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We construct intersecting brane configurations in anit–de Sitter (AdS) space which localize gravity to
the intersection region, generalizing the trapping of gravity to any number n of infinite extra dimensions.
Since the 4D Planck scale MPl is determined by the fundamental Planck scale M� and the AdS radius L
via the familiar relation M2

Pl � M21n
� Ln, we get two kinds of theories with TeV scale quantum gravity

and submillimeter deviations from Newton’s law. With M� � TeV and L � submillimeter, we recover
the phenomenology of theories with large extra dimensions. Alternatively, if M� � L21 � MPl, and our
3-brane is at a distance of �100M21

Pl from the intersection, we obtain a theory with an exponential
determination of the weak/Planck hierarchy.

PACS numbers: 11.10.Kk, 04.50.+h, 11.25.Mj
Unification of gravity with other forces of nature sug-
gests that the world has more than three spatial dimen-
sions. Since only three of these are presently observable,
one has to explain why the additional ones have eluded
detection. The conventional explanation is that the di-
mensions are compactified with tiny radii of order the
Planck length �10233 cm, which makes them impos-
sible to probe with currently available energies.

It has recently been pointed out that new dimensions
may have a size R much larger than the fundamental
Planck length of the theory, perhaps as large as a mil-
limeter [1,2]. This has the effect of diluting the strength
of the 4D gravity observed at distances much larger than
R. The 4D Planck scale MPl is determined by the funda-
mental Planck scale M� via Gauss’s law M2

Pl � M21n
� Rn

where n is the number of new dimensions. The origi-
nal motivation was to bring the fundamental gravitational
scale close to the weak scale in order to solve the hierar-
chy problem. These large dimensions are not in conflict
with experiment if the standard model fields are confined
to a 3-brane in the extra dimensions.

In this scenario, the only reason to compactify the ex-
tra dimensions at all is to reproduce 4D Newtonian grav-
ity at long distances. One can wonder if even this is
necessary: if gravity itself is somehow “trapped” to our
3-brane, then 4D gravity can be reproduced even if the
extra dimensions are infinitely large. A very interesting
recent construction by Gogberashvili [3] and by Randall
and Sundrum [4] provides an explicit realization of this
idea for the case of one extra dimension. Solving Ein-
stein’s equations with a 3-brane in �4 1 1� dimensions,
together with a bulk cosmological constant, they find a
massless 4D graviton localized to the 3-brane. The re-
sulting gravitational potential between any two objects
on the brane is inversely proportional to the distance be-
tween the objects, and not its square, despite the presence
of the infinite fifth dimension.
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It is clearly desirable to extend this idea to any num-
ber of new dimensions. At first sight, however, the
mechanism of [3,4] seems to rely on the peculiar prop-
erties of codimension one objects in gravity and seems
hard to extend to the case of more dimensions. How-
ever, all that seems to be required is the presence of
some codimension one branes in the system, while our
3-brane can have larger codimension. We are led to
consider a system of n mutually intersecting �2 1 n�
branes in �3 1 n� 1 1 dimensions with a bulk cosmo-
logical constant. The branes intersect on three spatial
dimensions, where the standard model fields reside. In-
tuitively, each of the �2 1 n� branes has codimension
one and tries to localize gravity to itself. Therefore
gravity will be localized to the intersection of all the
branes. We will now confirm this intuition by explicit
calculations.

We begin by deriving the solution describing the in-
tersection of branes. Consider an array of n orthogonal
n 1 2-spatial dimensional branes in �3 1 n� 1 1 dimen-
sions, with a bulk cosmological constant L. For simplic-
ity we take the branes to have identical tension s. The
field equations can be derived from the action

S �
Z

M
d41nx

p
g41n

√
1

2k
2
41n

R 1 L

!

2

nX
k�1

Z
kthbrane

d31nx
p

g31n s . (1)

Here k
2
41n � 8p�Mn12

� , where M� is the fundamental
scale of the theory. Note that the measure of integra-
tion differs between each brane, and between the branes
and the bulk. This will be reflected in the field equa-
tions, where ratios

p
g31n�pg41n weigh the d-function

sources. After the standard Euler-Lagrange variational
procedure, the field equations are
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where the coordinates z̄k parametrize the extra dimen-
sions. We note that the ratios

p
g31n�k��pg41n reduce

to
p

gkk for diagonal metrics. In general, they cannot be
gauged away.

