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We explore the four-dimensional effective F (T ) gravity with T the torsion scalar in teleparallelism
originating from higher-dimensional space–time theories, in particular the Kaluza–Klein (KK) and
Randall–Sundrum (RS) theories. First, through the KK dimensional reduction from the five-dimensional
space–time, we obtain the four-dimensional effective theory of F (T ) gravity with its coupling to a
scalar field. Second, taking the RS type-II model in which there exist the five-dimensional Anti-de
Sitter (AdS) space–time with four-dimensional Friedmann–Lemaître–Robertson–Walker (FLRW) brane,
we find that there will appear the contribution of F (T ) gravity on the four-dimensional FLRW brane. It
is demonstrated that inflation and the dark energy dominated stage can be realized in the KK and RS
models, respectively, due to the effect of only the torsion in teleparallelism without that of the curvature.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The phenomenon of the accelerated expansion of the universe
has been supported by various observations of Supernovae Ia [1],
large scale structure [2] including the baryon acoustic oscilla-
tions [3], cosmic microwave background radiation [4], and weak
lensing [5]. This is one of the most significant problems in mod-
ern cosmology. Provided that the universe is homogeneous, there
exist two representative ways of accounting for the current cos-
mic acceleration: The first is to introduce “dark energy”, which has
negative pressure, within general relativity (for recent reviews, see,
e.g., [6]). The second is to modify the gravitational theory on large
scale. As one of the latter approaches, “teleparallelism” [7] has
recently been drawn much attention. The formulations are con-
structed with the Weitzenböck connection, and hence the action
is described by the torsion scalar T , whereas in general relativ-
ity, the formulations are written with the Levi-Civita connection,
and thus the action is represented by the scalar curvature R . It
has been illustrated that in F (T ) gravity, inflation in the early
universe [8] or the late-time cosmic acceleration [9–11] can be
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realized. Also, it was verified that a non-minimal gravitational cou-
pling of a scalar field in teleparallelism can explain the current
cosmic acceleration [12]. Various theoretical issues of F (T ) gravity
have extensively been discussed.

In this Letter, we examine the four-dimensional effective F (T )

gravity taking its origin from higher-dimensional space–time the-
ories. As the first example, we consider the four-dimensional ef-
fective F (T ) gravity from the Kaluza–Klein (KK) theory [13–15].
By setting up the five-dimensional space–time, via the KK re-
duction to the four-dimensional space–time, we construct the
four-dimensional effective theory, which is an F (T ) gravity model
with the non-minimal coupling to a scalar field. Next, as the sec-
ond example, we investigate the four-dimensional effective F (T )

gravity from the Randall–Sundrum (RS) [16,17] theory, which
originates from a novel KK approach in the brane world de-
scription [18]. We take the RS type-II model where there are
the five-dimensional Anti-de Sitter (AdS) space–time and the
four-dimensional Friedmann–Lemaître–Robertson–Walker (FLRW)
brane. In such a configuration, a contribution of F (T ) gravity on
the FLRW brane will exist. It is shown that inflation or the dark en-
ergy dominated stage can be realized only by the effect of the tor-
sion without that of the curvature. As a result, it can be interpreted
that these models may be equivalent to the KK and RS models
without gravitational effects of the curvature but just due to those
of the torsion in teleparallelism. We use units of kB = c = h̄ = 1
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and denote the gravitational constant 8πG by κ2 ≡ 8π/MPl
2 with

the Planck mass of MPl = G−1/2 = 1.2 × 1019 GeV.
The Letter is organized as follows. In Section 2, we introduce

the formulations in teleparallelism and first explore the effective
F (T ) gravity in the four-dimensional space–time coming from the
five-dimensional Kaluza–Klein (KK) theory. Next, in Section 3, we
examine the RS type-II model and show that the F (T ) gravity con-
tribution will exist on the brane with the four-dimensional flat
FLRW space–time. In Section 4, conclusions are finally given.

