Moreover, application of the definition of cavity fields as in
Sec. III shows that the right side of Eq. (26) is also the
electric field within a small cavity ¥ of static charge distri-
bution p. That is, the Maxwellian and cavity electrostatic
fields within a static charge distribution are identical for
arbitrarily shaped cavities.

V. ARBITRARILY TIME-VARYING FIELDS

Equations {22) give the difference between time-harmon-
ic Maxwellian and cavity fields within current or polariza-
tion density for arbitrarily shaped cavities. In addition, Eq.
(26) proves that the Maxwellian .and cavity electrostatic
fields are identical within a continuous distribution of stat-
ic charge. In Sec. V we derive expressions corresponding to
Eqgs. (22) for the difference between Maxwellian and cavity
fields in source regions of arbitrary time dependence.

The expressions for arbitrary time variation can be de-
rived simply by taking the Fourier transform of Eqs. (22),
i.e., inserting exp( — iwt ) time dependence and integrating
over w from — « to + oo, to get

Ert)—&.rt)= — Ly P(r,t)/e, (27a)
Ht) =0, (rt)= — Ls - M(r,t). (27b)

The script letters in Egs. (27) denote the time-varying fields
and polarization densities.

The only essential difference between these expressions
(27) with arbitrary time variation and the time-harmonic
expressions (22) is the absence of current density on the
right side of Eq. (27a). The current density term that one
obtains upon taking the Fourier transform of Eq. (22a) is
proportional to the charge separation

- St (28)

that occurs during the time interval A¢ that the current in
the cavity is removed.

However, to define cavity fields in a current density
J (r,t) of arbitrary time variation, we have assumed that
the current in the cavity is removed instantaneously
(At—0). Thus the integral in Eq. (28) is zero and only the
time-varying electric and magnetic polarization densities
are left in Egs. (27). That is, for arbitrary time variation
with instantaneously removed cavities, unlike harmonic
time dependence with stationary cavities, the Maxwellian
electric field equals the cavity electric field (for arbitrarily
shaped cavities) within a source region of volume current
density.
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In the 1920s Kaluza and Klein achieved an elegant unified theory of gravitation and
electromagnetism by assuming that space-time is really 5-dimensional. Their approach has since
been extended to even higher dimensions in an effort to provide a geometrical unification of all the
fundamental interactions. Any such scheme must answer the obvious objection emphasized by
Einstein: Why, then, does space-time appear to be only 4-dimensional? This paper provides a
semihistorical introduction to Kaluza~Klein unification on a level accessible to those with a basic
knowledge of general relativity and particle physics, and examines the progress made in

answering Finstein’s, and related, objections.

L. INTRODUCTION: KALUZA-KLEIN
UNIFICATION

In 1921, the mathematician Theodor Kaluza published

an elegant attempt at a geometrical unification of electro-
magnetism and gravitation.' The crux of Kaluza’s effort is
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the daring suggestion that space-time be considered to be
5 ={1 + 3 + 1)-dimensional, with a line element given by>

ds* =y dx'dx’, (i,j=12,34,)5). (1.1)

To account for the fact that physical quantities appear only
to change with respect to the usual 4 = (1 + 3)-dimension-
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al space-time manifold, the metric tensor ¥, is required to
satisfy

Vis =0, (1.2)

i.e., it has a vanishing derivative with respect to the newly
introduced fifth dimension. Kaluza called this requirement
the “cylinder condition.” Also, Kaluza took y,s to be a
constant normalized to 1. That these choices might lead to
a unified geometry is suggested when one considers the
Christoffel symbols® that result from condition (1.2). In
particular, one finds with Kaluza that

[0:395 ] = %(Vaﬂ,ﬁ - 736,0: - 7’6(1,/3)’ (a’ﬂ"s = 1’2’3:4)’(1'3)
(5861 =4Vsps — Vs5.8)- (1.4)
Equation (1.3) leads one to hope that the standard field
equations of 4-dimensional general relativity will hold on
the 4-manifold; Eq. (1.4) suggests setting the metric compo-

nents ¥s, proportional to the components A, of the elec-
tromagnetic 4-potential:

Vsa =BA,. (1.5)
Then the electromagnetic field tensor is just
Fos =(2/B)[5a,8], (1.6)

with Eq. (1.4} thus “explaining” electromagnetic gauge in-
variance as well.

Indeed, using the above identifications in a weak field
approximation (and making an auspicious choice of arbi-
trary constants), Kaluza shows that the 5-dimensional field
equations

R; — Ry, =T, (1.7)

(where T7; is now exclusive of electromagnetism) reduce to
the usual Einstein equations when /, j = u,v, and the Max-
well equations when i, j = p,5 (the 5,5 component yields a
trivial identity). Further, geodesics in the 5-manifold corre-
spond to the usual (4-dimensional) paths of charged parti-
clesin a combined gravitational and electromagnetic field.*
Thus at least to a weak field approximation, electromagne-
tism can be considered as part of the geometrical structure
of a 5-dimensional space-time.

Kaluza’s original inspiration was given a firmer basis by
Oskar Klein in 1926.%% Klein begins with Kaluza’s Egs.
(1.1) and (1.2). Klein further requires that the coordinates
x*# characterize the usual 4-space-time; this means that
they must transform between frames according to the usual
4-transformation law

xt=fHR). (1.8)
Then demanding that y,; 5 vanish in all frames implies that
x> transforms (to within a constant factor) according to’

X =32+ (1.9)
Thus the quantity

g,quy‘uv —Bzy‘us Vs (1'10)
isindependent of the x° coordinate and is a tensor under the
transformation (1.8); it can thus be identified with the usual
metric tensor for the 4-manifold.® Keeping the definition
(1.5) for the 4-potential and setting yss = 1, we have the 5-
dimensional metric tensor

B (g,w +B°4,4,, BA#,)
v pA,, 1/
It is then straightforward to obtain field equations from the

(1.11)

864 Am. J. Phys., Vol. 53, No. 9, September 1985

variational principle
0 = (SJde\/ —_ 7/R5,

where y=det(y;) and R; is the (5-dimensional) curvature
scalar computed from the metric (1.11). Impressively, the
usual Einstein and Maxwell equations for gravitation and
electromagnetism in four dimensions result, provided we
set B =2« = 167G .

