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Flux Capacitors and the Origin of Inertia
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The explanation of inertia based on “Mach’s principle” is briefly revisited
and an experiment whereby the gravitational origin of inertia can be tested is
described. The test consists of detecting a small stationary force with a sensitive
force sensor. The force is presumably induced when a periodic transient Mach
effect mass fluctuation is driven in high voltage, high energy density capacitors
that are subjected to 50 kHz, 1.3 kV amplitude voltage signal, and threaded by
an alternating magnetic flux of the same frequency. An effect of the sort pre-
dicted is shown to be present in the device tested. It has the expected mag-
nitude and depends on the relative phase of the Mach effect mass fluctuation
and the alternating magnetic flux as expected. The observed effect also displays
scaling behaviors that are unique to Mach effects. Other tests for spurious sig-
nals suggest that the observed effect is real.

KEY WORDS: Mach’s principle; origin of inertia; flux capacitors; mass fluc-
tuations.

1. INTRODUCTION

Over a century has passed since Ernst Mach conjectured that the cause
of inertia should somehow be causally related to the presence of the vast
bulk of the matter (his “fixed stars”) in the universe. Einstein translated
this conjecture into “Mach’s principle” (his words) and attempted to incor-
porate a version of it into general relativity theory (GRT) by introduc-
ing the “cosmological constant” term into his field equations for gravity.(1)

Einstein ultimately abandoned his attempts to incorporate Mach’s princi-
ple into GRT. But in the early 1950s Dennis Sciama revived interest in the
“origin of inertia.”(2) Mach’s principle can be stated in very many ways.
(Bondi and Samuel in a recent article list twelve versions, and their list is
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not exhaustive.(3)) Rather than try to express Mach’s principle with great
subtlety, Sciama, in 1964, adopted a simple (and elegant) statement:(4,6)

Inertial forces are exerted by matter, not by absolute space. In this
form the principle contains two ideas:

(1) Inertial forces have a dynamical rather than a kinematical origin,
and so must be derived from a field theory [or possibly an action-
at-a-distance theory in the sense of J.A. Wheeler and R.P. Feyn-
man. . . ].

(2) The whole of the inertial field must be due to sources, so that in
solving the inertial field equations the boundary conditions must be
chosen appropriately.

Taking into account the fact that the field produced by the chiefly
distant matter in the universe must display the same universal coupling
to matter as gravity to properly account for inertial reaction forces, the
essence of Mach’s principle can be put into yet more succinct form:
Inertial reaction forces are the consequence of the gravitational action of
the matter located in the causally connected part of the universe on objects
therein accelerated by “external” forces.

Already in 1953, in a vector approximation field theory of gravita-
tion, Sciama, in analogy with Maxwell’s electrodynamics, had noted that
the “gravitoelectric” field E that acts on an object is given by

E = −∇φ − 1
c

∂A
∂t

, (1)

where c is the vacuum speed of light, and φ and A are the scalar and
three-vector parts of the four-potential of the gravitational field respec-
tively. A, by analogy with electrodynamics, is just the integral over all
causally connected space (out to the particle horizon) of the matter cur-
rent density, ρv, in each volume element divided by the distance r from
the test particle to the volume element dV .

Sciama, for the case of a test particle being accelerated by an exter-
nal force, argued that since the entire universe appears to be accelerating
rigidly in the opposite direction from the point of view of the test parti-
cle, v can be removed from the integration; and the remaining integral just
yields the total scalar potential φ at the location of the accelerating test
particle. As a result one finds that

E = −∇φ − φ

c2

∂v
∂t

. (2)
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In the simple case of a universe of constant matter density the gradient of
φ vanishes at the test particle, and there is no gravitomagnetic force pres-
ent because the curl of A vanishes by symmetry. Indeed, E vanishes too
if v is a constant. But when an external force acts to accelerate the test
particle, then ∂v/∂t is not zero, and the test particle experiences a gravito-
electric field produced by the gravitational action of the matter within the
particle horizon. If φ/c2 is equal to one, then the gravitoelectric force on
the test particle (E times the test particle mass) is exactly the inertial reac-
tion force the accelerating agent experiences.

As Sciama noted, “‘inertia-induction’ arises from the term ∂A/∂t , that
is, from the ‘radiation field’ of the universe.” And as, “The contribution
of matter to local inertia falls off only inversely as the distance, since
∂A/∂t is proportional to the scalar potential . . . This means that the main
contribution comes from distant matter . . . ” As a result, “local phenom-
ena are strongly coupled to the universe as a whole, but owing to the
small effect of local irregularities this coupling is practically constant over
the distances and time available to observation . . . ” Much discussion and
disputation about Mach’s principle has taken place since Sciama penned
these words. In 1975 Derek Raine showed that with suitable boundary
conditions (those of “FRW” cosmologies) Mach’s principle as stated above
is contained in GRT.(5,7) But debate and discussion continued (Raine’s
arguments, otherwise correct, did not take proper account of the ener-
gies ascribed to gravitational waves). So, to this day, it is still possible to
assert that it has not been conclusively shown that the origin of inertia is
the gravitational action of the matter in the universe. The only thing that
seems likely to change this state of affairs is an experiment that conclu-
sively and compellingly shows the gravitational origin of inertia.

2. TRANSIENT MACH EFFECTS

Every time a non-gravitational force is exerted on an object and one
notes that an equal and opposite inertial reaction force arises, Mach’s
principle can be said to have been experimentally corroborated. But
although this is correct, such corroboration does not necessarily mean
that Mach’s principle is true, for claims that inertial reaction forces have
other than gravitational origins can be, and have been, advanced. Just
because Mach’s principle can be incorporated into Sciama’s vector theory
of gravity and GRT (with suitable boundary conditions) does not mean
that gravity necessarily is the origin of inertia. In addition to the “iner-
tia as an innate property” position, for example, one might claim that
inertia arises from the action of quantum mechanical “zero point” fields
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(ZPFs). Had one a quantum theory of gravity, it might indeed be possible
to formulate the action of the gravitational field of chiefly distant matter
in terms of the action of a local gravitational ZPF. But that is not what it
meant here. Rather, the claim has been advanced, for instance, that inertial
reaction forces are caused by the action of the electromagnetic ZPF (pho-
tons).(4,6) While compelling reasons exist to reject the electromagnetic ZPF
account of inertia,(5,7,8) perhaps some other non-gravitational ZPF might
be made to work.

