l.. - 1/3 
AB - 'I' [ 

gµ, + AµAv</> </>Aµ</> ] • 

Av</> 

(2) 

Note that there is no loss of generality in so doing. This is not an 
Ansatz, but rather a choice of parametrization for gA/3' which is 
arbitrary. 

Furthermore, the assumed topology allows us to make a Fourier 
expansion of each component of the metric in the coordinate x5: 

gAixµ,xS) = l t~i (xµ)e 111x'lr. (3) 
II= -oo 
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The standard dimensional reduction occurs if we now assume that 
a I ax5 is a Killing vector, i.e., that the metric is independent of x5• 

This amounts to keeping only the n = 0 mode in the expansion of 
Eq. (3). Upon substituting the n = 0 piece of gA 8 into the action 
Eq. (1) and integrating over x5, one finds 

S = - _I_ fd4xldetig JIVi[R<4J + !.."F p .v + ~ _,_aµ--'-<P_aµ--'-4>] 
167TG ( µv 4'1' µv 6 <j> 2 ' 

(4) 

The appearance of the U(l) gauge term involving Fµv = aµAv -
avAµ is the simplest example of the Kaluza-Klein "miracle." A pleas
ing corollary is that, as can easily be shown, the gauge transformation 
Aµ - Aµ + a/1. is induced by the following special case of a five
dimensional coordinate transformation: 

x'" = xµ 

x' 5 = x 5 + A(xµ). 

(Sa) 

(Sb) 

The generalization of this discussion to the non-Abelian case, while 
nontrivial, is straightforward. 8 One assumes a background manifold 
of the form M4 X B where Bis compact, Riemannian, and admits 
a set of Killing vectors Kj, i = l, ... , n generating the algebra of 
some n-dimensional non-Abelian group G. One finds, in complete 
analogy to the five-dimensional case, that dimensional reduction gen
erates a term proportional to the combination F~vFµvi where F~v is 
the field strength appropriate to the group G, and that the non
Abelian gauge transformation can be viewed as the following coor
dinate transformation on M 4 X B: 

x'µ = xµ 

with 

a . 
K~-f/ = 0. 

' ax" 

(6a) 

(6b) 

(6c) 
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This generalized "miracle" leads one to what might be called the 
central dogma of Kaluza-Klein theory: the origin of gauge theories 
lies in a higher-dimensional version of general relativity (perhaps 
including supergravity). To the true believer, this is a statement not 
only of possibility but of necessity: gauge theories must never be put 
in by hand; they must always emerge through the process of dimen
sional reduction. A theory given, for example, by 

(7) 

where the gauge field F~s is inserted by hand in the higher dimen
sional space, would be anathema (unless, of course, the theory can 
be shown to derive from pure gravity in a yet higher dimensional 
space). 

Before closing this section, it is instructive to study the dimen
sionally reduced action, Eq. (4), a little further. By inspection, we 
see that the field In <1>1<1>c plays the role of a standard scalar field. It 
is convenient to choose <Pc• which is the constant background value 
of <P, equal to unity; the parameter r then truly represents the radius 
of the fifth dimension. In the early days of Kaluza-Klein, this extra 
scalar field tended to be an embarrassment (it means that the reduced 
theory is really a scalar-tensor theory of gravity). Nowadays one 
recognizes that scalar fields often play important roles in the spon
taneous breakdown of gauge theories; furthermore, quantum correc
tions are likely to give the scalars a mass, thereby removing their 
long-range gravitational effects. 

One also sees from Eq. (4) that it is really Aµ = (1/v167T'G)Afl 
that plays the role of the usual gauge field. This information is 
important in extracting the value of the charge q associated with the 
U(l) gauge field. Let us consider a scalar matter field X minimally 
coupled to the five-dimensional Kaluza-Klein metric gAB: 

(8) 

Here the covariant derivative \J A is to be evaluated using the metric 
gAB· In order to endow X with charge, it is necessary for it to depend 
on x 5• The simplest possibility is 
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(9) 

i.e., we keep only the n = 1 mode in its Fourier expansion. Fur
thermore, to isolate the effects of the gauge field it is convenient to 
set <f> = 1 and g"'v = "f/"'v in the gA8 of Eq. (2). Doing all this, one 
finds that x0(x") obeys the usual Klein-Gordon equation for a 
charged particle, provided that the charge is identified as 

h (167TG)"' 
q=-

c r 
(10) 