Finally, consider the behavior of the 4-potential under
the particular change of coordinates
(x#x’)—[x*x* + f3x”)]. Using Eq. (1.8) and the usual
tensor transformation law for the metric, we have

ax' ox™ af?
im 5;'65&_"— Vsu + Vss EYYy

(1.12)

or
N 5
4,=4, -
IxH
That is, an electromagnetic gauge transformation is now no
more than the (purely geometrical) effect of a coordinate
change through the fifth dimension.>°

(1.14)

I1. THE PERIODIC FIFTH DIMENSION

The “Kaluza-Klein” geometrization of electromagne-
tism and gravitation just described has been called “the
first successful unified field theory.”!' Whether the theory
represents more than an elegant curiosity remains unclear,
however. Einstein’s initial opinion of Kaluza’s work was
quite enthusiastic; in April 1919 he wrote Kaluza, “The
idea that the electric field quantities are mutilated [¢f,5 ]
has also frequently and persistently haunted me. The idea,
however, that this can be achieved through a five dimen-
sional cylinder-world has never occurred to me... . I like
your idea at first sight very much.”'? Several weeks later
Einstein wrote again, remarking that “the formal unity of
your theory is startling.”"*

Einstein'* and others®'*~'° worked on the Kaluza-Klein
approach intermittently in the succeeding decades but with
little additional unambiguous success. Einstein tried first
to render Kaluza’s fifth space-time coordinate less, and
then more, physically real.'*'*> With hindsight, perhaps the
most important contribution of the latter program was to
make precise Klein’s earlier suggestion™® that space-time
be periodic in the new fifth dimension: 5-space-time is to be
thought of as homeomorphic to a *“tube,” the direct pro-
duct of 4-space-time by a circle.*'>!%'® The components of
the 5-metric tensor will therefore be periodic functions of
x°, so they can be written quite generally as'32%-2%;

+ oo s
ryxrx) = S pPxHe™ (2.1)

where the fifth dimension is a circle of radius r5; with coor-
dinate x° satisfying

0<x® < 277, (2.2)

Thus we are taking the ground state of our 5-space-time
to be the direct product M*X S’ of 4-dimensional Min-
kowski spacé M * with the circle S . The (at first) apparently
more “natural” choice of 5-dimensional Minkowski space
M? as the “vacuum” of the 5-continuum would seem to
lead nowhere; nor does it appear to answer’® Einstein’s
ultimate criticism of higher-dimensional unified theories:
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“In this case one must explain why the continuum is appar-
ently restricted to four dimensions.”?* In the Kaliza—Klein
approach, on the other hand, one simply asserts (or argues)
that the radius 75 of the circle is very small, perhaps only a
few orders of magnitude larger than the Planck length (%G /
¢"?2~1.6x107* cm. Hence the fifth dimension is not
observed in everyday experience—it will only “open up” at
probe energies greater than Ac/rs, i.¢., at energies almost on
the order of the Planck mass.

Both M ° and M *x.S ! trivially solve the 5-dimensional
vacuum field equations (note that the circle §'' is “flat,”
since in one dimension, R,,., = 0) without a cosmological
term.'®?22% Classically, either is an equally appropriate
choice for the ground state, as both have zero energy (al-
though the two “zero energies” cannot be meaningfully
compared).'®?® The choice M * X S !, however, yields a the-
ory where space-time can indeed appear to be M * with the
usual Poincaré (translation and Lorentz) symmetries. The
components of the metric field associated with the fifth
dimension (the components of the 4-potential) will appear
in the 4-dimensional theory as the Maxwell electromagnet-
ic field, with a local U(1) gauge invariance which is the
group of rotations of the circle S existing at each “point”
of M*, The usual 4-dimensional theory is called the “di-
mensional reduction” of the higher-dimensional reality.

III. DIMENSIONAL REDUCTION

To see the appearance of the y,, components of the 5-
metric as a Maxwell field in M *, consider standard general
relativity in five dimensions, given by varying the Einstein—
Hilbert action

d>xy — ¥R;. 3.1
161rG5 J 31
Here R and G; are the curvature scalar and gravitational
constant in five dimensions.”” R; is to be computed from
the 5-dimensional metric ¥;. The Kaluza—Klein vacuum
M*x S is described by the metric of M3,

77v’ O’
’7":(5, ¢)

[wheren,, = diag(+ 1, — 1, — 1, — 1)isthe metricof M 4,
each “0” represents a (row or column) 4-vector of zeros,
and ¢, is a negative constant], but with the additional
manifold restriction Eq. (2.2). Note that the fifth dimension
enters in a spacelike way (@, < 0). This must also be the case
for the still higher dimensions we will later need to achieve
unification with non-Abelian gauge fields: The number of
timelike dimensions cannot be allowed to exceed one, or
space-time will contain closed tlmellke hnes,28 which
would lead to the usual causal anomalies.?®

Clearly the interesting case is that for which gauge parti-
cles appear in the vacuum M *. Such particles correspond to
a curvature of the 5-dimensional flat space-time M *x.S .
We must therefore generalize (3.2) by allowing the compo-
nents of 7, to vary with the coordinates x ". The 5-metric
can then be parametrized in the form

5 m g,uv +AyAv¢’ Au¢’

whereg,,,, 4,,, and ¢ may be functions of all five space-time
coordinates. ¢ ™, where m is fixed but as yet unchosen, is a
“Weyl” or conformal factor whose role will be apparent

(3.2)

(3.3)
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shortly. Note that (3.3) implies no restriction of the 5-di-
mensional metric y;;; clearly we can choose to write any 5-
metric in this form. In particular, Eq. (3.3) is more general
than the metric {1.11) considered by Klein, as 755 is no
longer taken to be constant. Such a generalization of the
Kaluza-Klein 5-metric was first considered by Jordan'’
and Thiry'®; we will see that formally ¢ plays the rolé of a
Brans-Dicke® scalar.

