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Abstract
New spherically symmetric dyonic solutions, describing a wormhole-like class
of spacetime configurations in five-dimensional Kaluza–Klein theory, are given
in an explicit form. For this type of solution the electric and magnetic fields
cause a significantly different global structure. For the electric-dominated case,
the solution is regular everywhere but, when the magnetic strength overcomes
the electric contribution, the mouths of the wormhole become singular points.
When the electric and magnetic charge parameters are identical, the throats
‘degenerate’ and the solution reduces to the trivial embedding of the four-
dimensional massless Reissner–Nordström black hole solution. In addition,
their counterparts in 11-dimensional supergravity are constructed by a non-
trivial uplifting.

PACS numbers: 0420J, 0450, 0470

1. Introduction

After the brilliant insight of Kaluza and Klein [1] realizing that the Einstein gravity and Maxwell
electromagnetism theories can be unified in a five-dimensional manifold, the Kaluza–Klein
theory, essentially the five-dimensional pure general relativity, has developed explosively. (A
comprehensive discussion of Kaluza–Klein theory is given in a recent review article [2].)
This is the first theory advocating the idea that the physical world may have more than four
dimensions; it laid the foundation for modern developments such as superstrings and M-theory.

The exact solutions, especially spherically symmetric ones, of Kaluza–Klein theory have
been studied extensively. A subset of such solutions corresponds to black holes. Well known
examples include the electric pp-wave obtained by Dobiasch and Maison [3] and the magnetic
GPS monopole of Gross and Perry [4] and Sorkin [5]. Later, Gibbons and Wiltshire [6]
successfully unified the pp-wave and GPS monopole into a dyonic solution which recently has
been generalized, by Rasheed [7], to include a rotation. Furthermore, the hidden symmetry,
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SL(3, R), of the vacuum five-dimensional (5D) metric with two commuting isometries and its
solution-generating application were analysed in [8–10] and were extended in [11].

In addition to the black holes, there is another subset of solutions, the so-called wormholes,
which were introduced originally by Wheeler [12]. The most physically interesting property
of wormholes is that this type of solution provides a possible (theoretically at the moment) way
of travelling in time, which, if it can be realized, may lead to a break down of some traditional
concepts of nature, especially causality [13] (see [14] and references therein).

The discovery of wormholes for Kaluza–Klein theory dated back to the work done by
Chodos and Detweiler [15]. In that paper, a class of regular, spherically symmetric and
asymptotically flat solutions characterized by three parameters (mass, electric and scalar
charges) was constructed and certain cases were interpreted as wormholes. Afterwards,
this class of solutions was generalized to axisymmetric multi-wormholes [16] and to higher
dimensions [17] by Clément. More recently, a class of wormholes with a diagonal 5D metric
was also discussed in [18].

The purpose of the present paper is to give a dyonic extension of the massless electric
wormhole solutions given in [15–17] and rediscovered recently by Dzhunushaliev [19].
Surprisingly, the exact form of these dyonic wormholes is elegant and succinct. The primary
properties of these dyonic wormholes are discussed. In addition, their 11-dimensional
supergravity counterparts are presented.

2. Kaluza–Klein dyonic wormholes

For a general spherically symmetric dyon characterized by two parameters q (electric) and p

(magnetic), we take the following general form for the metric:

ds2
5 = B

A
(dχ + ω dt + 2p cos θ dϕ)2 − �

B
dt2 + A

(
dr2

�
+ d�2

)
, (1)

where χ is the extra fifth coordinate, d�2 := dθ2 + sin2 θ dϕ2 and A,B,ω,� are functions
which depend only on the variable r . The value of the coordinate r is extended to {−∞,∞}.

Regarding the wormhole solutions, the pure electric case found in [15–17, 19] can be
rewritten, by choosing appropriate coordinates and discarding a dummy parameter, in a more
succinct form which satisfies the pattern of equation (1) together with the condition p = 0 and
the following specific functions:

electric: ωe = 2qr

r2 − q2
, Ae = �e = r2 + q2, Be = r2 − q2. (2)

Hereafter, we use the subscripts e,m andd to denote the electric, magnetic and dyonic solutions,
respectively.

Obviously, the likely ‘singularities’ of the above spacetime configuration (2) can be located
at r2 = q2 which divide the entire spacetime into three different regions: two outer regions
r2 > q2 (two slices, r < −|q| and r > |q|) and one core region r2 < q2, (−|q| < r < |q|).
Furthermore, it is easy to recognize that the two outer regions are asymptotically flat, but in
the core region, the t coordinate changes its sign and becomes spacelike [20], while elsewhere
the spacelike fifth coordinate χ changes to become timelike. It was shown in [15] that the
solution (2) is regular everywhere for r ∈ {−∞,∞}, so that the five-dimensional geometry
is of the Lorentzian wormhole type. However, as pointed out in [21] this wormhole, with
only a pure electric charge, is non-traversable in the sense that a physical (non-tachyonic) test
particle cannot go from one asymptotic flat region (r → ∞) to the other (r → −∞). The
‘fake’ singularities located at r2 = q2 are just two mouths of the throat of the wormhole and
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the area of each mouth is finite, 4πq2. The detailed analysis, including geometrical properties
and stability of these solutions, has been given in [23].