What we need to demonstrate the validity of Mach’s principle as
formulated above, then, is experiments that detect effects other than simple
inertial reaction forces themselves derived from the assumption that grav-
ity is the cause of inertia. Such effects must have a unique Machian sig-
nature so that they cannot be ascribed plausibly to any other cause. Are
such effects predicted? Yes. Predictions of this sort have been available in
the published literature for more than a decade.(9) The predicted phenom-
ena in question arise from considering the effect of an “external” accel-
erating force on a massive test particle. Instead of assuming that such an
acceleration will lead to the launching of a (ridiculously minuscule) gravi-
tational wave and asking about the propagation of that wave, one assumes
that the inertial reaction force the accelerating agent experiences is caused
by the action of, in Sciama’s words, “the radiation field of the universe”
and then asks, given the field strength as the inertial reaction force per
unit mass, what is the local source charge density at the test particle? The
answer is obtained by taking the four-divergence of the field strength at
the test particle. The field equation that results from these operations is

∇2φ − 1
ρ0c

2

∂2E0

∂t2
+

(
1

ρ0c
2

)2 (
∂E0

∂t

)2

= 4πGρ0. (3)

In this equation φ is the scalar potential of the gravitational field, ρ0 the
local proper matter density, E0 the local proper energy density, c the vac-
uum speed of light, and G Newton’s constant of gravitation. This equa-
tion looks very much like a wave equation. However, the space-like part
(the Laplacian) involves a scalar potential, whereas the time-like part (the
time-derivatives) involves the proper energy density. (A full derivation of
the Mach effects discussed here is given in Appendix A.)

Equation (3) can be put into the form of a standard classical wave
equation by using Mach’s principle to “separate variables”, for Mach’s
principle implies more than the statement above involving the origin of
inertial reaction forces. Indeed, Mach’s principle actually implies that the
origin of mass is the gravitational interaction. In particular, the inertial
masses of material objects are a consequence of their potential energy that
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arises from their gravitational interaction with the rest of the matter in the
causally connected part of the universe. That is, in terms of densities,

Eg = ρφ, (4)

where Eg is the local gravitational potential energy density, ρ the local
“quantity of matter” density, and φ the total gravitational potential at that
point. (Note that it follows from Sciama’s analysis that φ ≡ c2, so Eq.
(4) is nothing more than the well-known relationship between mass and
energy that follows from special relativity theory if Eg is taken to be the
total local energy density.) Using this form of Mach’s principle, we can
write

E0 = ρ0φ (5)

and this expression can be used in Eq. (3) to affect the separation of vari-
ables. After some straightforward algebra (recounted in Appendix A) we
find that

∇2φ − 1
c2

∂2φ

∂t2
= 4πGρ0 + φ

ρ0c
2

∂2ρ0

∂t2
−

(
φ

ρ0c
2

)2 (
∂ρ0

∂t

)2

− 1
c4

(
∂φ

∂t

)2

, (6)

or, equivalently,

∇2φ − 1
c2

∂2φ

∂t2
= 4πGρ0 + φ

ρ0c
4

∂2E0

∂t2
−

(
φ

ρ0c
4

)2 (
∂E0

∂t

)2

− 1
c4

(
∂φ

∂t

)2

.(7)

This is a classical wave equation for the gravitational potential φ, and not-
withstanding the special circumstances invoked in its creation, it is general
and correct, for when all the time derivatives are set equal to zero, Pois-
son’s equation for the potential results. That is, we get back Newton’s law
of gravity in differential form.

Some of the implications of this equation [either (6) or (7)] have been
addressed elsewhere.(9,10) Here we note that the transient source terms on
the RHS can be written:

δρ0(t) ≈ 1
4πG

[
φ

ρ0c
4

∂2Eo

∂t2
−

(
φ

ρ0c
4

)2 (
∂E0

∂t

)2
]

, (8)

or, taking account of the fact that φ/c2 = 1,

δρ0(t) ≈ 1
4πG

[
1

ρ0c
2

∂2Eo

∂t2
−

(
1

ρ0c
2

)2 (
∂E0

∂t

)2
]

, (9)



1480 Woodward

where the last term in Eqs. (6) and (7) has been dropped as it is always
minuscule. It is in the transient proper matter density effects—the RHSs
of Eqs. (8) and (9)—that we seek evidence to demonstrate that the origin
of inertia, as conjectured by Mach, Einstein, Sciama, and others, is in fact
the gravitational interaction between all of the causally connected parts of
the universe.

3. EXPERIMENT

The obvious way to test for the presence of proper matter density
fluctuations of the sort predicted in Eqs. (8) and (9) is to subject capac-
itors to large, rapid voltage fluctuations. Since capacitors store energy in
dielectric core lattice stresses as they are polarized, the condition that E0
vary in time is met as the ions in the lattice are accelerated by the chang-
ing external electric field. If the amplitude of the proper energy density
variation and its first and second time derivatives are large enough, a
detectable mass fluctuation should ensue. That mass fluctuation, δm0, is
just the integral of δρ0(t) over the volume of the capacitor, and the corre-
sponding integral of the time derivatives of E0, since ∂E0/∂t is the power
density, will be

δm0 = 1
4πG

[
1

ρ0c
2

∂P

∂t
−

(
1

ρ0c
2

)2

P 2

]
, (10)

where P is the instantaneous power delivered to the capacitor. Note that
the assumption that all of the power delivered to the capacitors ends up as
a proper energy density fluctuation is an optimistic, indeed, perhaps wildly
optimistic, assumption. Nonetheless, it is arguably a reasonable place to
start.

How are we to test for the presence of such mass fluctuations? Since
the second term on the RHS of Eq. (7) is hopelessly small in all but very
special “just so” conditions, it seems that it can be ignored. In order to
make the first term on the RHS as large as possible, we need to max-
imize ∂P/∂t . In a “one shot”, or pulsed “one shot” system this can be
done by making the switching on, or off, of the voltage to the capacitor
being tested as quick as possible. The mass fluctuation, of course, will only
persist during the very brief switching process, so any weighing system
designed to detect the mass fluctuation will either have to be exceedingly
fast, or be a sufficiently sensitive ballistic system to detect small impulses.
The speed requirement for the weigh system also obtains if we use an AC
voltage signal to drive the mass fluctuations sought, for to produce a mass
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fluctuation of detectable magnitude, the frequency of the applied voltage
signal will have to be as high as possible given the time-dependence. And
while the energy delivered to the capacitor is positive definite, P , being
the product of the voltage and the current delivered to the capacitor, and
∂P/∂t are not. For a simple sinusoidal voltage signal, they are positive
half of the time, and negative the other half of the time—so they time-
average to zero.

