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Intersecting Brane Worlds and Their Effective Interactions

Dieter Lüst∗)

Institut für Physik, Humboldt-Universität, Newtonstraße 15,
D-12489 Berlin, Germany

In this review we describe the general geometrical framework of brane world constructions
in orientifolds of type IIA string theory with D6-branes wrapping 3-cycles in a Calabi-Yau
3-fold. These branes generically intersect in points, and the patterns of intersections govern
the chiral fermion spectra and issues of gauge and supersymmetry breaking in the low energy
effective gauge theory on their world volume. We also specialize the discussion for the case of
orbifold backgrounds with intersecting D6-branes. Then, in the second part of the paper, we
discuss parts of the effective action of intersecting brane world models. Specifically we first
compute from the Born-Infeld action of the wrapped D-branes the tree-level, D-term scalar
potential, which is important for the stability of the considered backgrounds as well as for
questions related to supersymmetry breaking. Second, we review the recent computation of
one-loop gauge threshold corrections in intersecting brane world models, which are needed
in order to give precise predictions for the values of the gauge couplings at low energies.

§1. Introduction

A central object of string phenomenology is to provide an existence proof for a
string vacuum whose low energy approximation is reproducing the known physics of
the Standard Model or of its supersymmetric and grand unified extensions. As a first
approach one may concentrate on finding models with the correct light degrees of
freedom, the right gauge group and chiral fermion spectra, leaving the details of their
dynamics aside for the moment. Intersecting brane worlds1)–23) have proven to be
a candidate framework of model building which offers excellent opportunity to meet
this requirement. In these string compactifications, the standard model particles
correspond to open string excitations which are located at the various intersections
of the D-branes in the internal 6-dimensional space. At the moment, type IIA inter-
secting brane world models with D6-branes, which fill the 4-dimensional Minkowski
space-time and are wrapped around internal 3-cycles, provide the most promising
approach to come as close as possible to the standard model.∗∗) Then the fermion
spectrum is determined by the intersection numbers of certain 3-cycles in the internal
space, as opposed for instance to the older approaches involving heterotic strings,
where the number of generations was given by the Euler characteristic in the simplest
case.

Going beyond these topological data in a second step, the computation of the
effective interactions of the light (open) string modes is of vital importance in order
to confront eventually the intersecting brane world models with experiment. In
particular, the knowledge of the effective scalar potential is needed to discuss the
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question of stability of intersecting brane world models. At classical level parts
of the effective scalar potential were computed in Refs. 8), 14); in this way one can
determine the dynamics at least at the classical level. More recently also the one-loop
gauge threshold corrections in supersymmetric intersecting brane world models were
calculated.19) These are essential to get precise informations on the low-energy values
of the standard model gauge couplings. Finally effective Yukawa couplings12), 18), 21)

and quartic fermion interactions,22), 23) relevant for flavor changing neutral currents,
were also investigated.

In this work we will review the main aspects of the construction of intersecting
brane world models as well as of the computation of the tree-level scalar potential
and the one-loop threshold corrections. The constructive part will be fairly general,
applicable for D6-branes wrapped around Calabi-Yau 3-cycles. Later, when we come
to the computation of the one-loop gauge threshold corrections we restrict ourselves
to orbifold and orientifold backgrounds.

Let us elaborate a little bit more on the general picture of intersecting brane
world models. The internal Calabi-Yau space may develop one or more nodes which
support 3-cycles wrapped by several D6-branes. On one of the nodes, the Standard
Model (SM) fields are localized, while others may involve hidden sector (HS) gauge
groups which couple only gravitationally to the visible sector (see Fig. 1).