[N.B.: Of course, there is no 11 in Eq. (8); 1i enters only when one 
seeks to extract a charge from the coefficient of Awl Now there is 
no phenomenological basis for identifying q with the observed electric 
charge (for example, the five-dimensional model has the property 
that any particle with charge also has a mass of order the Planck 
mass). Nevertheless, all gauge couplings we know about fall in the 
range 

I I -< q<-100 ,...., ,...., to' (11) 

and applying this estimate to Eq. (10) leads us to conclude that r 
should be taken at most a few orders of magnitude above the Planck 
length of 1.6 X 10- 33 cm. The fact that the gauge coupling constants 
are proportional to the ratio of the Planck length to the size of the 
extra dimensions generalizes to the non-Abelian case as well 9

; it is a 
comforting consistency of Kaluza-Klein theories that the smallness 
of the extra dimensions, which explains why they are not seen, follows 
from the requirement that the gauge couplings are not too much 
smaller than unity. 

III. SOME PERSPECTIVES ON DIMENSIONAL 
REDUCTION 

In the case of the five-dimensional model, dimensional reduction 
works so well that it is easy to overlook the conceptual difficulties 
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that can infect the process when D > 5. The main problem is that, 
if one assumes a manifold of the form 

M = (Minkowski space) ® B, (12) 

where Bis Riemannian and compact, and admits a set of non-Abelian 
Killing vectors, then M cannot be a solution of the classical Einstein 
equations with or without cosmological constant. And yet it is pre
cisely this form of M that is required if straightforward dimensional 
reduction is to work as described in the previous section. 

Frequently in the literature, one finds that such an Mis chosen 
anyway; one integrates out the extra dimensions and works only with 
the dimensionally reduced theory from then on. The unwary reader 
never has time to ask whether the solutions of the reduced theories 
are also solutions of the D dimensional equations of motion. (They 
are not, and adding a cosmological constant or a simple conformal 
factor will not help either.) 

There are at least three possible attitudes toward this situation: (i) 
Dimensional reduction is a device whose sole object is to generate 
the effective four-dimensional theory; it is then immaterial whether 
the higher dimensional equations are satisfied. This is fine as far as 
it goes-for example, this strategy worked well in the construction 
of N = 8 supergravity in four dimensions. 6 However, all pretense of 
unification is abandoned at the outset. (ii) The extra dimensions do 
exist, but one must invoke extra matter fields to achieve spontaneous 
compactification (i.e., to have a solution to the higher-dimensional 
equations with the assumed symmetry and topology). 10 This treats 
unification perhaps slightly more seriously, but there is still the danger 
that the matter fields, if introduced ad hoc, will violate the central 
dogma of the previous section. (iii) If one takes the extra dimensions 
completely seriously, then one must begin with a purely geometrical 
theory in the higher dimensional space, and find a solution to either 
the classical or perhaps the quantum-corrected equations of motion 
that exhibits spontaneous compactification. As remarked above, pure 
gravity at the classical level does not work; supergravity in 11 di
mensions, which has been quite extensively studied, 11. 12 seems to work 
only if the space-time part of the manifold is not Minkowski space 
but is anti-deSitter space. Furthermore, the length scale associated 
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with the curvature in the anti-deSitter space is of the same order of 
magnitude as that in the internal space-an interesting world, but 
not the one we live in. 