In early attempts to detect mass fluctuations predicted in Eq. (10)
a weigh sensor with a natural frequency of about 100 Hz was used, and
the mass fluctuation was driven at that frequency.(11) Since the frequency
of the mass fluctuation occurs at the power frequency of the applied
voltage, the applied voltage frequency is one half that of the power wave.
That is, in this case, about 50 Hz. Even with a large voltage amplitude,
at this frequency any mass fluctuation is quite small in laboratory scale
systems. While positive results were obtained, various sources of potential
spurious signals could not be entirely eliminated. Larger mass fluctuations
are expected at higher frequencies, at least for the first term on the RHS
of Eq. (10), for if P is sinusoidal, then ∂P/∂t scales linearly with the fre-
quency. But to be detected with a relatively “slow” weigh system, a way to
effectively “rectify” the mass fluctuation must be found. The mass fluctu-
ation itself, of course, cannot be “rectified”; but its physical effect can be
rectified by adding two components to the capacitor in which a mass fluc-
tuation is driven.(12) Those additional components are an electromechani-
cal actuator (customarily made of lead–zirconium–titanate, so-called PZT)
and a “reaction mass” (RM) located at the end of the actuator opposite
the fluctuating mass (FM) element, as shown in Fig. 1.

Fig. 1. A schematic diagram of a Mach effect
“impulse engine” comprised of a reaction mass
(RM), piezoelectric actuator (A), and a fluctuat-
ing mass (FM) element in which the Mach effect
is driven.
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The principle of operation is simple. A voltage signal is applied to the
FM element so that it periodically gains and looses mass. A second volt-
age signal is applied to the PZT actuator at the power frequency of the
FM voltage signal. The relative phase is then adjusted so that, say, the
PZT actuator is expanding when the FM element is more massive, and
contracting when it is less massive. The inertial reaction force that the FM
element exerts on the PZT actuator is communicated through the actua-
tor to the RM. Evidently, the reaction force on the RM during the expan-
sion part of the PZT actuator cycle will be greater than the reaction force
during the contraction part of the cycle. So, the time-averaged force on the
RM will not be zero. Viewed from the “field” perspective, the device has
set up a momentum flux in the “gravinertial” field—that is, the gravita-
tional field understood as the cause of inertial reaction forces—coupling
the FM to the chiefly distant matter in the universe that causes the accel-
eration of the mechanical system of Fig. 1.

Formal analysis of this system is especially simple in the approxima-
tion where the mass of the RM is taken as effectively infinite, and the
capacitor undergoes an excursion δl = δl0 cos(2ωt) under the action of
the PZT with respect to the RM. We obtain for the time-averaged reac-
tion force on the RM:

〈F 〉 = −4ω2 δl0δm sin(2ωt) sin(2ωt + ϕ), (11)

where φ is the phase angle between the PZT excursion and the mass fluc-
tuation. Further algebra yields

〈F 〉 = −2ω2 δl0δm cos ϕ (12)

as the only term that survives the time-averaging process. Evidently,
stationary forces can be obtained from mass fluctuations in this way.

It is worth noting at this point, however, if one naively (and incor-
rectly) includes the “vdm/dt” term in Newton’s second law as contribut-
ing to the reaction force on the RM, a term, when time-averaged over a
cycle, that cancels the RHS of Eq. (12) is recovered. In general, that this
term does not contribute to the inertial reaction force on the RM follows
from the fact that it does not represent a force on the FM that is com-
municated through the PZT to the RM. This is easily shown by noting
that in the instantaneous frame of rest of the capacitor vdm/dt vanishes
as v in that frame is zero. Since the vdm/dt “force” that purportedly acts
on the FM is zero in this inertial frame of reference must also be zero in
all other inertial frames of reference, it follows that a vdm/dt “force” does
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not act on the FM, and thence through the PZT on the RM. (This point
is addressed in greater detail in Appendix B.)

When devices of the sort shown schematically in Fig. 1 are constructed
and operated in the (applied voltage) frequency range of 5–10 kHz, results
of the sort expected are obtained.(13) At higher frequencies, however,
where the dimensions of the device are comparable to the wavelength
of the sound waves excited by the PZT actuator being used to “rec-
tify” the effect, a problem that seriously degrades the performance of the
devices becomes evident. The speed at which the rectifying force prop-
agates through the device is soundspeed, whereas the speed at which
the mass fluctuation propagates through the device is lightspeed. Conse-
quently, as the frequency of operation increases, it becomes increasingly
difficult to get the phase relationship between the mass fluctuation and
rectifying force needed to see an effect established throughout a significant
portion of the device. For typical materials in devices with dimensions of
a few centimeters this problem is clearly manifested at frequencies as low
as a few tens of kHz.

In principle, one might try to deal with this phasing problem by
reducing the physical size of the devices as the intended operating fre-
quency is raised. But by reducing the device size two problems arise. First,
since the bulk of the device is reduced, so too is the total mass fluctua-
tion and thus any rectified force. This may be addressed by running large
arrays of such devices. Second, at ultrasound and radio frequencies the
device size becomes sufficiently small that great care in design and elab-
orate fabrication techniques are needed. While these problems, given suffi-
cient resources, are not insuperable, one may ask: Is there some other
technique for producing stationary forces from Mach effect mass fluctua-
tions that sidesteps the phasing problem so that macroscopic devices can
be employed?

Naturally, the answer to this question is yes. The system that per-
mits one to apply a rectifying force throughout the dielectric in a capacitor
where Mach effect mass fluctuations are being driven by the application
of a strong alternating electric field at lightspeed is shown in Fig. 2. It
consists of an inductor and capacitor wired in series with the inductor
disposed so that the magnetic field it produces threads the capacitor per-
pendicular to the electric field in the dielectric. The magnetic flux in the
dielectric, consequently, interacts with the electrically induced displacement
current. Devices of the sort shown in Fig. 2 we shall call “flux capacitors”
for the obvious reason that they are capacitors threaded by high flux mag-
netic fields.