2. From the Kaluza–Klein (KK) theory

In teleparallelism, orthonormal tetrad components e A(xμ) with
A = 0,1,2,3 are adopted. Here, an index A is for the tangent
space at each point xμ of the manifold. With orthonormal tetrad
components, the metric is expressed as gμν = ηAB e A

μeB
ν with μ

and ν , where μ,ν = 0,1,2,3, coordinate indices on the mani-
fold, and accordingly eμ

A is equivalent to the tangent vector of
the manifold. This is called the vierbein. The relation e A

μeν
A = δν

μ
defines the inverse of the vierbein. The torsion and contorsion
tensors are defined as T ρ

μν ≡ Γ ρ
νμ − Γ ρ

μν = eρ
A(∂μe A

ν − ∂νe A
μ)

with Γ ρ
νμ ≡ eρ

A∂μe A
ν , being the Weitzenböck connection without

curvature, and K μν
ρ ≡ −(1/2)(T μν

ρ − T νμ
ρ − Tρ

μν) the con-
torsion tensor, respectively. The torsion scalar is constructed as
T ≡ Sρ

μν T ρ
μν = (1/4)T ρμν Tρμν + (1/2)T ρμν Tνμρ − Tρμ

ρ T νμ
ν ,

where Sρ
μν ≡ (1/2)(K μν

ρ +δ
μ
ρ T αν

α −δν
ρ T αμ

α) is the superpoten-
tial. Consequently, the teleparallel Lagrangian density is described
by the torsion scalar T , although the Einstein–Hilbert action is
represented by the scalar curvature R in general relativity. The
modified teleparallel action describing F (T ) gravity [10] with mat-
ter is

S =
∫

d4x |e|
(

F (T )

2κ2
+LM

)
, (1)

where |e| = det(e A
μ) = √−g with g the determinant of the metric

gμν and LM is the matter Lagrangian. In what follows, we concen-
trate on the part of gravitation of the action.

First, we explore the four-dimensional effective F (T ) gravity
from the KK theory. We suppose that the procedure of the KK re-
duction [13–15] can be applied to the modified teleparallel gravity
in the same manner as in general relativity. The action of F (T )

gravity in the five-dimensional space–time is expressed as [19]

(5)S =
∫

d5x
∣∣(5)e

∣∣ F ((5)T )

2κ2
5

, (2)

(5)T ≡ 1

4
T abc Tabc + 1

2
T abc Tcba − Tab

a T cb
c, (3)

where (5)e = √
(5) g with (5) g the determinant of the metric (5) gμν

in the five-dimensional space–time, κ2
5 ≡ 8πG5 = ((5)MPl)

−3 with

G5 the gravitational constant and M(5)

Pl the Planck mass in the five-
dimensional space–time. Here, the superscript or subscript of (5)

or 5 mean the quantities in the five-dimensional space–time. In
addition, (5)T is the torsion scalar in the five-dimensional space–
time, where the Latin indices a,b, . . . run over 0,1,2,3,5 and “5”
denotes the component of the fifth coordinate. The form in Eq. (3)
is equivalent to that in the four-dimensional space–time shown
above [19]. We now consider the following original KK compactifi-
cation scenario in case of the five-dimensional space–time. One of
the dimensions of space is compactified to a small circle and the
four-dimensional space–time is extended infinitely. The radius of
the fifth dimension is taken to be of order of the Planck length in
order for the KK effects not to be seen. Thus, the size of the circle
is so small that phenomena in sufficiently low energies cannot be
detected [13–15]. Provided that the metric in the five-dimensional
space–time is described as the following diagonal form

(5)gab =
(

gμν 0
0 −φ2

)
, (4)

with φ ≡ ϕ/ϕ∗ a homogeneous scalar field depending only on
time, where φ is a dimensionless quantity, ϕ is a homogeneous
scalar field having a mass dimension and ϕ∗ is a fiducial value
of ϕ . We represent φ2 = R2θ2, where R is the radius of the
compactified space, and the orthonormal tetrad components in
the one-dimensional compactified space is written by the dimen-
sionless coordinates θ such as an angle. We also find

√
(5) g =√−gR

√
ĝ . Here, ĝ is the determinant of the metric correspond-

ing to the pure geometrical part represented by θ and relevant to
the compactified space volume V com = ∫

ĝ dθ [15]. In this case, we
take e A

a = diag(1,1,1,1, φ) and the ηab = diag(1,−1,−1,−1,−1).
For the action in the five-dimensional space–time in Eq. (2) with
Eq. (3), by adopting the above expressions of e A

a and ηab to analyze
(5) S and (5)T , the effective action in the four-dimensional space–
time through the KK compactification mechanism explained above
can be described as