Unfortunately, the exact magnetic solution is ‘unknown’ in the literature, instead of which
Dzhunushaliev and Singleton gave a numerical analysis [22] to discuss its expected behaviour.
The authors claimed that this magnetic solution is a finite flux tube, which may provide a reason
why free monopoles do not appear to exist in nature: they are confined to monopole–anti-
monopole pairs in a finite, flux-tube-like spacetime that is similar to the flux-tube confinement
picture of quarks in quantum chromodynamics (QCD).

However, every Kaluza–Klein magnetic solution, including the GPS monopole and, of
course, this desired new type, can be derived by S-duality from its electric dual partner. (There
is a lot of literature discussing this duality, see, e.g., [24]). Applying S-duality, the ‘dual’
solution of (2) can be found easily without solving the field equations. Its exact form is of the
form (1) along with q = 0 and

magnetic: ωm = 0, Am = r2 − p2, Bm = �m = r2 + p2. (3)

According to (3), the possible singularities could occur at r2 = p2 and the two outer
regions r2 > p2 are also flat asymptotically. However, in the core region r2 < p2 all spacelike
coordinates change their sign and the signature of this region is ‘all minus’ which indicates
that the spacetime is no longer Lorentzian but pseudo-Euclidean. Nevertheless, an apparently
wormhole-like (pseudo-Euclidean) configuration, but not a flux tube as claimed in [22], may
again be formed in the magnetic solution. However, the geometrical structure of these magnetic
solutions is significantly different from the electric ones. The 2-surfaces of each ‘end’, located
at r = ±p, of the core region for these magnetic solutions, covered by the coordinates θ and
ϕ, shrink to a point for all values of the magnetic charge. We have checked that the magnetic
solutions are indeed singular at r = ±p (the 5D Kretschmann invariant, K5 = RαβµνR

αβµν ,
is divergent at these points), so that these solutions actually do not form wormholes since
their spacetime cannot be extended analytically from r → −∞ to r → ∞. In general, with
more than one timelike dimension, one opens up the possibility of closed timelike curves and
causality violations. However, since the region of the ‘throat’ seems to be ‘pinched off’ from
the asymptotic regions it probably does not cause any mischief.

It is worth noting that our purely magnetic solution is just the Euclideanized massless
Taub-NUT solution [25] with a trivial time direction1.

The next task, naturally, is trying to construct a two-parameter dyon which can combine
the above two single-parameter electric wormhole and magnetic singular solutions. With the
help of the symbolic calculation package GRG [26], we have obtained this kind of dyonic
solution. The result, written in the form of equation (1), is

dyonic: ωd = 2qr

r2 + p2 − q2
, Ad = r2 − p2 + q2,

Bd = r2 + p2 − q2, �d = r2 + p2 + q2.

(4)

We now summarize the essential properties, from the five-dimensional point of view, of
these new dyons.

• The solutions (4) have a remarkably elegant and symmetric expression, even simpler than
the well known dyonic black holes in [6].

1 I am grateful to a referee for pointing out this analogue.
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• For the electric-dominated case, q2 > p2, this solution is regular everywhere, which can
primarily be verified by the associated Kretschmann invariant2. With an extended value
of r ∈ {−∞,∞}, it describes the configuration of a Lorentzian wormhole connecting two
asymptotically flat spacetimes. The area of the mouths is finite: 4π(q2 − p2).

• For the magnetic-dominated case, p2 > q2, the core region is pseudo-Euclidean and the
‘mouths’ at r = ±

√
p2 − q2 compress to singular points. Actually, these two points

are singular, thus the geometry cannot be extended analytically from one Lorentzian
asymptotical flat spacetime to the other through the core.

• For the case q = ±p, the throat degenerates to a point at r = 0 and the Kaluza–Klein
dyonic solutions are just the trivial embedding of the four-dimensional massless Reissner–
Nordström black hole solutions of the Einstein–Maxwell theory.

3. Four-dimensional observer’s examination

There is a physically important question to ask: what will be experienced for a four-dimensional
observer inhabiting the spacetime described by (4)? In order to be consistent with Einstein’s
theory of gravity, the four-dimensional effective action reduced from the five-dimensional
general relativity should be presented in the Einstein frame forming the so-called Einstein–
Maxwell-dilaton theory with a certain dilaton coupling constant (minimal coupling of the
scalar field). The four-dimensional (4D) metric of (1) in the Einstein frame is given by

ds2
4 = − �√

AB
dt2 +

√
AB

(
dr2

�
+ d�2

)
. (5)

Therefore, in the Einstein frame, the reduced metric (5) of dyonic solutions (4) shows the
following.