The flux capacitor system has long been investigated as one in
which stationary electromagnetic forces might be generated by strictly
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electromagnetic actions. The preferred scheme of this sort invokes the
“Heaviside force”, a body force present in the capacitor even if the region
between the plates is a vacuum that follows from adopting Minkowski’s
formulation of the electromagnetic stress tensor. (See Corum et al.(14) [also
the source of Fig. 2] and Brito and Elaskar(15) for discussions of attempts
to recover stationary forces from purely electromagnetic systems of this
sort.) And the magnetic part of the Lorentz force, that is, the second term
on the RHS in

F = q

[
E +

(
1
c

)
(v × B)

]
(13)

acting on the displacement current present in the region between the
capacitor plates has also been considered in this connection. Indeed, Brito
claims to have seen small stationary forces (on the order of a dyne) in a
system where the configuration of Fig. 2 is optimized as shown in Fig. 3.

Purely electromagnetic force generation schemes in these systems, even
those with non-linear components, cannot work without violating momen-
tum conservation (see Woodward(16) and refs. therein), and accordingly
can be set aside as untenable. Elaborate analysis is not needed to appreci-
ate this point. All one need do is imagine the apparatus that supposedly
generates some measurable electromagnetic thrust is enclosed in a Faraday
cage. Since all electromagnetic effects are trapped within the cage, clearly
no net momentum can be generated in the contents of the cage. Accord-
ingly, the cage and its contents cannot be made to accelerate steadily in
any direction as a result of any purely electromagnetic effects in the cage.

Fig. 2. A schematic diagram of a “flux” capacitor [after Corum,
et al.(14)] in which the material between the plates of the capacitor is
subjected to an AC electric field and a perpendicular, high flux AC
magnetic field produced by the inductors ranged above and below the
capacitor in the drawing.
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When we take Mach effect mass fluctuations into account, however,
this situation changes, for the gravinertial coupling of local systems like
those of Figs. 2 and 3 to the chiefly distant matter in the universe is not
constrained by the presence of a Faraday cage around the local system.
The cage is transparent to the momentum flux in the gravinertial field
caused by the electromagnetic manipulation of the dielectric material in
the capacitor affected by applied E and B fields. Armed with the grav-
inertial field to effect momentum transfer between a flux capacitor and
the (chiefly) distant matter in the universe, we pose the question: Can
the actions of the E and B fields on the dielectric in a flux capacitor be
arranged so as to produce a detectable stationary force on it, enabling us
to determine whether the Mach effect mass fluctuations predicted here in
fact exist? If our flux capacitor is made with a core material with a very
high dielectric constant—on the order of 5000 or more—and it is sub-
jected to an alternating voltage with a sufficiently large amplitude—say
more than a kilovolt—and frequency—more than several tens of kHz—
then mass fluctuations on the order of several percent of the mass of the
dielectric core should ensue under the action of the E field. With a suffi-
ciently large “rectifying” force provided by the B field, mass fluctuations
of this size should be detectable as a stationary force on the order of ten
dynes or more.

We ignore the issue of mass fluctuations, for the moment, and focus
on the force produced by the B field in a flux capacitor. If a sufficiently
large alternating B field is applied to the flux capacitor, and the B field
is phased so that it is in phase with the displacement current induced
by the E field in the dielectric, a periodic force on the dielectric will be
produced. If the frequencies of the B field and the E field, and thus the

Fig. 3. A schematic diagram of one of
H. Brito’s toroidal flux capacitors.
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displacement current, are the same, and the B field and E field induced
displacement current are in phase, then, because the signs of the B field
and displacement current reverse together, the dielectric will experience a
periodic force. The force will always act in the same direction at twice
the frequency of the exciting fields. This behavior does not mean that we
have discovered a simple system in which momentum conservation is vio-
lated. The dielectric core material in the flux capacitor can be regarded
as a tethered propellant. The excursions of the dielectric material in the
core excited by the action of the B field on the displacement current in
the dielectric in turn excite lattice stresses that act as restoring forces dur-
ing the intervals when the id × B force vanishes. This force goes to zero
periodically because the ion velocity v in the displacement current

id =
∑

qv, (14)

where the sum is over the ions with typical charge q in the dielectric, goes
to zero periodically. (Note that since the displacement current is due to
polarization of the dielectric induced by the E field, ions of opposite signs
will have velocities of opposite signs, so all ions will contribute to the dis-
placement current with the same sign.) If the masses of the constituents of
the dielectric core material are constant, then the time-average of the id ×B
and lattice restoring forces will be zero, and momentum in the flux capac-
itor system will be conserved (and time-average to zero).

If, however, the dielectric core material is undergoing a periodic mass
fluctuation, and that mass fluctuation is in phase with the id × B/lattice
restoring force, then the forces in the flux capacitor will not time-average
to zero. So, to determine whether the flux capacitor system will permit us
to explore the question of the existence of Mach effect mass fluctuations,
we must first determine whether the predicted mass fluctuations have the
same frequency and phase as the id × B force. That is, for this to work,
the (absolute value of the) ion velocity v in the dielectric must be in phase
with the E field-induced mass fluctuations so that the id × B and lattice
restoring forces act when the mass fluctuations take place. As mentioned
above, mass fluctuations in a capacitor due to the first term on the RHS
of Eq. (10) driven by a sinusoidal voltage occur at twice the frequency of
the applied voltage since P is the product of the voltage and current in the
capacitor circuit, and the product of two sinusoids of the same frequency
is a sinusoid of twice that frequency. We then note that the id×B force will
have a frequency that is twice that of the applied magnetic field (which is
the same as the capacitor voltage frequency). v in Eq. (14) arises from the
action of the E field, and the equation of motion [qE = F = ma] for the
ions in the lattice of the dielectric is easily integrated with respect to time
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to give a formal expression for v. If initial conditions are chosen so that
the position and acceleration of the ions are sines of the angular frequency
ω and time t , then v turns out to depend on the cosine of ωt . Since v—
and thus id—and B are orthogonal and in phase by design, their cross-
product is just their simple product, and the product of two sinusoids of
the same frequency returns a sinusoid of twice that frequency (and a phase
dependent term) as required.