IV. QUANTUM EFFECTS 

A possibly important modification of this picture is wrought by the 
inclusion of one-loop quantum effects. In particular, the fact that the 
extra dimensions are compact leads, via the Casimir effect, to cor
rections to the classical equation of motion. These have been com
puted for the original five-dimensional model, 13 including finite tem
perature effects 14; the case in which the compact manifold is a d
dimensional torus has been studied as well. 15 The effect of matter 
fields has also been investigated. 16 It has been shown, in fact, that 
matter fields can lead to corrected equations of motion for which 
the manifold M4 X SN is a solution. 17 (For technical reasons, the 
computation is restricted to Nodd.) Furthermore, the solution fixes 
the size of the N-sphere relative to the Planck length. Thus in these 
models the gauge coupling constant of the dimensionally reduced 
theory is a predicted number. (Presumably this is the coupling con
stant measured at the Kaluza-Klein scale. In a realistic model, it 
would be necessary to use the renormalization group to obtain a 
coupling constant defined at laboratory energies in order to compare 
with experiment.)18 

While these results are encouraging, there are a number of cau
tionary remarks to be made: 

(i) The matter fields which have so far been shown to produce the 
quantum compactification tend to give very small contributions to 
the Casimir energy. This means that a huge number of fields (104 or 
105) are needed to give a reasonable value for the compactification 
scale. Not only do the matter fields violate the central dogma, but 
their number has to be unrealistically large. 

(ii) Thus it is of interest to compute the Casimir energy due to the 
gravitational field itself on the background geometry M 4 X SN to 
see whether it too is unexpectedly very small. This is technically 
much more involved than the matter-field case, but progress is being 
made on this problem. 19•20 A further difficulty with the gravitational 
case, though, is precisely the absence of a tunable parameter such as 
the number of fields. In the matter-field case, the largeness of this 
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parameter can be used to guarantee the reliability of the loop 
expansion 17; in the case of gravity, the one-loop approximation can 
only be justified post hoc if the compactification scale turns out to 
be sufficiently bigger than the Planck length, Lr, because at distances 
well above LP, higher order quantum effects should be weak. A 
consoling thought is that if a realistic model is ever found, in order 
for the gauge coupling to be phenomenologically acceptable, the scale 
of the extra dimensions must, in fact, turn out to be significantly 
bigger than LP. 

(iii) As always, any quantum gravitational effects must be viewed 
with suspicion because of the absence of a consistent theory of quan
tum gravity. In the present instance, the higher-loop contributions 
would not only be prohibitively difficult to compute, but would also 
be rendered meaningless by the nonrenormalizability of the theory. 
Nevertheless, the Casimir effect in Kaluza-Klein theories does rep
resent a rare example where quantum gravity is expected to play a 
physically important role. 

V. COSMOLOGY 

In four-dimensional general relativity the subject of cosmology is 
approached through the study of time-dependent solutions to the 
equations of motion which are assumed to describe evolving uni
verses. This same philosophy can be applied to Kaluza-Klein the
ories. The earliest such study21 involved a solution of the five-di
mensional model in which one dimension is predicted to shrink with 
time while the other three spatial dimensions expand. This was gen
eralized to the case of supergravity in eleven dimensions, 22 which had 
the advantage of providing a natural understanding of why three 
spatial dimensions would expand and seven contract (as opposed to, 
say, four and six). One limiting feature of these models is that as the 
size of the internal dimensions changes with time, so do the gauge 
coupling constants. The possible time variation of fundamental con
stants is severely restricted by observation. 23 A possible way out is 
to find a model in which the extra dimensions do not contract but 
rather remain fixed at some (presumably small) scale. 24 Alternatively, 
one may speculate that as the contracting extra dimensions approach 
the Planck scale LP, quantum effects along the lines of those described 
in the previous section become dominant and freeze the extra di
mensions at some fixed size relative to LP. 
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These days when one thinks of cosmology, the question of inflation 
naturally pops up. Some exploratory work has been done, either to 
see whether Kaluza-Klein theories can accommodate an inflationary 
phase, or to see if some of the desirable consequences of inflation, 
such as entropy production, can be viewed as a by-product of di
mensional reduction. 25

•
26 It is probably too soon to know whether a 

convincing scenario along these lines can be constructed. 
The importance of these cosmological studies is that they seem to 

offer the best, indeed perhaps the only, hope at present for deducing 
some observational consequences that may ultimately differentiate 
Kaluza-Klein theories from other potential avenues of unification. 