This kind of scenario offers at least two possible ways to address the issue of
space-time supersymmetry breaking in intersecting brane worlds. In the first class
of models the Standard Model brane configuration is already non-supersymmetric
from the beginning (this is true for many of the models considered so far, including
the CY example in Ref. 14)). This means that supersymmetry is broken at the string
scale Mstring. In order to avoid the usual hierarchy problems Mstring should be of the
order of a few TeV, requiring that the volume of the internal CY space transverse to
all Standard Model D-branes is large according to Refs. 24), 25). On the other hand it
may happen that the Standard Model D-brane sector is itself supersymmetric (N = 1
supersymmetric brane world models were constructed in Refs. 9), 10), 17)). Now
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Fig. 1. Calabi-Yau space with intersecting standard model and hidden D6-branes.
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suppose that the hidden sector preserves a different supersymmetry or is completely
non-supersymmetric. Then the gravity mediated supersymmetry breaking appears
very natural. In this case the following relation between the SUSY breaking scale in
the Standard Model sector and the fundamental string scale is expected to hold:

M3/2 � M2
string

MPlanck
. (1.1)

With M3/2 of order TeV one obtains an intermediate string scale, Mstring � 1011GeV,
a scenario which was already discussed in Ref. 26). For D6-brane models the string
scale, the string coupling constant gstring, the typical length scale R‖ of the internal
D6-brane volume Vol(D6) ∼ R3

‖ and the scale R⊥ of the transversal internal volume
are related to the tree level gauge coupling gYM and the effective Planck mass in the
following way:

g2
YM = gstring(MstringR‖)−3 , MPlanck =

M4
string

gstring
(R‖R⊥)3/2 . (1.2)

Assuming that Mstring � R−1
‖ this requires a moderately enlarged transversal space,

namely R−1
⊥ � 109GeV.

§2. Intersecting brane worlds on Calabi-Yau 3-folds

In the brane world scenarios we are going to consider here, there are D-branes
filling out the entire four-dimensional space-time providing the degrees of freedom
for an effective gauge theory. The overall transverse six-dimensional space is com-
pact, such that the internal excitations decouple from the effective theory below
the string scale. The global consistency conditions in string models with D-branes
that fill out the non-compact space-time involve the cancellation of the RR charges.
Furthermore, supersymmetry requires the cancellation of the brane tensions and the
corresponding Neveu-Schwarz-Neveu-Schwarz (NSNS) tadpoles as well. If the latter
is neglected, one can achieve the RR charge cancellation within type II vacua by in-
cluding anti-branes, but these vacua usually suffer from run-away instabilities, if not
even tachyons. The only setting in which objects with negative tension arise natu-
rally in string theory are orientifolds, where the orientifold O-planes can balance the
charge and tension of the D-branes. Therefore, orientifolds provide the framework
where supersymmetric brane worlds may be found within string theory.

2.1. Definition

According to the above reasoning we will consider orientifold compactifications
on general Calabi-Yau spaces (see Refs. 14) - 16)), where the ten-dimensional space-
time X is of the kind

X = R3,1 × M6

Ωσ
. (2.1)

Here M6 is a Calabi-Yau 3-fold with a symmetry under σ, the complex conjugation

σ : zi �→ z̄i, i = 1, · · · , 3, (2.2)
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in local coordinates zi = yi
1 + iyi

2. It is combined with the world sheet parity Ω to
form the orientifold projection Ωσ. This operation is actually a symmetry of the type
IIA string on M6. Orientifold O6-planes are defined as the fixed locus Fix(σ) of σ,
which is easily seen to be a supersymmetric 3-cycle in M6. It is special Lagrangian
(sLag) and calibrated with respect to the real part of the holomorphic 3-form Ω3.
To see this define Ω3 and the Kähler form J in local coordinates

Ω3 = dz1 ∧ dz2 ∧ dz3, J = i
3∑

i=1

dzi ∧ dz̄i. (2.3)

From σ(Ω3) = Ω3 and σ(J) = −J it then follows that

�(Ω3)|Fix(σ) = 0, J |Fix(σ) = 0. (2.4)

It is also useful to define a rescaled 3-form

Ω̂3 =
1√

Vol(M6)
Ω3 . (2.5)