To show that the Mach effect mass fluctuation peaks when v of the
lattice ions due to the action of the E field peaks, we first note that the
impulse Mach effect is proportional to the second time-derivative of the
proper energy density, and the proper energy density will be the rest-mass
of the lattice ions plus their potential energy due to lattice stresses pro-
duced by the action of the E field. With a sinusoidal applied E field, after
initial transients have settled out, there will be some fixed total energy
added to the ions that will periodically shift between the kinetic and
potential states. The peak kinetic energy for each ion will just be half the
ion’s mass times the square of its peak v. The instantaneous ion potential
energy will then be that peak kinetic energy minus the instantaneous value
of the kinetic energy, or:

PE = 1
2
m

(
E0q

ω m

)2 [
1 − cos2(ωt)

]
= 1

2k
(E0q)2

[
1 − cos2(ωt)

]
, (15)

where E0 is the amplitude of the applied E field, q the ion charge, m its
mass, and k the “spring” constant of the lattice forces. (Since simple har-
monic motion is assumed here, we may use the fact that ω = (k/m)1/2 to
simplify the expression for the PE as above.) Applying trigonometric iden-
tities we find that

PE = 1
4k

(E0q)2 [1 − cos(2ωt)] . (16)

Since we are only interested in the phase of the Mach effect mass fluctua-
tions with respect to the velocity of the ions in the lattice, and since ρo is
just the quiescent proper matter density plus the PEs of all of the lattice
ions, it follows that:

δm ∝ ∂2ρ0

∂t2
∝ ∂2

∂t2
[1 − cos(2ωt)] . (17)

Taking the indicated derivatives we arrive at

δm ∝ 4ω2 cos(2ωt). (18)
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Or, writing K1 for the constant of proportionality in Eq. (10) [the coeffi-
cient of the trigonometric term in Eq. (15)] and absorbing the 4 into that
constant,

δm = K1ω
2 cos(2ωt). (19)

We thus see that the Mach effect mass fluctuations do indeed occur when
the (absolute) velocities of the ions in the lattice of the core material are at
a maximum since δm depends on cos(2ωt) and |v| depends on | cos(ωt)|.
As a result, we may reasonably expect that the application of the B field
described above will produce a force on the lattice ions when the Mach
effect produces a fluctuation in their proper masses. And consequently, we
may expect to see stationary thrusts in auspiciously engineered devices of
this sort if Mach effect mass fluctuations actually occur. We defer a quan-
titative treatment of thrust production in this type of device to after the
description of actual experimental apparatus and its operation.

4. APPARATUS

While Brito’s device, shown schematically in Fig. 3 above, is elegant
in its simplicity, toroidal capacitors with cores of very high dielectric con-
stant are not commercially available off-the-shelf at modest cost. None-
theless, hybrid devices that can be operated at significantly higher power
can be assembled from common components that are both inexpensive
and readily available. High voltage disk capacitors a few centimeters in
diameter made with materials with dielectric constants in the range of
8000–9000 (roughly twice the dielectric constant of Brito’s capacitors) are
easily obtainable. And powdered iron or ferrite toroidal inductor cores
likewise can be had in a variety of sizes at small cost. By splitting the
toroidal inductor into two halves and grinding flats on the disk capaci-
tors, a device like that shown in Fig. 4 can be fabricated. The inductor
core in this device is an Amidon T200-26 powdered iron torus about 5 cm
in diameter with a permeability of 75. Each of the halves of the torus is
wound with five layers of bifilar 22 AWG magnet wire (the layers being
separated by Teflon tape). The windings of the two halves are connected
in parallel. Connection to the magnet windings is made with a plug at the
device so that the polarity of the current in the windings could be reversed
without changing the currents elsewhere in the circuit for a test mentioned
below.

The capacitors in this device are Vishay Cera-Mite disk capacitors
2.54 cm in diameter and 0.82 cm thick with threaded lugs soldered to the
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Fig. 4. The flux capacitor device used in this experiment
comprised of two modified high voltage disk capacitors (cen-
ter top and bottom) and a split toroidal inductor core on
which coils are wound (left and right). Note the inductor cir-
cuit connector on the left that allows change of the inductor
polarity close to the inductors.

center of the plates. After grinding of the flats, given core material (class
III, Y5U) with a dielectric constant of 8500, each of the capacitors has a
value of 5.5 nF. They are mounted on the ends of a threaded rod which
is also the high voltage connection to the capacitors. The low voltage
(ground) connection is made at the outer lugs which also serve as the
mechanical support attachments for the entire device. It is mounted in a
Faraday cage, a box made of sheet steel, supported in a plastic frame atop
the thrust sensor, as shown in Fig. 5. Also shown in Fig. 5 are the braid
shielded power feeds and their connections to the capacitors and inductors
inside the Faraday cage. The base of the vacuum chamber that encloses
these components is visible at the bottom of the figure. Normal operation
was always carried out in a vacuum in the range of 15–25 mTorr.

The thrust/weight sensor used in this experiment was that developed
in earlier work. It is described in some detail in elsewhere.(17) It is a
Unimeasure U-80 position sensor fitted with a stainless steel diaphragm
spring that converts it into a force sensor. Position of the shaft in the
sensor is detected using two magneto-resistive Hall probes mounted on
the shaft that move with the shaft in a fixed magnetic field supplied by
small permanent magnets. That magnetic field determines the resistance of
the Hall probes which are wired as one leg of an adjustable Wheatstone
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Fig. 5. The Faraday cage (steel box) mounted atop the
thrust weight sensor (in the cylindrical steel shield at
the bottom center).

bridge. The bridge voltage is amplified so that high sensitivity differen-
tial weight/thrust measurements can be made. (The bridge components,
amplifiers, and 50 Hz filter are mounted in cast aluminum project boxes,
all of which are located in a double-walled steel box outside the vacuum
chamber, to provide shielding from stray electromagnetic signals.) Data is
acquired from this sensor at the 600 ADC counts per gram (or, roughly,
1000 dynes) level. So, with signal averaging, weight changes/thrusts at the
level of a milligram/dyne can be resolved. Much of the 1 cm thick steel
case that shields the U-80 is visible in Fig. 5, as are the blocks and screws
that tension fine steel wires that support the upper end of the sensor shaft
against lateral motion. Note that the parts of the power feeds between the
high voltage connectors and the Faraday cage are flexible twisted pairs
of wires that are disposed horizontally so that any thermal expansion of
the feeds will not communicate vertical forces to the assembly atop the
thrust/weight sensor.