Assuming the manifold to be closed in the x> direction
corresponds to imposing the periodicity requirement (2.1)
on the components of ¥;. Thus particles are described by
fields periodic in the interval (2.2). In a quantum picture, '°
they can be thought of as small oscillations about the
ground state M %X S, and will be given by the different
modes in the Fourier decomposition (2.1).

Complete “dimensional reduction” of the 5-dimensional
theory (still topologically M *X.S"), to a theory of gauge
particles within a 4-manifold, is achieved by taking the x°-
periodic fields to be only slowly varying in that dimen-

2rrs —2% 67/’
ax’

—— <Yy lxhx0). (3.4)
Then the y; are approximately functions of x* only. This
corresponds to keeping only the n = 0 mode y§(x#) in the
decomposition (2.1).

Substituting ¥y = Vi\x*) into the action (3.1), we find*’

_ Sm+171/2
1617'G fd x[ — (detg,,)d ]""Rs. (3.5)

Note that 755 = ¢ (x#). Then with the distance 85 around
the fifth dimension given by

S=—

27T
85 =f dx* — yss = 2ars[ — ¢ (x#)]'?, (3.6)
0
Eq. (3.5) becomes an action in only 4 dimensions,
S, = — fd4x¢(5m+ ”/2\/—R5, (3.7)
167G

where we have defined the 4-dimensional gravitational
constant G = Gs/2xrs. It remains to calculate Rs.

Using differential forms, Thiry'® has calculated the 5-
dimensional curvature R given by the metric

oy _ (B A 4,
it = (B 1 b A8),

which is just ¢{(x#) from (3.3) in the case m = 0, i.e., with-
out the Weyl factor. Thiry finds

Rs=R,+QNEIN$), 8" +

where R, is the usual 4-curvature scalar computed from
8.~ Had we not used a Weyl factor in (3.7), this would
result in the action

Si=— f d*xVP R+ 30> °F, F*), (3.10)
167G
where we have dropped a total divergence. Setting 85 =0
then yields the field equations of a Brans-Dicke scalar-
tensor theory of gravitation.’> Such a theory in 4-space-
time is a step backwards from unification, as gravitational
effects are then no longer purely geometrical, but rather are
described by a scalar field within a Riemannian manifold.
In the higher-dimensional case, this criticism is less severe,

(3.8)

19F, F 1, (3.9)
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as the scalar field ¢ is then just a component of the 5-metric:
It too is geometrical in origin.

It is now clear why we introduced the Weyl factor ¢ ™ in
Eq. (3.3). We will show that choosing m properly allows us
to eliminate any powers of ¢ multiplying R, in (3.10); the
variation is then simpler to perform and yields the standard
Einstein equations. Of course, since any S-manifold can be
quite generally parametrized as either ¥, [Eq. (3.3)] or 7;
[like Eq. (3.8)], the physical predictions of “both” theories
must be the same when all terms in the action are consid-
ered.

To choose m, notice that the metrics (x*) and 7(x#)
are related conformally, (x#) = ¢ ™(x*)7)(x*). Hence-
forth we drop the superscript O and the argument x#. We
then use the standard result®® that two N-dimensional me-
trics related by the conformal transformation

=%, vi=072%Y (3.11)
yield curvature scalars related by
=0 Ry —2N—1)2 30,77
— (N— )N — 42 ~*2,02.9". {3.12)

In our case N=35 and £2° = ¢™; substituting Rs from

(3.12) into (3.7) leads to the term ¢ *" + 2 x ¢ ~mx R,

which we want to equal R5 Thus we take m = — 1.
Inserting these values into (3.11) and (3.12) yields

Rs=¢'*Rs— 30 —2¢,i¢,j77ij + 4¢ ‘1¢gf"])
=¢'"(Rs—36 %0, .88 +1¢ 4,8, (3.13)
using ¢ = ¢ (x*). Substituting R from (3.9) into (3.13) and
the resulting equation into (3.7), we find

s

_139,49"¢ 713, 3”¢)

6 ¢ 3 ¢ /
Dropping the total divergence from the last term gives the
result?:

(3.14)

S, = Jd = ( F, F#
ATl e +_¢

+% 2 q;f“sﬁ)’

where we recall that R, is the usual 4-dimensional curva-
ture scalar computed fromg,,, and ¥, ,=d, 4, —J, 4, is
the Maxwell field tensor. That is, the dimensionally re-
duced action includes the usual Lagrangian density for 4-
dimensional gravitation and electromagnetism,** plus a
standard kinetic energy term for the scalar field ¢.

Obviously, the decision to write ; in the form (3.3) so
that the usual terms would appear in {3.15) benefits from
hindsight. Nevertheless, the resulting physics must be in-
dependent of the particular parametrization, and is in fact
determined by our choice of ground state: Choosing
M *xS ! rather than M leads to the mode decomposition
(2.1) of the metric y;; keeping only the zero mode then
reduces a purely gravitational 5-dimensional theory to the
standard 4-dimensional theories of Maxwell and Einstein.
Speaking picturesquely, light is a manifestation of the fifth
dimension."

In quantum terms, the five physical degrees of freedom™”

(3.15)
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of the metric y; are accounted for by a spin-2 graviton
(described by g,,, ), a spin-1 photon (4, ), and a Brans-Dicke
scalar.?! What of the higher modes? ‘Since R s is composed
of second derivatives of the metric, it is easy to see that the
x° dependence of the nth mode in (2.1) will lead inter alia to
kinetic energy terms with coefficients on the order of n%/r%.
The associated particles will be massive and spin-2.*® One
can think of this “absorption of the spin-O and spin-1 de-
grees of freedom of the zero mode into a single (now mas-
sive) spin-2 particle in each nth mode as a Higgs mecha-
nism.?!