It is now straightforward to write down the solutions.
Away from the branes, the solution in the bulk comprises
patches of the �4 1 n�-dimensional anti–de Sitter (AdS)
space. Hence if the branes are mutually orthogonal, by
symmetry the full solution simply consists of 2n identical
patches of the AdSn14 which fill up the higher-dimensional
quadrants between the branes, and are glued together along
the branes. To construct it, we start with the Poincaré
half-plane parametrization of AdSn14, given by

ds2
n14 �

L2

z2 �hmn dxm dxn 1 d �w2
n21 1 dz2� . (3)

The length scale L is determined by the bulk cosmological
constant as

L2 �
�n 1 3� �n 1 2�

2k
2
41nL

. (4)

To make use of the symmetry, it is convenient to find
the patch of (3) where the metric is manifestly symmetric
under permutations of all extra dimensions. This is most
easily accomplished by an O�n� rotation of �wn21, z. We
transform to new coordinates z̄k , k [ �1, . . . , n� by a rigid
rotation chosen such that z �

Pn
j�1 z̄j�

p
n. In terms of

these coordinates, the metric is

ds2
n14 �

nL2

�
Pn

j�1 z̄j�2

√
hmn dxm dxn 1

nX
k�1

�dz̄k�2

!
. (5)

The metric (5) covers a segment of the extra dimensions
bounded by the branes. Led by our discussion above, we
will take such a cell of AdSn14 with, e.g., all the z̄j . l for
some l. We then fill out the rest of the space by reflecting
this cell in all 2n distinct ways about its boundaries. The
resulting metric is given by replacing

P
j z̄j by

P
j jz̄

jj 1 l
in Eq. (5). By rescaling x, z̄, we can set l to any value we
wish, and we use this freedom to put the metric in the final
form

ds2
n14 �

1
�k

Pn
j�1 jz̄jj 1 1�2

3

√
hmn dxmdxn 1

nX
k�1

�dz̄k�2

!
, (6)

where k � �
p

n L�21. [For n � 1, the solution coincides
with that given by [3,4] if we make the coordinate trans-
formation L exp�jyj�L� � jzj 1 L, and k � 1�L.] This
choice corresponds to setting the conformal factor in (6)
to unity at the intersection z̄k � 0. Physically this means
that the unit of length on the intersection is set by M21

� .
In this metric, each z̄j is allowed to vary on the whole real
line. The curvature of the space will now have singularities
at the seams where we have pasted together the elementary
cells, but these will be precisely those dictated by the pres-
ence of the branes.

It is straightforward to see this explicitly. The metric
is a conformal transformation of flat space gab � V2hab

where

V �
1

k
P

j jz̄jj 1 1
(7)

is the “warp factor.” We can trivially compute the Einstein
tensor Gab � Rab 2 1�2gabR using the standard relation
(in general for gab � V2g̃ab for D spacetime dimensions)

Gab � G̃ab 1 �D 2 2� �=̃a logV=̃b logV 2 =̃a=̃b logV�

1 �D 2 2�g̃ab

µ
=̃2 logV 1

D 2 3
2

�=̃ logV�2

∂
.

(8)

Using this it is easy to compute the Einstein tensor for our
metric, and we find
Ga
b �

n�n 1 2� �n 1 3�k2

2
da

b

2
2�n 1 2�k

V
d�z̄1� �1, 1, 1, 1, 0, 1, . . . , 1�

2 · · ·

2
2�n 1 2�k

V
d�z̄n� �1, 1, 1, 1, 1, 1, . . . , 0� , (9)
587



VOLUME 84, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 24 JANUARY 2000
which reproduces Eq. (2) if the brane tension s is chosen
to be k

2
41ns � 2�n 1 2�k. Using Eq. (4), we can rewrite

this condition as k
2
41ns2 �

8�n12�
n�n13� L, and recognize it as

a single fine-tuning condition equivalent to requiring the
vanishing of the 4D cosmological constant at the intersec-
tion. One can straightforwardly verify that in a general
situation with different brane tensions, and also a tension
of a 3-brane at the intersection, there always exist solu-
tions as long as an appropriate generalization of this single
fine-tuning condition is satisfied.