The other chief components of the apparatus, along with the test
device and thrust/weight sensor, for this experiment are shown in a
block diagram in Fig. 6. The normally 50 kHz phase-locked/phase-adjust-
able sinusoidal signals that drive the inductor and capacitor circuits are
produced with a garden-variety signal generator to which is added simple fil-
ter, automatic gain control (AGC), and phase adjustment circuits. The signals
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Fig. 6. A block diagram of the chief electrical and
electronic circuits in the apparatus.

are amplified by two power amplifiers (Carvin DCM series amplifiers with out-
put power ratings of 1 and 2 kW, respectively). Provision was made for phase
shifting of 180◦ with a simple switch so that cycles of data with alternating
phase reversals could be taken easily. The signals to the power amplifiers were
switched with computer controlled switching relays (SR). Since the output
voltage swing of the power amplifiers was less than 100 V, and much higher
voltage signals were needed to operate the test device at full power, both of
the power amplifiers were provided with toroidal stepup transformers (wound
on Amidon T 300-26 powdered iron cores). Sense resistors (a 200 to 1 voltage
divider and a 0.27 � current sense resistor) are included in the secondary cir-
cuits of the transformers in order to monitor the voltages and currents there
(where the inductors and capacitors of the test device are located). The sig-
nals in the sense resistors are directly displayed on oscilloscopes for real-time
monitoring, and four-quadrant multiplied and rectified to provide a recorded
DC voltage that tracks the power in these circuits. The power levels present in
the inductor and capacitor circuits during operation, together with the output
of the thrust/weight sensor are the data recorded during trials of this system
(by a Canetics PCDMA ADC board equipped with appropriate anti-aliasing
filters).

5. PROTOCOLS

Each cycle of data taken with this apparatus lasted 7 s. For the first
2.7 s power was not applied to either of the components of the test device.
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At 2.7 s into each cycle one of the two power circuits was energized,
usually the current in the inductor circuit. At three seconds into each cycle
the second circuit was energized; and at four seconds the first circuit was
switched off. The second circuit was then switched off 0.3 s later. This
switching protocol was adopted for several reasons. First, by staggering
the switching of the circuits the effect of each circuit acting alone on the
system could be determined. Second, by taking data for 2.7 s before and
after the powered part of each cycle the quiescent behavior of the system
could be determined, making the estimate of the significance of any sig-
nal that might be present in the powered part of the cycles straightfor-
ward. Third, the relatively short powered interval, 1.3 s for each circuit,
was dictated by the presence of “dielectric ageing” in the capacitor core
material which is a bit lossy (approximately 2–3%) and very sensitive to
temperature. Indeed, in combination with the slow thermal dissipation in
the system, this consideration also dictated that data be taken 12–14 cycles
at a time with cool-down intervals of an hour or more between data cycle
groups. Even so, decrease in the capacitor power level of 30% or more
often took place during the acquisition of a group of cycles.

The cycles of each data group were alternated between either 0 and
180 degrees of relative phase between the inductor current and the capac-
itor voltage, or 90◦ and 270◦, yielding 6 or 7 cycles of each phase in
the group. These relative phases were chosen because no Mach effect sig-
nal is expected at either 0◦ or 180◦ as the magnetic flux in the capaci-
tor peaks when the ion velocity is zero; whereas at 90◦ and 270◦, since
the magnetic flux peaks when the ion velocity and Mach effect both peak,
Mach effect signals are expected. And they should be equal and opposite
at those two phases. Clustering the two pairs of phases also makes it easy
to suppress “common mode” noise in the data by subtracting the 0◦ data
from the 180◦ data, and the 90◦ data from the 270◦ data, since they are
taken together at the same time and thus should be contaminated by spu-
rious effects in equal measure. A real Mach effect signal, processed in this
way, should emerge in the 270−90◦ data as one that turns on when both
signals are present (at 3.0 s into each cycle) and turns off when one of the
two signals is turned off (at 4.0 s). No promptly switched signal that per-
sists for the duration of the powering of both circuits should be present
in the 180−0◦ data.

Given the Faraday cage and the conservation of momentum, one
should not see any promptly switched signal in the results of this exper-
iment if Mach effects are not present and only electromagnetic forces are
at work. Dropping the momentum conservation requirement, however, has
led Brito to predict behavior similar to that expected on the basis of Mach
effects. On the basis of his assumptions, he predicts
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〈F 〉 = εrωnIV d

2c2
0

sin ϕ, (20)

where εr is the dielectric constant of the capacitor core material (4400 in
Brito’s devices), ω the operating frequency (39 kHz), n the number of turns
of the inductor (900 per device), I the amplitude of the current in the
inductor coils, V the amplitude of the voltage across the capacitor plates
(200 V), d the length (or height) of the capacitor (8 mm), and φ the rela-
tive phase of the voltage in the capacitor and the current in the inductor
(90◦ for a peak effect—just as in Mach effect devices). With devices of this
sort (three operated in tandem) Brito claims to have detected thrusts on
the order of a dyne. Not much; but if true, either a violation of momenrgy
conservation (as he notes), or evidence suggesting the presence of a Mach
mass fluctuation effect. Accordingly, we need a way to discriminate a real
Mach effect from Brito’s predicted behavior which, assuming that momen-
tum conservation is not violated in these systems, can be taken to stand
for the most inauspicious spurious electromagnetic effects possible.

Since Brito’s predicted effect displays the same phase dependence as
Mach effect signals, we must look for some other signature to separate
Mach effects from it. To do this we need a formal expression for the pre-
dicted Mach effect behavior. That is, we must put the Mach effect mass
fluctuation predicted by the first term on the RHS of Eq. (10) together
with the action of the B flux on the E field induced displacement cur-
rent in the capacitors to recover an expression that is the equivalent of
Eq. (12) for the simple system shown in Fig. 1. The circumstances in the
present devices, however, are somewhat more complicated even than those
of Fig. 1 devices. As in the case of Fig. 1 devices, analytic solutions of
the full equations of motion are not possible and simplifying assumptions
must be made. We break the calculation up into parts.