VI. A CLOUD ON THE HORIZON 

The sun does not always shine in the extra dimensions. Perhaps the 
most serious problem is the absence of a phenomenologically realistic 
embodiment of the Kaluza-Klein idea. The situation is potentially 
more difficult than merely finding the right model in a large haystack 
of possibilities. There is a theorem 27 to the effect that it is impossible 
to have a model in which the massless fermions fall into chiral 
representations of the gauge group. (The theorem is not quite that 
absolute, but. it is nearly so.) Barring the simple but inelegant pos
sibility that right-handed partners of the observed left-handed leptons 
and quarks will start showing up at the next generation of accelerators 
(or at least at some energy insignificant compared to the compacti
fication scale), one is faced with a real quandary. This has prompted 
work in which one is led to relax some of the standard assumptions 
of Riemannian geometry in the higher dimensional space. 28 

VII. CONCLUSIONS 

This review has concentrated on issues relating to the basic features 
of Kaluza-Klein theories in general. There has recently been a great 
deal of work on the eleven-dimensional version of supergravity 11 •12 

which, in view of the intense scrutiny it has received, probably de
serves more discussion than the brief mention we have given it. Also, 
one should be aware that most of the literature on Kaluza-Klein 
theories is much more mathematical than might be inferred from the 
present article; in particular, the geometry of fiber bundles29 is ex-
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tensively used. 30 Whether this kind of treatment illuminates or ob
scures the physics will depend on the background of the individual 
reader. 

As of this writing, it is not possible to pronounce on the final 
place of the Kaluza-Klein idea in physics. There is no doubt that to 
many physicists it has great aesthetic appeal, but we must wait to 
see whether the ultimate description of Nature will involve extra 
dimensions of space or whether the Kaluza-Klein idea, as elegant as 
it appears, will turn out to have been just another pretty face that 
stands out for a moment in the crowd and then is gone. 

ALAN CHODOS 
Department of Physics, 

Yale University, 
New Haven, Connecticut 06511 

References 

I. G. Nordstrom, Z. Phys. 15, 504 (1914). 
2. Th. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 966 (1921). 
3. 0. Klein, Z. Phys. 37, 895 (1926). 
4. A. Einstein and P. Bergmann, Ann. Math 39, 683 (1983); A. Einstein, V. Bergmann 

and P. Bergmann, in Theodor van Karman Anniversary Volume, Pasadena (1941), 
p. 212; A. Einstein and W. Pauli, Ann. Math. 44, 131 (1943); Y. Thiry, J. Math 
Pure Appl. 30, 275 (1951); J.-M. Souriau, Nuovo Cimento 30, 565 (1963); W. 
Thirring, Acta Physica Austriaca Suppl. IX, 256 (1972). 

5. B. DeWitt in "Dynamical Theory of Groups and Fields" (Gordon and Breach, 
New York, 1965); R. Kerner, Ann. Inst. Henri Poincare 9, 143 (1968); A. Traut
man, Rep. Math. Phys. 1, 29 (1970). 

6. E. Cremmer and B. Julia, Phys. Lett. SOB, 48 (1978); Nucl. Phys. B159, 141 
(1979). 

7. More detailed versions of some of the results in this section can be found in: E. 
Witten, Nucl. Phys. B 186, 412 (1981); T. Appelquist and A. Chodos, Phys. Rev. 
D 28, 772 (1983). See also A. Salam and J. Strathdee, Ann. Phys. 141, 316 (1982). 

8. Y. M. Cho, J. Math. Phys. 16, 2029 (1975); Y. M. Cho and P. G. 0. Freund, 
Phys. Rev. D 12, 1711 (1975); Y. M. Cho and P. S. Jang, ibid. D 12, 3789 (1975); 
L. N. Chang, K. I. Macrae, and F. Mansouri, ibid. 13, 235 (1976). 

9. S. Weinberg, Phys. Lett. 125B, 265 (1983). See also M. J. Duff, C. N. Pope, and 
N. P. Warner, Phys. Lett 130B, 254 (1983). 

10. J. F. Luciani, Nucl. Phys. B 135, 111 (1978); T. Horvath, L. Palla, E. Cremmer, 
and J. Scherk, Nucl. Phys. B 127, 57 (1977); S. Randjbar-Daemi, A. Salam, and 
J. Strathdee, Nucl. Phys. B 214, 491 (1983). 