This orientifold projection truncates the gravitational bulk theory of closed strings
down to a theory with 16 supercharges in ten dimensions, leading to 4 supercharges
and N = 1 in four dimensions, after compactifying on the Calabi-Yau. In order to
cancel the RR charge of the O6-planes it is required to introduce D6-branes into the
theory as well, which will provide the gauge sector of the theory. If we label the
individual stacks of D6a-branes with multiplicities Na by a label a, the gauge group
of the effective theory will be given by

G =
∏
a

U(Na). (2.6)

Here we exclude the possibility of branes which are invariant under the projection
Ωσ. They would give rise to SO(Na) or Sp(Na) factors. It is no conceptual problem
to include them as well, but they are of little phenomenological interest.

2.2. RR charges and brane tension

The charge cancellation conditions are often obtained by regarding divergences
of one-loop open string amplitudes, but can also be determined from the consistency
of the background in the supergravity equations of motion or Bianchi identities. The
Chern-Simons action for Dp-branes and Op-planes are given by27)–30)

S(Dp)
CS = µp

∫
Dp

ch(F) ∧
√

Â(RT )
Â(RN )

∧
∑

q

Cq,

S(Op)
CS = Qpµp

∫
Op

√
L̂(RT /4)
L̂(RN/4)

∧
∑

q

Cq. (2.7)

The relative charge of the orientifold planes is given by Qp = −2p−4 and ch(F)
denotes the Chern character, Â(R) the Dirac genus of the tangent or normal bundle,
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and the L̂(R) the Hirzebruch polynomial. The physical gauge fields and curvatures
are related to the skew-hermitian ones in (2.7) by rescaling with −4iπ2α′. These
expressions simplify drastically for sLag 3-cycles, where ch(F)|Dp = rk(F), the other
characteristic classes become trivial and finally the only contribution in the CS-term
(2.7) then comes from C7.

In the following we denote the homology class of Fix(σ) by πO6 = [Fix(σ)] ∈
H3(M6) and the homology class of any given brane stack D6a-brane by πa. By our
assumptions the πa are never invariant under σ but mapped to image cycles π′

a.
Therefore, a stack of D6-branes is wrapped on that cycle by symmetry, too. The RR
charge cancellation can now easily be deduced by looking at the equation of motion
of C7

1
κ2

d � dC7 = µ6

∑
a

Na δ(πa) + µ6

∑
a

Na δ(π′
a) + µ6Q6 δ(πO6), (2.8)

where δ(πa) denotes the Poincaré dual form of πa, µp = 2π(4π2α′)−(p+1)/2, and 2κ2 =
µ−1

7 . Upon integrating over M6 the RR-tadpole cancellation condition becomes a
relation in homology ∑

a

Na (πa + π′
a) − 4πO6 = 0. (2.9)

In principle it involves as many linear relations as there are independent generators
in H3(M6, R). But, of course, the action of σ on M6 also induces an action [σ]
on the homology and cohomology. In particular, [σ] swaps H2,1 and H1,2, and the
number of conditions is halved.

2.3. Massless open string modes

In this section we are going to present the most important input for constructing
intersecting brane world models of particle physics, the formulae that determine the
spectrum of the chiral fermions of the effective theory in terms of topological data
of the brane configuration and the Calabi-Yau manifold. Roughly speaking, at any
intersection point of two stacks of D6-branes a single chiral fermion is localized,
transforming in the bifundamental representation of the two respective gauge groups.
As was mentioned already, the search for a viable model close to the Standard Model
particle content boils down to looking for Calabi-Yau spaces with an involution σ
and an intersection form for its 3-cycles that allows to realize the desired particle
spectrum at the intersections.

Catching up with the above discussion of the brane tension and the induced
scalar potential, we can say a bit more: If we want to construct a supersymmetric
intersecting brane world we need the desired intersection pattern to be realized within
a set of sLag cycles all calibrated by the same 3-form, which makes the task a lot
harder. In supersymmetric models, the total massless spectrum is easily found by
adding superpartners to the fermions. One needs to take care that also non-chiral
matter in sectors where intersection points of opposite orientation combine will stay
massless. Upon breaking supersymmetry, it is to be expected that all fields except
gauge bosons and chiral fermions will get masses through interactions.