Thus the higher modes produce an infinite number of
massive excitations, with the masses on the order of n/r;. If
rs is, say, around 10 Planck units, the masses of the asso-
ciated modes will be about a tenth of the Planck mass (c¢#i/
G )2 =2 10" GeV, or about 2 ug. Thus such excitations
ofthe ground state M * X S ! are so “heavy” that they almost
never occur.'' A different way of saying this is that typical
4-dimensional distances are so much larger than r, that the
n+0 modes effectively decouple,'®?? and Eq. (3.15) should
be viewed as an effective action for physics at distance
scales large enough for this approximation to hold.?**’
Keeping only the zero mode in (2.1) is then well justified,*®
and the assumption (3.4) need not be independently made.

IV. THE “APPARENT” 4-DIMENSIONAL
CONTINUUM

The formally impressive dimensional reduction just de-
scribed begs several questions. We have already cited**
Einstein’s demand that the theory account for the apparent
4-dimensional nature of the continuum. It is comforting to
note that, taking for granted the choice of ground state
M*x S, onecanargue that.S ' should indeed be unobserv-
ably small. The broader question of why the universe
should look like M % X S ! at all is more formidable, and will
be addressed in Secs. VI and X.

Our first argument is due originally to Souriau,
though we shall follow a more recent procedure.*’ Souriau
considers a flat 5-dimensional space-time 7%, = diag
(+1,—1,—1,—1, — 1) with small perturbations 4; as-
sociated with the electromagnetic field. These are given by
h,s = V2xA . (#=1,2,3,4), and vanish otherwise. The x°
coordinate is restricted as in (2.2).

Now define a real scalar quantum field ¢ upon the un-
derlying space-time. It is reasonable to expect it to satisfy a
wave equation

Vs(0 @ + ajlxtx’) = (4.1)
where y; = 7, + hy and a is some real constant. Now as-
suming that ¢ is perlodlc in x°, we can write

Yk ) = 3 (e,

Then (4.1) becomes
Y0 Y+ 2y,5 P Y+yssFFY+ap=0
(4.3)

9,39 1

g, =2. (4.2)
s

or

Oy + 2ig,2«A4, 3* ¥ + (g2 +a)p =0. (4.4)
This is identical to the Klein-Gordon equation with the
“minimal prescription” d,—d, + ie,4, to Ole,), pro-
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vided we identify

e, = g2k = (n/ 167G )/rs, (4.5)
m: =a+q: =a+n/n. (4.6)

Setting e, equal to the electronic charge, we find the cir-
cumference 2175 ~2.4 X 10~*' cm, which is quite consis-
tent with the nonobservability of the fifth dimension.

Unfortunately, this procedure faces grave difficulties.
The final term in Eq. (4.6) is on the order of 10*! MeV?, so
that a must be large, negative, and “fine tuned” to 20 deci-
mal places® to put m, in the realistic range of 0.5 to 5 X 10
MeV. Yet our discussion of higher order modes in Sec. III
suggests the natural choice is @ = 0. Worse, the fine tuning
yields a negative, or tachyonic, mass in Eq. (4.1). Even if we
accept this, a final disaster occurs.*® The energy of a zero
mode with momentum p is E 2 = p*> + m} = p> + a. With
a <0 fixed by m,, E, will be imaginary for p small. Thus
unless one engages in somewhat exotic modifications,*' the
field theory is classically unstable, as there exist exponen-
tially growing solutions to Eq. (4.1). Despite these prob-
lems, however, this approach is worth pursuing: We shall
see in Sec. VI that it lends itself to a dynamical argument
for the “compactification” of space-time into 143
(large) + 1(small) dimensions.

A simpler argument is the original one by Klein.® Klein
begins with the line element given by the metric (1.11),

ds’ =(g,, +B°4,4,)dx* dx” + 2BA, dx* dx’ + (dx°,
(4.7)

where S = 167G . Then the 5-dimensional Lagrangian L
for a particle of mass m and charge q is

L=—1—m( ds)
2 dr

where d7 is the differential of proper time. Calculating the
conjugate momenta p, and ps from the usual definition

(4.8)

p: = 0L /d(dx'/dr), (4.9)
we easily find the relation
dx” .
p,u = mgyv dT p.psy (4 10)

which is just the usual expression for the momentum of a
charged particle in an electromagnetic field, provided we
identify ps==q/f (this is similar to Kaluza’s' unification of
energy—-momentum—charge into a single “5-vector”). Now
g must be an integral multiple of the electronic charge e, so
we may write

ps = Ne/p. (4.11)

de Broglie’s relation for p; is ps = 27/A. If we require that
a whole number M of wavelengths fit around the fifth di-
mension, we have MA; = 27r; or

ps=M/rs, (fi=c=1) (4.12)
Then (4.11) and (4.12) yield
rs=B/e=13x10"'¢cm (4.13)

where we have, with Klein, taken M = N. Equation (4.13)
is then identical to the n = 1 mode of Eq. (4.5). The fifth
dimension is indeed unobservably small, and is scaled by
the Planck length VG .

Of course, if we knew from other considerations the cir-
cumference 27775, we could “explain” the numerical value
of the charge quantum e = (167G )'/?/rs. Indeed, in more
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general Kaluza—Klein theories, where additional dimen-
sions allow unification with non-Abelian fields, the rel-
evant coupling constants are again determined by ratios of
B and circumferences of the compact dimensions.** We
shall see such results later (Sec. IX), but first we must ex-
tend our discussion to non-Abelian interactions.