• The distinctness between electric, q, and magnetic, p, parameters disappears. (Since
�d = r2 +p2 +q2 and

√
AdBd =

√
r4 − (p2 − q2)2, thus the metric (5) is invariant under

exchange parameters p and q for dyonic solutions (4).)
• The asymptotical limit, r2 → ∞, is just the dyonic massless Reissner–Nordström solution,

ds2
4 ∼ −

(
1 +

p2 + q2

r2

)
dt2 +

(
1 +

p2 + q2

r2

)−1

dr2 + r2 d�. (6)

• The 2-surface area of the ‘origin’ for the electromagnetic charges at r2 = |p2 − q2| is
always zero.

• The core region r2 < |p2 − q2| does not exist physically, or is ‘invisible’, due to the fact
that

√
AdBd is ill-defined in this region. From the dimensional reduction point of view,

in this region, the KK reduction along the direction ∂χ is not valid since the Killing vector
becomes timelike and presumably does not have closed orbits.

Synthesizing the above arguments, one can claim that within the dyonic solutions (4) a
four-dimensional observer will ‘see’ only one of the two regions of spacetime generated by
electromagnetic ‘point-like’ sources. Nevertheless, for the four-dimensional observer these
charges are entirely ‘disconnected’. From the five-dimensional point of view, however, the
explanation may be completely different—the charges could be connected by a wormhole.
Thus, our solutions provide a possible realization of the model of the ‘charge without charge’
idea for electromagnetic sources proposed by Wheeler.

2 A more rigorous way to observe the regularity is by the fact that the determinant of the five-dimensional metric,
|g5| = A2

d sin2 θ , is non-vanishing for all values of r when q2 > p2. Therefore, one can, for instance, everywhere
locally transform to a frame where the metric tensor is diagonal with finite and non-vanishing elements.
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4. Counterparts in 11-dimensional supergravity

One can show [27, 28] that there exists a ‘duality’ between eight-dimensional vacuum
configurations possessing two commuting spacelike Killing vectors and 11-dimensional
supergravity solutions satisfying a certain ansatz. Applying this correspondence to our general
ansatz of metric (1) smeared to eight dimensions, one can obtain the related counterparts within
the framework of M-theory. The solutions are

ds2
11 =

(
B

A

)−2/3 (
dx2

1 + dx2
2

)
+

(
A

B

)−1/3
(

7∑
i=3

dx2
i

)

+

(
B

A

)1/3 [
−�

B
dt2 + A

(
dr2

�
+ d�2

)]
, (7)

Âtx1x2 = ω, Âϕx1x2 = 2p cos θ. (8)

Considering only the pure electric solutions, the 11-dimensional metric and form field reduce
to

ds2
11 =

(
r2 − q2

r2 + q2

)−2/3 (−dt2 + dx2
1 + dx2

2

)

+

(
r2 − q2

r2 + q2

)1/3
[

dr2 + (r2 + q2) d�2 +
7∑

i=3

dx2
i

]
, (9)

Âtx1x2 = 2qr

r2 − q2
. (10)

Thus, this is another type of 2-brane which is different from the already known M2-brane
and M2-fluxbrane to the 11-dimensional supergravity. The proper terminology for the above
solution intuitively should be ‘M2-wormbrane’. Similarly, the counterparts of the magnetic
and dyonic solutions are a new type of 5-brane and 2 ∪ 5-brane [27, 28]. What physical role
may be played by these solutions is still unclear and needs further investigation.

5. Conclusion

In this paper, we obtain new spherically symmetric dyonic solutions including wormholes
and configurations with naked singularities in the five-dimensional Kaluza–Klein theory. The
geometrical structure is determined by the relative strength of the electric and magnetic charges.
When the electric charge dominates, i.e. q2 > p2, the solution is a Lorentzian wormhole and
the mouths of the wormhole have finite area. Where, when the magnetic charge dominates,
p2 > q2, the core region is pseudo-Euclidean and its ends shrink to singular points. For this
case, the spacetime cannot be extended analytically from r → −∞ to r → ∞. Moreover, if
the electric and magnetic fields are in ‘balance’, p2 = q2, the core degenerates to a point and
the solution is just a trivial embedding of 4D massless Reissner–Nordström black holes.

However, a four-dimensional observer cannot detect the existence of the core region but
rather sees a spacetime generated by a point-like electromagnetic source. Therefore, these
wormhole-like solutions show that Wheeler’s ‘charge without charge’ for the origin of electric
and magnetic charges may can be realized in higher dimensions.

It is worth noting that there is a one-parameter flux-tube solution which was given
in [22, 29], explicitly

flux tube: ωF = r

p
, AF = BF = 2p2, �F = r2 + 2p2. (11)
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This solution was expected to be an extreme limit of a dyonic solution which ‘can’ combine
an electric wormhole and a magnetic flux tube. However, in this paper we have shown that
the dyonic extension from the electric wormhole couples to the magnetic singular solutions
but there is no flux tube. Moreover, the solution (11) can easily be understood as belonging to
another category of solutions since it is not asymptotically flat. Therefore, there should exist
a generalized dyonic flux tube the extreme case of which is just the solution (11).
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