The predicted mass fluctuation can be computed using Eq. (10) above
which, after differentiation of P = P0 sin(2ωt) and taking account of the
fact that φ = c2, reads

δm0(t) ≈ ωP0

2πGρ0c
2

cos(2ωt). (21)

The action of the B flux on the displacement current id follows from the
second term on the RHS of Eq. (13)

FB = id × B × L, (22)

where L is the length of the displacement current, that is, twice (because
there are two capacitors) the separation distance of the plates of the
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capacitors. [Note that in Eq. (22) we have switched from the Gaussian
units of earlier sections to SI units.] Since id and B are orthogonal and
have the same frequency, we may write

FB ≈ BidL cos ϕ, (23)

where φ is now the relative phase of B and id .
Now, the total force on the mechanical supports of the device, and

thus the force that it exerts on the thrust/weigh sensor, will be the inertial
reaction forces to magnetic and lattice forces acting on the dielectric core
material in the flux capacitors, or

Ftot = −(FB + Flat) (24)

and in the absence of any Mach effect mass fluctuations, this will time-
average to zero as FB and Flat act in opposite directions, each for half a
cycle with equal strength once stationary operating conditions have been
established. When Mach effect mass fluctuations are added to this behav-
ior, the time-average of Ftot no longer vanishes in stationary circumstances
if the phase relationship between FB and id and δm0 is such that FB acts
in phase with the mass fluctuation. The fractional part of the total proper
mass due to the fluctuation will produce an inertial reaction force on the
supports during the half-cycle that it acts that is not compensated dur-
ing the other half cycle when the lattice forces act, for during that half-
cycle the oppositely directed lattice force acts on a total proper mass that
has a fractional component of the opposite sign due to the mass fluctu-
ation. Since the signs of the force direction and mass fluctuation change
together, that part of the inertial reaction force (relative to the force in the
absence of mass fluctuations) will have the same sign as the fractional part
of the force during the other half-cycle. This means that we can write for
the time-averaged inertial reaction force on the device supports

〈Ftot〉 = −
(

δm0

m0

)
FB sin φ, (25)

where the phase angle φ is that between the voltage applied to the capaci-
tors and the current in the inductors. We have not formally integrated the
equations of motion of the device’s parts to recover Eq. (25). Neither have
we taken into consideration the possibility that the second term on the
RHS of Eq. (10) may have an effect, nor have we considered the possi-
bility that Mach effect mass fluctuations due to, say, the action of the B
field might have some effect on the operation of the test device. Nonethe-
less, adopting the simplifying assumptions implicit in these choices to get
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Eq. (25) should at least give us an order of magnitude estimate of the size
of the stationary force 〈Ftot〉 expected should Mach effect mass fluctua-
tions actually occur.

6. OTHER SIGNATURES OF MACH EFFECTS IN FLUX
CAPACITORS

While a variety of tests can be carried out to guard against spurious
signal sources, the best evidence for any effect is the demonstration that it
scales in a distinctive way when various operating parameters are changed.
Perhaps the most striking scaling behavior is that which occurs when the
voltage of the power signal to the capacitors is altered. The Mach effect
mass fluctuation, given by Eq. (21), varies with the power, and the power
scales with the square of the applied voltage. Varying the voltage, however,
changes more than just the Mach effect mass fluctuation; it also changes
the displacement current through the capacitors. The result is that the sta-
tionary thrust generated in one of the flux capacitor devices should scale
with the cube of the voltage applied to the capacitors. That is, singling out
those quantities that can be scaled by adjustment of the driving signals,

〈Ftot〉 ∝ ωP0Bid, (26)

P0 ∝ idVc ∝ V 2
c , (27)

id ∝ Vc, (28)

B ∝ ii. (29)

The subscripts c and i are used to denote quantities relating to the
capacitor and inductor circuits respectively. Note that (28) and the sec-
ond proportionality in (27) are only generally true if the capacitance of
the capacitors is independent of the operating frequency. Using these pro-
portionalities, if the frequency and inductor current (and thus B) are held
constant, it follows that

〈Ftot〉 ∝ V 3
c . (30)

Taking Brito’s prediction [Eq. (20) above] as the stalking-horse for electro-
magnetic effects, we see that his effect scales only linearly with the voltage
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applied to the capacitors. And, of course, since no effect at all is the stan-
dard prediction, for that case there is no effect to scale in the first place.

Varying the frequency of operation produces a second distinctive scal-
ing behavior. Since the Mach effect mass fluctuation scales linearly with
the frequency as well as with the power, all other things held constant,
any effect produced with mass fluctuations should display this scaling. For
comparison, for example, with Brito’s predicted effect, however, one would
want to hold the amplitude of the voltage signal applied to the capac-
itors as nearly constant as possible while adjusting the frequency. P0 in
these circumstances ceases to be constant as the amplitude of the cur-
rent in the capacitor circuit needed to produce a given Vc is a function of
the operating frequency. Indeed, the current in the circuit, which is also
id, scales linearly with the frequency when Vc is held fixed. So the scal-
ing expected on the basis of Brito’s (momentum non-conserving) purely
electromagnetic hypothesis, which depends only on Vc and the current in
the inductors, differs from that expected on the basis of Mach effect mass
fluctuations. And, of course, if one expects no mass fluctuations for what-
ever reason, no thrust at all in these devices is expected. So checking for
frequency scaling is a good way to test for the genuineness of any effect
observed.

7. RESULTS

The basic results of this experiment to test the Machian origin of
inertia are contained in Figs. 7 and 8. The weight/thrust traces (noisy)
in those figures are averages of roughly 200 cycles. The individual results
for each of the four indicated relative phases (0◦, 90◦, 180◦, and 270◦)
of the capacitor voltage and inductor current are shown clockwise in the
four panels (starting in the upper left hand corner of the figure). The
main feature of these panels is easy to see: for 0◦ and 180◦ there is no
prompt thrust shift when the inductor power (dark smooth trace) is shut
off at 4 s, whereas for 90◦ and 270◦ a prompt shift in the weight/thrust
level of 10–15 dynes takes place. The promptness of the weight/thrust shift
for 90◦ and 270◦ when the capacitor power (light smooth trace) is turned
on is not as immediate owing to a switching transient that suppressed
the response for a little more than a tenth of a second. That switching
transient is also apparent (along with some drift) in the 0 and 180◦ pan-
els and so, evidently, is not due to the lowest order Mach effect mass
fluctuation—which produces a stationary weight/thrust effect in any case.
(The trace identification for this figure is replicated in all other data
displays.)
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Fig. 7. Results (averages of about 200 cycles) for the four relative phase angles
between the inductor current and capacitor voltage at high power (roughly 2.5 kW
amplitude power wave delivered to the capacitors).