V. GRANDER UNIFICATION

In the 1960s it was realized that the Yang-Mills—
Utiyama**** non-Abelian generalization of local gauge
theories could be unified with gravitation in a Kaluza—
Klein-like manner.*>*¢ By the 1970s, such accounts had
been given a mathematically compelling form.*’->! One be-
gins with general relativity in 1 + 3 + D dimensions, but
takes the ground state to be M *X B © (where B is a com-
pact space of dimension D ), rather than M **? [(4 + D)-
dimensional Minkowski space]. Asin the case M * X S !, the
symmetries (isometry group) of B will manifest them-
selves as the “internal” gauge symmetries of fields existing
“within” M *. A suitable choice of B ® will allow unification
with any particular gauge group. For example, if B® = §?
[a 2-sphere, for which the group of isometries is SO(3)],
then the gauge group will be SO(3) or, up to a local isomor-
phism, SU(2). As in the 5-dimensional theory, the “lack of
direct tactile evidence for the extra dimensions** will be
explained by assuming that these higher dimensions have
“compactified” to a very small size.

Presumably one ultimately wants to obtain either the
gauge group SU(3) & SU(2) ® U(1) or a GUT such as SU(5).
Assuming we want the former, we must require that the
symmetry group of B © contains it at least as a subgroup.
Occam’s Razor*? then suggests choosing B © to be a mani-
fold of minimum dimension containing SU(3)®
SU(2) ® U(1). It is not difficult to show!® that B © is then 7-
dimensional.>® Thus 11 is the minimum number of dimen-
sions that the full manifold must have in order to accomo-
date the standard model. The “very intriguing numerical
coincidence” that 11 also seems to be the maximum num-
ber of dimensions for supergravity theories urges that Ka-
luza—Klein theory in 11 dimensions be given serious consi-
deration.'®

Before embarking on such a program, several problems
must be acknowledged. The first is that Witten?® has shown
that the Kaluza—Klein vacuum M * X S'!, while classically
stable, is unstable against a process of semiclassical barrier
penetration. Stability can be achieved, however, either by
restricting excitations of M *X.S'! to ones in which the to-
pology is unchanged, or by introducing elementary fer-
mions into the Lagrangian. The stability of the general case
M*X B? is not easy to evaluate.

A second problem which has motivated much recent
work®”**%is that the manifold M * X B ?is not, in general,
a solution to the vacuum Einstein equations in 4 + D di-
mensions. This is easy to see.””*” The (4 + D )-dimensional
Einstein equations are

Ry —g,(R+A4)=0, (5.1
where A is the cosmological constant and /, j now run from
1to4 + D. The dimensionally reduced theory hasR,,, = 0,
with u,v=1,2,3,4 labelhng flat Minkowski space M4
Then R + A = 0. This in turn requires R; = O for all in-
dices, in particular R ; =0 for 4,B = 5,...,D. However,

this is impossible if B ” has curvature, as is generally the
casefor D> 1.
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A final difficulty that remains is the question of why the
universe should treat three of the spatial dimensions so dif-
frently from the rest. One possible way to address both this
and the preceding problem is via higher-dimensional cos-
mology.

VI. WHERE HAS THE FIFTH DIMENSION GONE?

In this section, we discuss preliminary cosmological
models**%%-62 which show that a (4 + D )-dimensional uni-
verse might indeed expand in three spatial dimensions,
while contracting in the others. Thus it is at least possible
that a universe in which 3 + D spatial dimensions entered
initially in a symmetrical way might have evolved into its
present dimensionally asymmetrical condition.

One evident way around the problem of solving the
vacuum equations (5.1) in ¥ =4 + D dimensions with a
curved manifold is to instead solve the equation

R, —1g;(R +A)=87GyT,, (6.1)

where Gy, is the N-dimensional gravitational constant and
i,j = 1,...,N. A number of such cosmologies have been ex-
plored, with 7); being the energy-momentum tensor of a
higher-dimensional pure dust,* perfect fluid,** or homo-
geneous Friedman—Robertson-Walker cosmology.®! Such
models allow solutions in which all but three of the spatial
dimensions contract to microscopic size. However, in the
usual view of general relativity T ; is a nongeometrical enti-
ty, and one can argue that its introduction into the N-di-
mensional field equations defeats the very purpose of Ka-
luza—Klein unification.>®

Chodos and Detweiler® have instead considered the N-
dimensional Kasner® solution for the vacuum equations
R, = 0. While such a cosmology cannot hope to provide
the topologies that a realistic Kaluza—Klein unification
will require,* it does exhibit in a very simple context some
of the essential behavior of the more elaborate models. In N
dimensions, the Kasner solution is

ds* =dt? — i (_.t_)ZP'(dxi)Z’ (6.2)

i=2\I

where the p; satisfy the constraints

N N
Spi=1=Ypi. (6.3)
i=2

i=2
We take each spatial dimension to be S/, i.e., we impose
0<x’ < 27r; (i = 2,...,N). Consider for simplicity the 5-di-
mensional case. Then an auspicious choice of the p; is

Pr=p3=ps=} ps= —}% (6.4)
giving the line element

ds? = dt? — (t /to)[([dx?)? + (dx®)

+ (@x*)?] — (to/t )ldx®). (6.5)
s0 at the time ¢ = #,, the universe had no preferred spatial
dimensions; we take the distance around each to have been
2srr; = L. As t increased, the distance around the fifth di-
mension shrank like (z,/¢ )'/2L, with the other three grow-
ing as (¢ /,)"/2L. Is (t,/t)'/2L in fact now too small for the

fifth dimension to be observed? To answer this, first rescale
the coordinates so that (6.5) takes the form

ds* =dt* — (¢t /7)[(dx?) + (dx*)?
+ [ dx*P] — (/2 dx*P (6.6)
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where (t /7)= 1, 7 being a time characteristic of the present
age of the universe. Hence x> must now satisfy

0<x® < 2mrs(ty/ )V *=2mrs (7). (6.7)

Then the 5-metric (6.6) is essentially 7,;, which we can per-
turb as in our discussion of Souriau’s results (Sec. IV).
Analogously, Chodos and Detweiler find

o 167G _ n/167G {l)m
r5(7) rs \1,)

(6.8)

or (to/7)/*27rs = 2.4 X 10~3! cm. Thus for purely cosmo-
logical reasons, the distance around the fifth dimension is
at present very small (taking 7= > 7). It is remarkable that
Eq. (6.8) conforms to Dirac’s large number hypothesis®*:
The ratio of the electromagnetic to gravitational coupling
constants increases with the age of the universe.