In order to demonstrate that we have indeed localized
gravity to the intersection, we must look at the linear
perturbations about this solution. It is convenient to pa-
rametrize the perturbations by replacing hmn with hmn 1

hmn�x, z̄� in Eq. (6). Again using the conformal transfor-
mation Eq. (8) we easily find the linearized field equations
for hmn , which are in the gauge h

m
m � 0, ≠aham � 0"

�4 2 =2
z̄ 1 �n 1 2�V

X
j

sgn�z̄j�≠j

#
h�x, z̄� � 0 ,

(10)

where we have dropped the mn index on h. The transverse-
traceless gauge is invariant under conformal transforma-
tions on the background (6), and hence our calculation in
the conformal frame exactly reproduces the results in the
original frame (6). This immediately shows that the or-
dinary four-dimensional graviton is present as a massless
mode in the theory, corresponding to a z̄ independent so-
lution h�x, z̄� � h�x�. Indeed, replacing hmn by g�4�

mn�x� in
Eq. (6) and inserting into the action, we find

S �
Z

dnz̄ V21n 3
Z

d4x
q

g�4� R�4�, (11)

which shows that the four-dimensional graviton couples
with strength

M2
Pl � M21n

�

Z
dnz̄ V21n � M21n

� Ln. (12)

The exact calculation gives M2
Pl � �2nnn�2��n 1

1�!	M21n
� Ln. This relation suggests that L can be in-

terpreted as the effective size of n compact dimensions,
even though the extra dimensions are infinitely large.
This is indeed a correct interpretation as we will see
shortly. For a complete analysis of the effective �3 1 1�D
spectrum, it is convenient to make a change of variables
h � V2�n12��2ĥ, in terms of which the linearized equa-
tions are ∑

1
2

�4 1

µ
2

1
2

=2
z̄ 1 V �z̄�

∂∏
ĥ � 0 , (13)

where

V �z̄� �
n�n 1 2� �n 1 4�k2

8
V2 2

�n 1 2�k
2

V
X
j

d�z̄j� .

(14)

In order to determine the spectrum of 4D masses, we
set ĥ � eipxĉ�z̄�; the 4D masses are then determined by
588
the eigenvalues of an effective n dimensional Schrödinger
equation µ

2
1
2

=2
z̄ 1 V �z̄�

∂
ĉl �

1
2

m2
lĉl , (15)

where l labels the eigenfunctions. All of the important
physics follows from a qualitative analysis of this poten-
tial and parallels the story with one extra dimension. The
potential has a repulsive piece which goes to zero forP

j jz̄
jj ¿ L, and a sum of attractive d functions. We al-

ready know that the 4D massless graviton corresponds to a
bound state with the wave function (numerical factors will
be omitted in all that follows)

ĉbound � V�n12��2. (16)

Since the potential falls off to zero at infinity, we will also
have continuum modes. Since the height of the potential
near the origin is �k2, the modes with m2 , k2 will have
suppressed wave functions, while those with m2 . k2 will
sail over the potential and will be unsuppressed at the ori-
gin. In order to see the physics more explicitly, suppose we
place a test mass M on the intersection at �x � 0, z̄ � 0�,
and ask for the gravitational potential U�r� at a distant
point on the intersection �jxj � r , z̄ � 0�. To do this,
we simply insert a source GN�41n�Md3�x�dn�z̄� on the
right-hand side of Eq. (13), and straightforwardly solve the
equation to find

U�r�
M

�
X
l

GN�41n�jĉl�0�j2
e2mlr

r

�
GN�41n�

Ln

1
r

1
X

continuum

GN�41n�jĉl�0�j2
e2mlr

r
.