To obtain the chiral spectrum of a given set of D6-branes wrapped on cycles πa
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with their images on π′
a and the O6-planes wrapped on πO6 a few considerations are

necessary. The only novelty is that in addition to the standard operation by Ω a
permutation of the branes and intersection points by σ occurs, formally encoded in
acting by a permutation matrix on the Chan-Paton labels that determine the repre-
sentation under the gauge group. First note that the net number of self-intersections
of any stack vanish, due to the anti-symmetry of the intersection form (denoted by
◦). Whenever a brane intersects its own image, there are two cases to distinguish:
The intersection can itself be invariant under σ, such that the Chan-Paton labels are
anti-symmetrized by Ω. Alternatively, it can also be mapped to a second intersec-
tion, such that no projection applies and the symmetric and antisymmetric parts are
kept. Finally, if any two different stacks intersect, there are always bifundamental
representations localized at the intersection. According to these rules, the spectrum
of left-handed massless chiral fermions is shown in Table I.

Table I. Chiral fermion spectrum in d = 4.

Representation Multiplicity

[�a]L
1
2

(π′
a ◦ πa + πO6 ◦ πa)

[�a]L
1
2

(π′
a ◦ πa − πO6 ◦ πa)

[(��� ��)]L πa ◦ πb

[(�����)]L π′
a ◦ πb

The above classification can be obtained directly from string amplitudes when a
CFT description is available, e.g. in the orbifold limit, while at large volume one can
apply the Atiyah-Singer index theorem to infer the zero-modes of the Dirac operator.
This is actually a tautology, since the number of chiral modes is given as an integral
over the point-like common world volume of any pair of D6-branes with a trivial
integrand,∫

D6a∩D6b

ch(Fa) ∧ ch(F∗
b ) ∧ Â(R) = rk(Fa)rk(Fb)

∫
M6

δ(πa) ∧ δ(πb), (2.10)

which only counts the intersection numbers again. In the mirror symmetric type IIB
picture chirality is in fact induced exclusively by the non-triviality of the gauge and
spin connection.

Due to the topological nature of the chiral spectrum Table I should hold for every
smooth Calabi-Yau manifolds and even the six-dimensional torus. Little can be said
about the fate of the D-brane setting away from the limit of classical geometry,
when venturing into the interior of the Kähler moduli space, where potentials may
be generated. Therefore, the configuration will in general not be stable, but the
important point is, whenever the setting is describable purely in terms of D6-branes
on sLag 3-cycles Table I may apply.

To make a first check of the consistency of the spectrum, the non-abelian gauge
anomaly SU(Na)3

Anon-abelian ∼ πa ◦ πa (2.11)

vanishes due to the antisymmetry of the intersection form.
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As discussed in Refs. 14), 16) the quintic Calabi-Yau provides a nice example
of an intersecting brane world scenario with gauge group and (non-supersymmetric)
chiral spectrum of the standard model. However in the following we want to give a
few more details for intersecting brane world on orbifolds resp. orientifolds, which
can be regarded as the limit in a Calabi-Yau moduli space where the twisted orbifold
moduli are set to zero.

2.4. Orbifold models

First, we consider configurations of type II D6 branes wrapped on non-trivial
three-cycles of a six-dimensional torus T 6. The torus is taken to be a direct product

T6 =
3∏

j=1
T j

2 of three two-dimensional tori T j
2 with radii Rj

1, R
j
2 and angles αj w.r.t.

to the compact dimensions with coordinates yj
1 and yj

2. The Kähler and complex
structure modulus of these tori are defined as usual:

U j =
Rj

2

Rj
1

eiαj
, T j = bj + iRj

1R
j
2 sinαj , (2.12)

with the torus B-field bj . Furthermore, the three-cycle is assumed to be a factorizable
into a direct product of three one-cycles, each of them wound around a torus T j