The Kasner solution is readily extended to N dimen-
sions.*® However, neither this model, nor those previously
mentioned, nor a higher-dimensional Jordan—Brans-
Dicke theory,®® will require a cosmological evolution
where only three dimensions remain large: For example, in
the Kasner cosmology, the choice of conditions (6.4) was
crucial, but in no way required. A convincing treatment of
these problems seems to require the introduction of ¥ = 11
supergravity.?®°>¢5 Before proceeding to this discussion
(Sec. X), we first look more closely at Kaluza—Klein theory
in N dimensions.

VIL KILLING VECTORS AND NON-ABELIAN
GAUGE FIELDS

The Kaluza-Klein theory sketched in Secs. II and III
can be thought of as a 5-dimensional Einstein theory with a
spacelike Killing vector K (3/dx') = 3/3x°. Then M *is the
space of equivalence classes of the 5-space-time under the
group of motions of the Killing vector field. The isometry
gener?ted by this field appears as the U (1) gauge symmetry
in M*

To achieve the “grander unification” of Sec. V we take as
ground state the (N =4 + D)-dimensional manifold
M*x BP, where B® admits a group G of isometries gener-
ated by D Killing vector fields. These form a basis for the
Lie algebra of G:

[KaKp] = ~fisKe (7.1)

and in this discussion we take them to be complete: Their
integral curves span the entire space B®. Then M * is the
quotient space (M *X BP)/G of equivalence classes under
G-transformations of M *X B?. In the dimensionally re-
duced theory, G will appear as a non-Abelian gauge group
on M *: Gauge invariance is really just a (higher dimension-
al) space-time invariance.

Letg,, (u,v = 1,...,4) be the components of the metric
tensor of M *, and ¢, (4,B = 5,...,N ) be the metric of B”.
Given these, we need to construct the N-dimensional met-
ricy; (i,j = 1,...,.N ). ¥; will have }(20 + 9D + D ?) compo-
nents. Knowledge of g,,, and ¢ .5 gives 420 + D + D?) of
these. By analogy to Eq. (3.3) for the 5-dimensional case, it
is natural to write y; as

y _¢m(gy,v +B:B€¢AB’ BE¢CA’)
d Bldca, b '

with the B {#, providing the remaining 4D components.
Here ¢ ™ = (det ¢,5)™ is a Weyl factor. Our goal is to find

(7.2)
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the dimensional reduction of the N-dimensional Einstein
theory resulting from (7.2), given the imposed symmetries
of (7.1). Analogously to the 5-dimensional case (Sec. III),
the 7,, components of the metric (7.2) will become gauge
fields in M*. We proceed by varying the N-dimensional
action

§=__1 dex,/ "Ry +Ay) (7.3)
167G,

where y=det(y,), Ay is the cosmological constant in N
dimensions, and R, is the N-dimensional curvature scalar
derived from (7.2).

We calculate (7.3) in Sec. IX. In Sec. VIII, we first verify
that Eq. (7.2) is in fact a valid form for the N-dimensional
metric y,;.% The reader in a hurry can accept (7.2) and omit
Sec. VIIL. In any case, our treatment will be only a heuristic
sketch.®’

VIII. SUPERSPACE

The manifold M * X B? can be viewed as a fiber bundle,*®
or “superspace,” which is (at least locally) the direct pro-
duct of the “base” or space-time manifold M * and the “fi-
ber” or group manifold B®. It is reasonable to choose the
basis {e, } for B to be isomorphic to the algebra of the
group (the Killing vectors, which span B ?). If we assume
no a priori special properties for the basis {e, } of M*, we
then have the following algebra:

[eA)eB] = _fACBec; [e;neA] =0
[e.e,]= —F.e. (8.1)
Of course, we could choose a coordinate basis {h,, } for M 4

i.e., h, =3d/9x* Then [h,,h,] = 0and the algebra of the
basis {h;} of M *X B becomes:

[hyhp] = —fzhe; [hoh,]=0; [h,h,]=0.

(8.2)

We will see shortly that this basis yields the metric (7.2).

We are given that g, is the metric of M * and @, is that
for B®, so we know that one possible basis {E,} for
M * X B ?is the one in which the N-dimensional metric ten-
sor y;; is block diagonal:

7’;,w EE,u .Ev = g;w’ 7/,:13 EEA 'EB = ¢AB s

v4=E E, =0 (8.3)
Take the group manifold basis {E, } tobe {h, }, and choose
the projection /7 (E, ) of E,, onto M *tobe justh,,. Then E,
is in general a linear combination of h, and the h,. So

projecting down the final commutation relation in (8.1)
gives

II([E,E,])=[h,h,] =0
=IM(-F,E)=—FE,. (8.4)
Thus F;;, = 0 and the {E, ] have the algebra
[EA ’EB] = _fAC;'aEd [Eu’EA ] =0
[E,.E,]= —FLE,. (8.5)
We can expand the basis vectors h; in terms of the E;:
h,=h4E, h, =h,E,.
Then we have

(8.6)
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_f.ﬁshc = [hA’hB] = hfah 1{; [Ei’Ej]
=hSh3[Ec,Ep] +h4h3[E,E,]
= ‘—hghgffahz —hfh ;Ffvhc» (8.7)
giving
hS =85, hi=0.
Since {h“ } is a coordinate basis, we also have
h, =6, (8.9)
Now consider the basis {N*} dual to {h, }:

(8.8)

(N'hy) =Nj hf=8;.
Using (8.8) and (8.9) in (8.10), the cases i, j = 4,B; u,B; u,v;
and A4,v yield

N4 =64 N%=0, h“*=Nt:=§, hi= —N7.