11. P. G. 0. Freund and M. A. Rubin, Phys. Lett. 97B, 233 (1980); F. Englert, Phys. 

180 

Lett. 119B, 339 (1982); B. Biran, F. Englert, B. de Wit, and H. Nicolai, Phys. 
Lett. 124B, 45 (1983); F. Englert, M. Rooman, and P. Spindal, Phys. Lett. 127B, 
47 (1983). 



12. M. J. Duff, Nucl. Phys. B 219, 389 (1983); M. J. Duff, B. W. Nilsson and C. N. 
Pope, Phys. Rev. Lett. 50, 2043 0 983); D. N. Page, Phys. Rev. D 28, 2976 (1983); 
M. A. Awada, M. J. Duff, and C. N. Pope, Phys. Rev. Lett. 50, 294 (1983). 

13. T. Appelquist and A. Chodos, Phys. Rev. Lett. 50, 141 (1983); T. Appelquist 
and A. Chodos. Phys. Rev. D 28, 772 (l 983); A. Chodos, "Quantum Aspects of 
Kaluza-Klein Theories," in An fnlroduction lo Kaluza-Klein Theories, edited by 
H. C. Lee (World Scientific, Singapore, 1984). 

14. M.A. Rubin and B. Barkan-Roth, Nucl. Phys. B 226, 444 (1983). 
15. T. Appelquist. A. Chodos, and E. Myers, Phys. Lett. 127B, 51 (1983); T. Inami 

and 0. Yasuda, Phys. Lett. 133B, 180 (1983). 
16. M. A. Rubin and B. Roth, Phys. Lett. 1278, 55 (1983); K. Tsokos, Phys. Lett. 

1268, 451 (1983). 
17. P. Candelas and S. Weinberg, Texas Preprint UITG-6-83 (1983). See also Ya. I. 

Kogan and N. A. Voronov, JETP Lett. 38, 311 (262) (1983). 
18. S. Weinberg in Proceedings of lhe Fourth Workshop on Grand Unificalion. Birk-

hauser (Boston, 1983). 
19. A. Chodos and E. Myers, Annals of Physics (to be published). 
20. M. A. Rubin and C. R. Ordonez, in preparation. 
21. A. Chodos and S. Detweiler, Phys. Rev. D 21, 2167 (1980). 
22. P. G. 0. Freund , Nucl. Phys. B 209, 146 (1982). 
23. W. Marciano, Phys. Rev. Lett. 52, 489 ( 1984). 
24. S. Randjbar-Daemi, A. Salam, and J. Strathdee, Phys. Lett. 1358, 388 (1984). 
25. Q. Shafi and C. Wetterich, Phys. Lett. 1298, 387 (1983). 
26. E. Alvarez and M. 8elen-Gavela, Phys. Rev. Lett. 51, 931 (1983); D. Sahdev, 

Phys. Lett. (to be published); S. M. Barr and L. S. Brown, University of Wash
ington preprint 40048-03, p. 4; R. B. Abbott, S. M. Barr, and S. D. Ellis, University 
of Washington preprint 40048-03, p. 4 (1984); Y. Okada, University of Tokyo 
preprint UT-429 (1984). 

27. E. Witten, "Fermion Numbers in Kaluza-Klein Theory," Princeton preprint (Oc
tober 1983). 

28. S. Weinberg, "Quasi-Riemannian Theories of Gravitation in More than Four 
Dimensions," Texas preprint UITG-1-84 (1984); C. Wetterich, "Dimensional 
Reduction of Fermions in Generalized Gravity," Bern preprint BUTP-84/ 5 (1984). 

29. A fiber bundle is something that has been coughed up by a large cat. 
30. For example, C. A. Orzalesi, Fortschr. der Physik, 29, 413 (1981); R. Coquereaux, 

"Multi-dimensional Universes, Kaluza-Klein, Einstein Spaces and Symmetry 
Breaking," Marseille, CPT-83/P-1556 (December 1983); Y. M. Cho, Ref. 8. 

181 