2 with
the wrapping numbers (nj, mj) w.r.t. the fundamental 1-cycles of the torus. Hence
the angle of the D6-brane with the yj

1-axis is given by

tanφj =
mjRj

2

njRj
1

. (2.13)

Generally, two branes with wrapping numbers (nj
a, m

j
a) and (nj

b, m
j
b), are parallel in

the subspace T j
2 , if their intersection number

Ij
ab = nj

am
j
b − nj

bm
j
a (2.14)

w.r.t. to this subspace vanishes, Ij
ab = 0. For later convenience let us also introduce:

πvj := arctanh(F j) , (2.15)

which implies φj = iπ vj. Chiral fermions appear at (non-vanishing) intersections of
two D6-branes.

In the T-dual picture, the D6-branes at angles φj are mapped to D9-branes with
magnetic fluxes or background gauge fields F j . Thereby the gauge field (magnetic
flux) F j on the brane is related to the angles (2.13) through:

iF j =
mj

nj Rj
1R

j
2

. (2.16)

Next let us consider the action of the orientifold and of the orbifold group, where
the spatial orbifold group is by elements from ZN (or ZN ×ZM ). The latter are rep-
resented by the θ (and ω), describing discrete rotations on the compact coordinates
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yi
1,2. This action restricts the compactification lattice and fixes some of the internal

parameter (2.12) to discrete values. The orientifold O6-planes describe the set of
points which are invariant under the group actions Ωσ, Ωσθk, Ωσωl and Ωσθkωl.
These planes are generated by rotations of the real yj

1 axes by θ−k/2ω−l/2.
The condition for tadpole cancellations in IIA orientifold backgrounds in four

space-time dimensions requires a system of D6 branes which has to respect the
orbifold and orientifold projections. In particular, for consistency with the orb-
ifold/orientifold group their orbifold/orientifold mirrors have to be introduced. Hence
any stack a is organized in orbits, which represent an equivalence class [a]. For
N, M 	= 2 the length of each orbit [a] is at most 2NM , but may be smaller, if e.g.
stack a is located along an orientifold plane. Stacks within a conjugacy class [a] have
non-trivial intersections among each other and w.r.t. to stacks from a different class
[b] belonging to the gauge group Gb. Without going further into any details, it is
appealing that one can check in several examples14) that the open string spectrum
constructed following these rules in the toroidal ambient space precisely agrees with
the geometrical spectrum discussed before, when considering the orbifold space as a
limiting geometry of a Calabi-Yau manifold.

The requirement of R-tadpole cancellation leads to some constraints on the
number and location of the D6 branes. Specifically, by requiring that all vacuum RR-
tadpoles in the annulus, Klein-bottle and Möbius amplitudes vanish the homological
tadpole conditions Eq. (2.9) take the following form:

K∑
a=1

Na n1
an

2
an

3
a = 16 ,

K∑
a=1

Na n1
am

2
am

3
a = −16 ,

K∑
a=1

Na m1
an

2
am

3
a = −16 ,

K∑
a=1

Na m1
am

2
an

3
a = −16 . (2.17)

In addition the twisted tadpole conditions on the Chan paton factors of the open
strings ends have to hold:

Trγa
θN/2 = 0 , Trγa

ωM/2 = 0 , Trγa
θM/2ωM/2 = 0 . (2.18)

Further restrictions arise in the case of space-time supersymmetry, where NS
vacuum tadpole cancellation follows from R vacuum tadpole cancellation (see also
the chapter on the scalar potential). All the 3-cycles on the torus including the
orientifold 3-cycle, constructed in the way described above, are supersymmetric,
i.e. sLag’s, for all values of ni

a and mi
a. For supersymmetric models one therefore

has to check whether they conserve the same supersymmetries as the orientifold
plane. Specifically one obtains the following conditions on the angles vj

a of a stack
of supersymmetric D6a branes:
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(i) N = 4 sectors: v1
a = v2

a = v3
a = 0,

(ii) N = 2 sectors: vi
a = 0 w.r.t. the i-th plane and vj

a ± vl
a = 0,

(iii) N = 1 sectors: v1
a ± v2

a ± v3
a = 0.