(8.11)

(8.10)

Then Eq. (8.6) becomes
h,=E,, h,=E, +hiE,. (8.12)

Using (8.3) and (8.12), the components of the metric tensor
vy for the basis (h; } are therefore

Yw=h,h, =E,E +h!E,-hlE, =g,

+hﬁhf¢AB=g,w +Nﬁ N5¢AB9 (8.13)
Yap =hhy =E Ep =05, (8.14)
VpBEhy'hB = h;: bup = — Nﬁ bap- (8.15)

Thus the metric for the “direct product basis” {h;} does
indeed take the form (7.2), with the identification
Bl=—N{.

IX. REDUCTION FROM N DIMENSIONS

Using the (N = 4 + D )-dimensional metric(7.2), we wish
to evaluate the action (7.3) to obtain the dimensional reduc-
tion of the purely geometrical N-dimensional theory. First
we note that (7.2) gives

det(y;)=y = ¢ ""(det g,,)(det d,5)=4""""g.  (9.1)

For simplicity, in the remainder of this discussion we drop
the Weyl factor, i.e., set m = 0. It can be reinserted and
chosen as desired®' to simplify the final form of the dimen-
sionally reduced action. Denoting the coordinates of the
space-time manifold M * by {x* } and those of the D-dimen-
sional manifold B by {y” }, the action (7.3) can be written

S= f d*x.7 ,(x), (9.2)
where the Lagrangian density is

1
L) = = —
) 167G, , p

xdeyJ “E VB0 Ry + p + As s o) (93)

and we have taken g,, =g, (x) and ¢,5 = ¢ 45 (y). Using
the metric connection® I'}, = — y7[ik,l ], it is straight-
forward to break the (4 + D )-dimensional curvature scalar
R, , p into three parts: the 4-curvature R,(x) calculated
from g,,,, the D-curvature Ry (y) from ¢ 5, and a mixed
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term. In fact, one finds>%#>47-30

1

L) = ——
) 167G, , »
X j dPWE DIV — &) [Ralx) + Rpl)
+ Ay +1Gh, G2 g lxlg (X6 0], (94
where
G:V=B,’f,v—Bﬂ’#+BgB;‘,B—Bf ”:,B. (9.5)

Now we use the assumed symmetries of B to convert (9.5)
into the usual Yang-Mills “curl.” Equation (7.1) is the
standard Lie bracket:

(K0 Ks0)]“=KZ K5, —K5K5p

= —fas KE ). (9-6)

We write

B =K35 (M, (xp), (9.7)
which becomes in a zero-mode approximation:

Bi=K3 (A4} (x). (9.8)
Then after a little algebra (9.5) takes the form

Gi =K3ld7, —A2, —fe, ASAD) (9.9)
Thus defining the curl

Fl (x)=A2, —A4%, —fer,ASA2, (9.10)

the Lagrangian density (9.4) becomes

1
Lx)= ———
) 167G, , p

X f d 2 JE )V — g0 [Rax) + Ryly)

+As i p +10s0KE WK WIFL, (%)

XF 2 (v)g“(x)g"(x)]. {9.11)
This requires that the 4-dimensional gravitational constant
G be defined via

1 1
- dP Jé ),
167G 167G, , , J yNel

and that (A, ,)/167G be chosen to cancel the integral
over R, (y).*> We also see that if we normalize the Killing
vectors according to

E—Cl;__dey‘/W¢AB(V)K‘é WK E () = bcp,
- 9.13)

the final term in (9.11) becomes the usual Yang—Mills La-
grangian

L ylx) = —1F, -F*.

uv

(9.12)

(9.14)

Thus (9.11) generalizes the results of Sec. III to provide
non-Abelian gauge fields in M * via dimensional reduction.

Weinberg*? has shown that Eq. (9.13) can be used to ob-
tain a formula for the gauge coupling constant resulting
from the isometry group of the compact manifold B”.
Each coupling g is proportional to the ratio of 27y 167G to
an appropriate rms circumference of the manifold. For ex-
ample, if B” = S?, a 2-sphere of radius r [isometry group
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SU(2)], he finds
g =W167G /r) ()"~ (9.15)

With B? = CP? [4-dimensional complex projective space,
isometry group SU(3)], Weinberg is able to derive the cou-
pling ratio g'/g = 1/y3 for SU(3). Thus, at least in princi-
ple, Kaluza—Klein theory gives a geometrical account of
the strengths of the fundamental interactions. To agree
with the known values of the coupling constants, the scale r
of the manifold B® must be somewhat larger than the

Planck length G .

X. SPONTANEOUS COMPACTIFICATION AND
SUPERGRAVITY

So far, we have only been able to argue that r~\/G by
starting from the known values of the couplings g. A satis-
fying Kaluza-Klein theory would predict the values of g by
accounting for the magnitude of r from other consider-
ations. Recently, it has been shown?®?>%*-"! that a consi-
deration of the quantum properties of Kaluza—Klein theor-
ies may provide such an account.

In this approach, one thinks of the Kaluza—Klein prob-
lem as a gravitational version of the Casimir effect in elec-
trodynamics. In 1948, Casimir’ showed that vacuum fluc-
tuations of the electromagnetic field produce an attractive
force between two parallel conducting plates. In five di-
mensions,’®? the Kaluza-Klein “plates” can be thought
of as the boundaries of the x° coordinate, x> =0 and
x> = 27rrs. Then if one does not make the zero-mode ap-
proximation in the metric (3.3), one finds an effective po-
tential arising from the massive spin-2 excitations in the
“cavity” 0<x’ < 7s. This potential gives a force tending to
make the distance around the fifth dimension contract to
the order of the Planck length. At this level, the one-loop
approximation used to derive the attractive force breaks
down, and one hopes?! that some sort of stabilization sets
in. This analysis can be extended to D> 1 extra dimen-
sions,®®’° where it is found that the compact dimensions
either expand or contract depending on their initial condi-
tions.