Seff
KK =

∫
d4x |e| 1

2κ2
φF

(
T + φ−2∂μφ∂μφ

)
. (5)

The appearance of φ on the right-hand side in Eq. (5) in front of
the function F comes from the relation |(5)e| = φ|e| due to the KK
dimensional reduction. Furthermore, the form of (5)T is the same
as that of T , and the part of the 0, . . . ,3 of (5) gab in Eq. (4) is
gμν , i.e., the metric in the four-dimensional space–time. Hence,
the form of the torsion scalar through the KK dimensional reduc-
tion to the four-dimensional space–time, which is the argument
of the function F on the right-hand side in Eq. (5), would con-
sist of T and the other part in terms of φ, which is related to
the size of the compactified space. We note that the form of the
function F itself would not be changed by the KK dimensional
reduction. Our KK reduced action in Eq. (5) is compatible with
the results in Ref. [20]. Also, we mention that the investigations
in the case with the non-diagonal form of the metric in the five-
dimensional space–time have also been executed in Ref. [21]. Here,
as a simplest example, we consider the case of teleparallelism, i.e.,
F (T ) = T − 2Λ4 in Eq. (1) with Λ4 (> 0) a positive cosmologi-
cal constant in the four-dimensional space–time. In this case, the
action in Eq. (5) is similar to the one describing the Brans–Dicke
theory with the cosmological constant. If we define a scalar field σ
as φ ≡ ξσ 2 with ξ = 1/4, we can rewrite the action in Eq. (5) into
the one where the kinetic term of σ becomes canonical as [15]
Seff

KK|F (T )=T −2Λ4 = ∫
d4x |e|(1/κ2)[(1/8)σ 2T + (1/2)∂μσ∂μσ − Λ4].

The metric of the flat FLRW universe is written as ds2 = dt2 −
a2(t)

∑
i=1,2,3(dxi)2 with a the scale factor and H ≡ ȧ/a the Hubble

parameter, where the dot denotes the time derivative of ∂/∂t . For
this space–time, we have gμν = diag(1,−a2,−a2,−a2) and e A

μ =
diag(1,a,a,a). These expressions lead to the relation T = −6H2. In
this background, the gravitational field equations read (1/2)σ̇ 2 −
(3/4)H2σ 2 + Λ4 = 0 and σ̇ 2 + Hσ σ̇ + (1/2)Ḣσ 2 = 0 [12]. Fur-
thermore, the equation of motion of σ becomes σ̈ + 3Hσ̇ +
(3/2)H2σ = 0. In deriving these equations, we have used the
relation T = −6H2. By combining the above gravitational field
equations, we have (3/2)H2σ 2 − 2Λ4 + Hσ σ̇ + (1/2)Ḣσ 2 = 0.
Hence, we can obtain a solution for this equation as H = H inf =
constant (> 0), which corresponds to the Hubble parameter at
the inflationary stage, and σ = b1(t/t1) + b2, where b1 is a con-
stant and b2 (> 0) a positive one, and t1 denotes a time. In the
limit t → 0, we can acquire an approximate expression as H inf ≈
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(2/b2)
√

Λ4/3 and σ ≈ b2. Furthermore, with the equation of mo-
tion of σ , for t → 0, we find b1 ≈ −(1/2)b2 H inft1 ≈ −√

Λ4/3t1. As
a result, when t → 0, an exponential inflation with the scale fac-
tor a ≈ ā exp(H inft), where ā (> 0) is a positive constant, can be
realized approximately. It is significant to emphasize that the con-
tribution of the effect of the KK compactification, namely, the role
of extra dimensions, is to lead to the scalar field φ in the gravita-
tional field equations.

3. From the Randall–Sundrum (RS) theory

Next, we explore the four-dimensional effective F (T ) gravity
from the RS theory with the procedure in Ref. [15]. In the RS type-I
model [16], there are a positive tension brane at y = 0 and a nega-
tive one at y = s → ∞, where y is the fifth direction. Suppose that
the metric describing the five-dimensional space–time is given by
ds2 = e−2|y|/l gμν(x)dxμ dxν +dy2 with l = √−6/Λ5, where e−2|y|/l

is the warp factor and Λ5 (< 0) is the negative cosmological con-
stant in the bulk. It is known that for the RS type-I model, the
effective gravity theory in four dimensions is the Brans–Dicke (BD)
theory with the BD parameter ωBD = (3/2)(e±s̃/l − 1), where the
sign (±) corresponds to that of the brane tension [22].