Specific examples of orbifold intersecting brane world models with N = 1 super-
symmetry in D = 4 have been introduced in Refs. 9), 10), 17).

§3. The effective action of intersecting brane world models

3.1. The scalar potential

Non-supersymmetric brane configurations are in general unstable. On the one
hand, depending on the intersection angles there can be tachyons localized at the
intersection points. Phenomenologically it was suggested that these tachyons might
be interpreted as Standard Model Higgs fields, where in particular in Ref. 12) it
was demonstrated that the gauge symmetry breaking is consistent with this point
of view. In general we expect that tachyons can well be avoided in a large subset of
the parameter space, as was due in the simpler setting of toroidal compactifications.
On the other hand, even if tachyons are absent one generally faces uncanceled NSNS
tadpoles, which might destabilize the configuration.8), 14) In Ref. 8) it was shown
that for appropriate choices of the D-branes the complex structure moduli can be
stabilized by the induced tree level potential. The stabilization of the dilaton remains
a major challenge as in all non-supersymmetric string models.

For supersymmetric intersecting brane worlds we can expect much better sta-
bility properties. First tachyons are absent in these models due to the Bose-Fermi
degeneracy. However, since for orientifolds on Calabi-Yau spaces the configuration
only preserves N = 1 supersymmetry, in general non-trivial F-term and D-term
potentials can be generated.

There are strong restrictions known for the contributions that can give rise to
corrections to the effective N = 1 superpotential of a type II compactification on a
Calabi-Yau 3-fold with D6-branes and O6-planes on supersymmetric 3-cycles. The
standard arguments about the non-renormalization of the superpotential by string
loops and world sheet α′ corrections apply. The only effects then left are non-
perturbative world sheet corrections, open and closed world-sheet instantons. In
general, these are related to non-trivial CP 1 and RP 2 with boundary on the O6-plane
in the Calabi-Yau manifold for the closed strings and discs with boundary on the D6-
branes for open strings. In fact, only the latter contribute to the superpotential. The
typical form for the superpotential thus generated is known, but explicit calculations
are only available for non-compact models. Usually, they make use of open string
mirror symmetry arguments. In many cases, there is an indication that the non-
perturbative contributions to the superpotentials tend to destabilize the vacuum,
and it would be a tempting task to determine a class of stable N = 1 supersymmetric
intersecting brane models.

The tension of the D6-branes and O6-planes in addition introduces a vacuum
energy which is described in terms of D-terms in the language of N = 1 supersym-
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metric field theory. These depend only on the complex structure moduli and do not
affect the Kähler parameter of the background. The most general form for such a
potential is given by

VD-term =
∑

a

1
2g2

a

(∑
i

qi
a|φi|2 + ξa

)2

, (3.1)

with ga the gauge coupling of a U(1)a, ξa the FI parameter, and the scalar fields
φi are the superpartners of some bifundamental fermions at the intersections. They
become massive or tachyonic for non-vanishing ξa, depending on their charges qi

a.
Due to the positive definiteness of the D-term, N = 1 supersymmetry will only be
unbroken in the vacuum, if the potential vanishes.