These calculations proceed from the assumption that the
topology of space-time is M * X B? . We are still faced with
the objection raised in Sec. V that such a space-time is gen-
erally not a solution of the (4 4+ D )-dimensional vacuum
Einstein equations (5.1). How to consistently achieve this
“spontaneous compactification”** of the extra dimensions
into a compact manifold B is the final problem to be ad-
dressed.

As in Sec. VI, we consider modifying the vacuum field
equations. One approach is to include additional scalar in-
variants in the Einstein—Hilbert action. Wetterich®’ has
shown that an action containing the invariants R 2R 4R A
and R,;, R “*, in addition to R, yields vacuum field equa-
tions that are satisfied by a ground state manifold M * X S?,
where S? is a D-sphere. The addition of the extra invar-
iants may be rationalized by invoking quantum fluctu-
ations, and the usual higher-dimensional action (7.3) or
field equations (5.1) can be interpreted as only effective
equations for long distances. Of course, such a proposal
faces all the usual objections to including additional scalars
in the action.”

If we rule out ab initio such additional scalar terms, it
seems the only remaining way to achieve compactification
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is to add a matter scalar to the total action (i.e., add matter
fields to the field equations). We are then solving an equa-
tion like (6.1) rather than (5.1). It has been shown>**¢ that
the addition of such terms does indeed result in field equa-
tions which admit solutions like M *XBP. Also, such an
approach allows one to build spontaneous symmetry
breaking into the theory.>* Nevertheless, the objection that
such an implementation of nongeometrical entities seems
to defeat the whole purpose of Kaluza-Klein unification
remains.

Such an objection cannot be made in supergravity theor-
ies, where bosonic fields other than gravity automatically
appear.”®>5¢ The important example is N = 11 supergra-
vity,”* where supersymmetry requires the introduction of
an antisymmetric rank-4 Maxwellian gauge field F %', The
relevant field equations are

R™ _}y™R = —87GO™, (10.1)
O™ = F, F% _\F, Fgm (10.2)
(AN 8 Wiyl F*) =0 (10.3)

Freund and Rubin?® have looked for solutions to these
equations, where the 11-dimensional space-time is the pro-
duct of 4- and 7-dimensional manifolds: M *' = M *xXM’
(here M* and M7 are not necessarily Minkowski space-
times). The 1 1-dimensional metric ¥,,,, can then be written
as

ym" = (g,uv’ 0,) 3
0, dus

where u, v=1,..,4and 4, B=35,...,
(10.3) admits the solution

F™ = (f/]lg]) €™ (10.5)
Here €/ = ¢**fif i = u,...,] = 3, and 0 otherwise; e**** is
totally antisymmetric; and f is a constant. We can define
the scalar curvatures of M “and M tobe R, = g“*R,,, and
R, =¢*®R 4z, so that (10.4) implies R,, = R, +R7 Tt we
assume that M # contains the lone timelike dimension, then
contracting (10.1), using (10.2) and (10.5), yields

R,=3%(87Gf?), R,= —1](87Gf?) (10.6)

(had we put the timelike dimension in M 7, the signs would
have been reversed). Here a compact Riemannian manifold
has negative scalar curvature. Thus N = 11 supergravity
yields a preferential compactification of M !! into seven
compact and four “large” space-time dimensions! (or vice
versa).

(10.4)

11. In this case, Eq.

XI. FINAL REMARKS

It is evident that Kaluza—Klein theory provides an ele-
gant geometrical scheme for unifying the fundamental in-
teractions. It faces many problems,’® however, including a
number related to dimensional reduction itself. In the 5-
dimensional theory, we have seen (Sec. IV) that assumlng
the groundstate tobe M * X S ' can explain why the universe
appears only 4-dimensional: The circumference of S'! is on
the order of the Planck length divided by the electromag-
netic coupling constant. Similar relationships hold in the
theory’s higher-dimensional extensions (Sec. IX), where
the vacuum is taken tobe M * X B? . However, cosmological
schemes in which a universe begins with such a ground
state and evolves to one in which only three spatial dimen-
sions remain macroscopic are not satisfactory (Sec. VI).
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Worse, M * X B” is generally not even a solution to the
(4 + D )-dimensional vacuum field equations. Inserting
matter fields into the equations by hand seems to be a self-
defeating approach to solving these problems. It may be
that supergravity provides an answer.

It was noted in Sec. V that 11 is the minimum number of
dimensions needed to yield a reduction to SU(3)®
SU(2) @ U(1) gauge symmetry “within”” M *. Eleven is also
the maximum for supergravity. Further, N = 11 supergra-
vity naturally solves the compactification problem, giving
a space-time-like M * X M7, with one or the other (M 7, one
hopes!) compact. Why the compact space-time should have
precisely the isometries needed to give, say, SU(3)®
SU(2) & U(1) gauge symmetry to M*, and how M’ has
evolved, remain unanswered. However, it has been
shown®® that an early universe cosmology for N = 11 su-
pergravity admits a solution in which 3-space (in M ) ex-
pands much faster than M’. One might even hope that
quantum effects explain why M 7 contracts to the order of
JG.

Of course, it is always possible that the numerical “coin-
cidences” which arise in the combination of supergravity
with Kaluza-Klein theory, and which seem to point the
way towards solving some outstanding difficulties of the
latter, are merely fortuitous. Might the appearance of
gauge fields via dimensional reduction be so as well? Per-
haps, but as Kaluza' remarked in 1921, “it appears hard to
believe that those relations, hardly to be surpassed in their
formal correspondence, are nothing but an alluring play of
whimsical chance.”
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