On the other hand, in the RS type-II model [17], there is only
one brane with the positive tension floating in the AdS bulk space
and hence the negative-tension brane does not exist. This con-
figuration can be realized by the RS type-I model [16] with two
branes in the limit s̃ → ∞. We start with the equation in the
five-dimensional space–time with the brane whose tension is a
positive constant. We consider that the vacuum solution in the
five-dimensional space–time is AdS one, and that the brane con-
figuration is consistent with the equation in the five-dimensional
space–time. This implies that the brane configuration with a pos-
itive constant tension connecting two vacuum solutions in the
five-dimensional space–time, namely, the condition of the config-
uration is nothing but the equation for the brane. In Ref. [23],
using the analysis in Ref. [24], the RS type-II model in teleparal-
lelism has been considered. The procedure is as follows. (i) The
corresponding Gauss–Codazzi equations in teleparallelism, namely,
the induced equations on the brane, are examined by using the
projection vierbein of the five-dimensional space–time quantities
into the four-dimensional space–time brane. (ii) The Israel’s junc-
tion conditions to connect the left-side and right-side bulk spaces
sandwiching the brane are investigated. The first junction condi-
tion is that the vierbeins induced on the brane from the left side
and right side of the brane should be the same with each other.
Moreover, the second junction condition is that the difference of
the superpotential between the left side and right side of the brane
comes from the energy–momentum tensor of matter, which is con-
fined in the brane. (iii) Provided that there exists Z2 symmetry,
i.e., y ↔ −y, in the five-dimensional space–time, the quantities
on the left and right sides of the brane are explored. The differ-
ence between the scalar curvature and the torsion scalar is a total
derivative of the torsion tensor [19,25]. This may affect the bound-
ary. It has been shown that in comparison with the gravitational
field equations in general relativity [24,26], the induced gravita-
tional field equations on the brane have new terms, which comes
from the additional degrees of freedom in teleparallelism. These
extra terms correspond to the projection on the brane of the vec-
tor portion of the torsion tensor in the bulk.

Through the procedure explained above, we find that for F (T )

gravity, in the flat FLRW background the Friedmann equation on
the brane is given by

H2 dF (T ) = − 1
[

F (T ) − 4Λ − 2κ2ρM −
(

κ2
5
)2

Qρ2
M

]
, (6)
dT 12 2
with Q ≡ (11 − 60wM + 93w2
M)/4. We note that Q includes the

contributions from teleparallelism, which do not exist in general
relativity [23]. Here, wM ≡ PM/ρM with the energy density ρM
and pressure PM of matter, assumed to be a perfect fluid, is the
equation of state parameter for matter confined to the brane, the
effective cosmological constant in the brane is Λ ≡ Λ5 + (κ2

5 /2)2λ2

with λ (> 0) the tension of the brane and G = [1/(3π)](κ2
5 /2)2λ.

Clearly, the significant contributions from the fifth dimension to
the Friedmann equation on the brane are the second term and the
fourth term proportional to ρ2

M on the right-hand side in Eq. (6).
Furthermore, the function of F (T ) induced on the brane would be
considered to be the same as that in the five-dimensional space–
time. In the dark energy dominated stage, the energy density of
non-relativistic matters with wM = 0, i.e., cold dark matter and
baryon, is so much smaller than that of the cosmological constant
that the third and fourth terms on the right-hand side can be ne-
glected. For teleparallelism with the cosmological constant in the
five-dimensional space–time, F (T ) = T − 2Λ5 in Eq. (6), we ob-
tain an approximate de Sitter solution on the brane H = HDE =√