The disc level tension can be determined by integrating the Dirac-Born-Infeld
effective action. It is proportional to the volume of the D-branes and the O-plane,
so that the disc level scalar potential reads

V = T6
e−φ4√

Vol(M6)

(∑
a

Na

(
Vol(D6a) + Vol(D6′a)

)− 4Vol(O6)

)
. (3.2)

The potential is easily seen to be positive semidefinite and its vanishing imposes
conditions on some of the moduli, freezing them to fixed values. Whenever the
potential is non-vanishing, supersymmetry is broken and a classical vacuum energy
generated by the net brane tension. It is easily demonstrated that the vanishing of V
requires all the cycles wrapped by the D6-branes to be calibrated with respect to the
same 3-form as are the O6-planes. In a first step, just to conserve supersymmetry on
their individual world volume theory, the cycles have to be calibrated at all, which
leads to

V = T6 e−φ4

(∑
a

Na

∣∣∣∣∫
πa

Ω̂3

∣∣∣∣+∑
a

Na

∣∣∣∣∣
∫

π′
a

Ω̂3

∣∣∣∣∣− 4
∣∣∣∣∫

πO6

Ω̂3

∣∣∣∣
)

. (3.3)

Since Ω̂3 is closed, the integrals only depend on the homology class of the world
volumes of the branes and planes and thus the tensions also become topological. If
we further demand that any single D6a-brane conserves the same supersymmetries
as the orientifold plane the cycles must all be calibrated with respect to 
(Ω̂3). We
can then write

V = T6 e−φ4

∫
�

a Na(πa+π′
a)−4πO6


(Ω̂3). (3.4)

In this case, the RR charge and NSNS tension cancellation is equivalent, as expected
in the supersymmetric situation.

To apply Eq. (3.1) we have to use the properly normalized gauge coupling

1
g2
U(1)a

=
Na

g2
a

=
Na M3

s

(2π)4
e−φ4

∣∣∣∣∫
πa

Ω̂3

∣∣∣∣ . (3.5)
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Hence, the FI-parameter ξa can be identified as

ξ2
a =

M4
s

2π2

∣∣∣∫πa
Ω̂3

∣∣∣− ∫πa

(Ω̂3)∣∣∣∫πa

Ω̂3

∣∣∣ , (3.6)

which vanishes precisely if the overall tension of the branes and planes cancels out,
i.e. if all are calibrated with respect to the same 3-form. Since the FI-term is not a
holomorphic quantity one expects higher loop corrections to the classical potential
Eq. (3.2).

3.2. Gauge threshold corrections

Now we turn to the question of computing one-loop gauge threshold correc-
tions in intersecting brane world models, which is also very important from the phe-
nomenological point of view. Unlike what happens, e.g., in perturbative heterotic
string vacua, the tree-level gauge couplings for the various gauge groups, arising from
different stacks of branes, are not the same at the string scale. The tree-level gauge
couplings follow from dimensional reducing the Born-Infeld action of a D6-brane on
a 3-cycle of the internal space and are essentially determined by the volume of the

3-cycle (see Eq. (3.5)). E.g., for a six-torus T6 =
3∏

j=1
T j

2 and a special 3-cycle em-

bedded with the wrapping numbers (nj
a, m

j
a) w.r.t. to the two-tori T j

2 the tree-level
gauge couplings are given by

g−2
a, tree = M3

stringe
−φ4

3∏
j=1

√
(nj

a)2(R
j
1)2 + (mj

a)2(R
j
2)2 + 2nj

am
j
aR

j
1R

j
2 cos αj

a , (3.7)

with the 4-dimensional string coupling constant e−φ4. Hence a priori there is no uni-
fication of gauge couplings at the string scale (at string tree-level). One-loop gauge
threshold corrections ∆a (to the gauge group Ga), which take into account Kaluza-
Klein and winding states from the internal dimensions and the heavy string modes,
may change this picture.31) For certain regions in moduli space these corrections
may become huge and thus have a substantial impact on the unification scale.

In the type IIA picture with intersecting D6-branes these threshold correction ∆a

will depend on the homology classes on the 3-cycles (open string parameters) and also
on the closed string geometrical moduli. In toroidal models these corrections will be
given in terms of the wrapping numbers nj

a, m
j
a and the radii Rj

i of the torus. All D6-
branes have in common their four-dimensional (non-compact) world volume. Hence
their gauge fields are located on parallel four-dimensional subspaces, which may be
separated (in the cases Ij

ab 	= 0 and Ij
aa′ 	= 0) in the transverse internal dimensions.