(17)

In the second line we have separated the bound-state from
the continuum contributions. It is straightforward to evalu-
ate the suppression of jcl�0�j for modes with mL , 1, but
this is not needed for the discussion of the limiting behav-
ior of U�r�. Consider first large distances r ¿ L. Even
with no suppression of the continuum modes for mL , 1,
the continuum sum would yield the �4 1 n�D potential
GN�41n��rn11, which is subdominant to the term generated
by the 4D graviton bound state for r ¿ L. Therefore, for
r ¿ L,

U�r� �
GN�4�M

r
, GN�4� �

GN�41n�

Ln
. (18)

On the other hand, for distances r ø L, it is the contin-
uum modes with mL ¿ 1 which dominate, and these have
unsuppressed wave functions at the origin. Therefore, for
r ø L, we just get the �4 1 n�D potential

U�r� �
GN�41n�M

rn11 . (19)

This point was not discussed in [4], as they were only
interested in checking the r ¿ L behavior. Of course, a
precise treatment is needed to understand the details of the
crossover between these limits. However, the qualitative
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behavior is exactly what we would expect by interpreting L
as a “compactification radius.” This is in accordance with
the intuition that, while the extra dimensions are infinitely
large, gravity is localized to a region of size L around the
intersection of the branes. The mechanism of localization
is realized by the branes repelling all graviton modes with
bulk momentum smaller than 1�L but greater than zero
away from the intersection, to distances of size L. As a
result, inside of this region gravity becomes weak and the
resulting Planck scale can be many orders of magnitude
larger than the fundamental scale. The length scale L
is determined by the bulk cosmological constant L, and
given our ignorance regarding the cosmological constant
problem, we do not feel any strong prejudice forcing L
to be of the order of the fundamental scale M21

� . We
will simply treat L as a parameter; we know only that L
must be smaller than �1 mm from the present-day gravity
measurements.

For L ¿ M21
� , the phenomenology seems to be very

similar to conventional large extra dimensions of size L,
but there is a different theoretical perspective. In particular,
the problem of stabilizing the radius at large values is
replaced here with explaining the tiny bulk cosmological
constant and brane tensions. Furthermore, there do not
seem to be any very light moduli fields associated with the
large “radius” L.

Another possibility motivated by the first paper in [4]
is to stay with L � M21

� , and use the factor V to expo-
nentially generate the weak scale on our 3-brane, which
is placed a distance O�100�M21

� away from the intersec-
tion. Unlike the proposal in the first paper of [4], this
can be done with infinitely large extra dimensions. This
is because in our case, 3-branes are tiny compared to the
�2 1 n� branes setting up the gravitational background, so
they are just like test particles probing the background
geometry. Such a “hybrid” model has interesting phe-
nomenology. Since the bulk is infinitely large, in contrast
to the first paper in [4] there is a continuum of graviton
modes, and they lead to a correction to the Newtonian po-
tential on our brane # �TeV�2�n12�r2�n11� at all distances.
This correction is irrelevant at large distances, but domi-
nates the Newtonian potential at distances smaller than R
where M2

Pl � �TeV�n12Rn. For n $ 2 this R is less than
a millimeter and so the long distance Newtonian gravity is
not affected by the presence of the continuum of graviton
modes. This framework combines the interesting features
of having infinitely large new dimensions, exponential de-
termination of the weak/Planck hierarchy, strong gravity at
the TeV scale and possible submillimeter deviations from
Newtonian gravity.

In summary, we have shown that gravity can be localized
to the intersection of orthogonal �2 1 n� branes lying in in-
finite AdSn14 space. Our solution naturally generalizes the
example with one extra dimension of [3,4]. It is therefore
possible to mask any number of infinitely large extra di-
mensions. Furthermore, we pointed out that the curvature
L of the bulk AdS space acts as an effective “compacti-
fication” scale; the Newtonian potential on the intersec-
tion behaves as 1�r for r ¿ L and 1�rn11 for r ø L.
Among other things, this could offer new possibilities for
constructing theories with submillimeter extra dimensions.

A number of aspects of our setup need to be further
elaborated. For instance, in the construction we have as-
sumed that there is no extra tension localized at the inter-
section of the branes; e.g., we have not included possible
3-brane sources of the form dn�z̄� in Einstein’s equations.
It is important to determine in detail how our solutions are
modified in the presence of such sources. There are ob-
vious generalizations to intersecting branes with different
tensions or at general angles to each other, and we expect
that these will mimic the physics of anisotropic compacti-
fication. There are many fascinating questions left to ask,
particularly in cosmology where interesting new issues and
possibilities have already emerged in the context of submil-
limeter dimensions [5–8]. It is also interesting to explore
the extent to which the (now infinitely large) bulk can be
used to address other mysteries of the standard model, per-
haps along the lines of [9]. We intend to pursue these issues
in future investigations.
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