Λ5 + κ4
5 λ2/6 = constant and a(t) = aDE exp(HDEt) with aDE (> 0)

a constant, where we have used T = −6H2. Therefore, for the
late time cosmic acceleration can be realized. We mention that for
F (T ) = T , Λ = 0 and Q = 8/3 realizing if wM = −5.5 × 10−3, we
find H2 = (κ2/3)ρM[1+ρM/(2λ)], which is equivalent to the Fried-
mann equation in the brane world scenario [27]. Moreover, for a
power-law model such as F (T ) = T 2/M̄2 + αΛ5 in Eq. (6), where
M̄ is a mass scale and α is a constant, we find a similar approx-
imate de Sitter solution H = HDE = [(M̄2/108)J ]1/4 = constant
with J ≡ (α − 4)Λ5 − 4(κ2

5 /2)2λ2, where J (� 0) has to be larger
than or equal to zero, so that this can lead to a constraint on
α as α � 4 + (κ2

5 λ2)/Λ5. Here, we have used an approximation
that on the right-hand side of Eq. (6), the first and second terms,
which corresponds to the components of dark energy, are much
larger than the third and fourth terms proportional to ρM and ρ2

M,
respectively. This approximation can be appropriate when the uni-
verse is considered to be the dark energy (sufficiently) dominated
stage and thus the energy density of non-relativistic matters ρM
can be negligible in comparison with the dark energy density. In
addition, we note that in deriving the above solution, we have used
the relation T = −6H2, and that as a result, both the left-hand
side of Eq. (6) and the first term of the right-hand side are pro-
portional to H4. It is emphasized that the generic formulation for
the gravitational field equation on the brane in teleparallel gravity
has been derived in Ref. [23]. On the other hand, the new ingre-
dients obtained in this Letter would be considered to describe the
Friedmann equation (6) in the flat FLRW space–time and to ac-
quire the solutions to realize the current accelerated expansion of
the universe for two concrete F (T ) models. It should also be cau-
tioned that the condition on F (T ) gravity for the AdS configuration
in the bulk to be realized has to be shown in future work. In ad-
dition, four-dimensional bouncing F (T ) cosmologies [28] unifying
inflation with the late-time cosmic acceleration due to dark energy
have been discussed. Such cosmologies may be reconstructed also
in F (T ) gravity from the RS brane world scenario.

4. Conclusions

We have studied the four-dimensional effective F (T ) gravity
coming from the higher-dimensional KK and RS space–time theo-
ries. With the KK reduction from the five-dimensional space–time
to the four dimensions, we have built the four-dimensional effec-
tive theory of F (T ) gravity coupling to a scalar field. Moreover,
for the RS type-II model consisting of the five-dimensional AdS
space–time and the four-dimensional FLRW brane, we have also
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shown that the contribution of F (T ) gravity appears on the four-
dimensional FLRW brane. Furthermore, it has been verified that
inflation or the late time cosmic accelerated expansion can occur
only through the effect of the torsion without that of the curva-
ture. Thus, these models can be regarded as the KK and RS models
constructed by not the curvature effect but only the torsion one in
teleparallelism.

What it has been executed in this Letter is to explicitly demon-
strate that in the four-dimensional effective F (T ) gravity theories
obtained by the KK reduction from the five-dimensional space–
time and those on the four-dimensional FLRW brane in the RS
type-II model, inflation in the early universe and the accelerated
expansion in the late time universe can be realized, respectively,
owing to the effect of the torsion of the space–time and not the
curvature effect. Indeed, this is the first work on the concrete
cosmological solutions to describe the cosmic accelerated expan-
sion of the KK and RS models in F (T ) gravity. These results may
imply that phenomenological F (T ) gravity models in the four-
dimensional space–time can be derived from more fundamental
theories. Since F (T ) gravity models can lead to the current ac-
celerated expansion of the universe, namely, a resolution of the
dark energy problem, this study may present us a clue to explore
the origin of extensions of gravity from general relativity including
F (T ) gravity.

Finally, it should be remarked that the observational constraints
on the derivative of F (T ) with respect to T until the fifth or-
der have been presented in Ref. [29] with cosmographic param-
eters acquired from the observational data of Supernovae Ia and
the baryon acoustic oscillations. In this Letter, as concrete exam-
ples of F (T ) gravity models, we have considered F (T ) = T plus
an effective cosmological constant and F (T ) = T 2/M̄2 plus a con-
stant term corresponding to an effective cosmological constant.
These two models can be consistent with the results obtained in
Ref. [29].
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