One-loop corrections to the gauge couplings are realized through exchanges of open
strings in that transverse space. The open string charges qa, qb at their ends couple to
the external gauge fields sitting on the branes. Only annulus and Möbius diagrams
contribute, as torus and Klein bottle diagrams refer to closed string states. In Ref.
19) the one-loop corrections to the gauge couplings were computed by the background
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field method: one turns on a (space-time) magnetic field, e.g., F23 = BQa in the
X1-direction and determines the dependence of the open string partition function
on that field. Here, Qa is an appropriately normalized generator of the gauge group
Ga under consideration. This leads to the so-called gauged open string partition
function. The second order of an expansion w.r.t. to B of the gauged partition
function gives the relevant piece for the one-loop gauge couplings.

In the following we will omit all details of the calculations, referring the reader
to the paper;19) instead we give only the end results for the one loop threshold
corrections:

(i) N = 4 sectors: ∆a = 0,

(ii) N = 2 sectors:

If the stacks a and b preserve N = 2 supersymmetry, i.e., they are parallel within
some torus T i

2, we obtain for the gauge group Ga:

∆N=2
ab ∼ bN=2

ab ln(T i
2V

i
a |η(T i)|4) + const , (3.8)

with the wrapped brane volume

V i
a =

1
U i

2

|ni
a + U imi

a|2 , (3.9)

and the Kähler modulus T i defined in Eq. (2.12).

(iii) N = 1 sectors:

In the case, that the branes from a and b preserve N = 1 supersymmetry, the
one-loop correction to the gauge coupling of Ga takes the form:

∆N=1
ab = −bN=1

ab ln
Γ (1 − 1

πφ1
ba) Γ (1 − 1

πφ2
ba) Γ (1 + 1

πφ1
ba + 1

πφ2
ba)

Γ (1 + 1
πφ1

ba) Γ (1 + 1
πφ2

ba) Γ (1 − 1
πφ1

ba − 1
πφ2

ba)
. (3.10)

This expression depends on the closed string moduli of the underlying toroidal ge-
ometry, since the the difference of the angles φj

a and φj
a′ are related to the radii

through:

coth(πvj
aa′) = i cot(φj

a′ − φj
a) = i

nj
an

j
a′

Rj
1

Rj
2

+ mj
am

j
a′

Rj
2

Rj
1

nj
am

j
a′ − nj

a′m
j
a

. (3.11)

Note that this type of moduli dependence of the N = 1 threshold functions in inter-
secting brane world models is completely new, as in heterotic string compactifications
the N = 1 thresholds are moduli independent constants.32)

In addition one should emphasize that in supersymmetric brane world models
there are no UV divergences in the one-loop N = 2, 1 thresholds. In fact one can
show that cancellation of the vacuum RR tadpoles (see Eq. (2.17)) implies that
in supersymmetric models also all RR and NS tadpoles are absent in the one-loop
2-points functions for the gauge couplings, i.e. in the gauged open string partition
functions. This proves the finiteness of the supersymmetric one-loop gauge thresholds
in the considered class of orbifold models.
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§4. Outlook — M-theory on G2 manifolds

The supersymmetric intersecting brane models considered here map in the strong
coupling limit to compactifications of M-theory on certain singular G2 manifolds.
Thus our N = 1 gauge threshold function is possibly related to the recently calcu-
lated Ray–Singer torsion of singular G2 manifolds.33) Besides it may give a hint on
the form of non-perturbative corrections to the gauge couplings on the heterotic side.
The one-loop gauge thresholds for N =1 sectors describe 1/4 BPS saturated cou-
plings w.r.t. to the 16 supersymmetries of two intersecting branes. Hence the N = 1
one-loop threshold represents a counting function for 1/4 BPS states in close analogy
to Ref. 34). Hence on the M-theory side the threshold function maps to a topo-
logical quantity, most likely to the elliptic genus of the singular G2 compactification
manifold.
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