The easiest way to see the difference between the 0 and 180◦ relative
phase data where no appreciable Mach effect is expected (indeed, ideally,
none) and the 90 and 270◦ data where Mach effects of opposite sign are
expected is to subtract the 0◦ data from the 180◦ data, and likewise do

Fig. 8. Differenced results for 180−0◦ and 270−90◦ of relative phase between the induc-
tor current and capacitor voltage. Note the prompt effect when both the inductors and
capacitors are energized in the 270−90◦ data.
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the same for the 90 and 270◦ data (as mentioned above). This subtrac-
tion procedure cancels all systematic effects present in the data that are
uncorrelated to the relative phase of the capacitor and inductor power in
the apparatus. Only signals that reverse with the relative phase survive the
subtraction protocol. Inspection of the left hand panel of Fig. 8 reveals
that the switching transient and subsequent drift in the 0 and 180◦ data
does reverse with phase, and so is present in the subtracted results. But
no compelling persistent weight/thrust shift emerges in the 3–4 s interval.

The situation for the 90 and 270◦ data is very obviously different.
While the switching transient at 3 s in the 0 and 180◦ data is evident
as the tenth of a second delay in the onset of the stationary response,
a stationary response that promptly switches off at 4 s with the induc-
tor power is plainly present in the 90 and 270◦ data. The net effect is
a little more than 30 mg/dynes in this panel, indicating that the effect,
presumably the Mach effect sought, is about 15 mg/dynes. How closely
does this correspond to prediction? The amplitude of the mass fluctua-
tion, the coefficient of the cosine function on the RHS of Eq. (21), can be
calculated from knowledge of the operating frequency (50 kHz), power
amplitude (2.5 kW), density of the material (roughly 5.6 g/cm3), and the
standard values of G and c. That turns out to be about 3.6 g, a non-
negligible fraction of the total mass of the active dielectric in the capac-
itors. The total mass of the dielectric is 43 g. δm0/m0 thus is 0.084, nearly
10% of the quiescent mass of the dielectric core material in the capacitors.
L is the sum of the thicknesses of the capacitors (1.6 cm), Bv has the com-
puted (on the basis of Ampere’s law) value 0.025 T (250 G), and i in the
capacitor circuit is a little more than four amperes. So the current flow-
ing through each capacitor, Id, is about 2A. This yields that FB is about
80 dynes. So the stationary thrust given by Eq. (25) in these circumstances
is about 7 dynes—about half of the thrust actually observed. In view of the
fact that several measured and estimated values enter into the computa-
tion of the effect, and each has an accuracy of plus or minus a few per-
cent at best (though the precision is perhaps a bit better), agreement to a
factor of two or three is quite good. (Only order of magnitude agreement
had been hoped for.) More important than the exact agreement of predic-
tion and observation, at this point at any rate, are experimental tests that
challenge the interpretation of the observed effect as due to Mach effect
mass fluctuations.

The first test of the results asks: Can the observed effect be a conse-
quence of an interaction of the power circuits exterior to the Faraday cage
that results in an apparent thrust on the cage? Given the phase depen-
dence of the observed effect, there is a simple way to answer this question.
One simply reverses the polarity of the current in the inductor by reversing
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the connections at the plug inside the Faraday cage (visible in Fig. 4). If
the effect is produced by the currents in the power feeds exterior to the
cage, the observed phase dependence of the effect should not change when
the driving signals are set to 90 and 270◦ of relative phase as before. If the
effect is generated in the device inside the cage, however, the relative phase
is actually reversed, and so too should be the observed effect . The results
of this test are displayed in Fig. 9. Comparison of the two panels of this
figure with the corresponding panels of Fig. 7 reveals immediately that the
polarity reversal of the current in the inductors, at the inductors, reversed
the sign of the stationary shift that is promptly switched at inductor power
shut-off. Taking the 270−90◦ difference of these signals, shown in the left
hand panel of Fig. 10, allows one to estimate the effect at inductor shut-
off. It is between 20 and 30 mg/dynes; that is, about the same as the previ-
ous results. Indeed, taking the difference of these results and the previous
270−90◦ results allows one to suppress all “common mode” effects exte-
rior to the Faraday cage. That “net of nets” result is displayed as the right
hand panel of Fig. 10 (where a running time average over 0.1 s has been
performed to suppress higher frequency noise in the signal). The signal
present in this panel leaves no room for an argument that a real signal is
not present in these data, or that the signal is not generated by the device
within the Faraday cage. But it does not conclusively demonstrate that the
signal is produced by the Mach effect mass fluctuations being acted upon
by the magnetic flux generated by the inductors.

To demonstrate that the effects in Figs. 7–10 are attributable to Mach
effect mass fluctuations we must first show that the signals do not arise
from electromagnetic coupling of the device to the thrust/weight sen-
sor, notwithstanding that the device is run in a Faraday cage and the

Fig. 9. The 90 and 270◦ of relative phase results obtained when the polarity of the
current in the inductors was reversed at the plug in the Faraday cage.



1500 Woodward

Fig. 10. The 270−90◦ of relative phase for the reversed inductor polarity (left panel) and
those results minus the unreversed 270−90 degrees data (right panel of Fig. 8) giving a
“net of nets” for these relative phases of the inductor current and capacitor voltage.

sensor is very carefully shielded. After all, leakage electric and magnetic
fields are surely present, and perhaps they are strong enough to pen-
etrate the Faraday cage and the weigh sensor shielding, and drive sig-
nals in the thrust/weigh sensor circuitry. The obvious way to eliminate
this possibility is to intentionally compromise the Faraday cage to see
what effect that has on the signals detected. This was done two ways. A
sequence of 270−90◦ data was taken with the lid of the Faraday cage
removed; and another sequence was done with the Faraday cage com-
pletely removed. Removal of part, or all, of the Faraday cage changed the
loading of the thrust/weight sensor, and the mechanical response accord-
ingly changed a bit. In the case of full removal of the cage the response
is somewhat more sluggish than that for full shielding or with the lid
removed. No doubt this was a consequence of the removal of the support
for the power feeds provided by the cage. But in neither case, shown in
Fig. 11, did the signal become dramatically larger (or smaller) than that
in the right hand panel of Fig. 8. Indeed, measuring the effect as that
promptly switched when the inductor power is shut off at 4.0 s, it appears
that the Mach effect is a bit smaller for the reduced shielding results—
10–12 dynes (half of the switched weight shift in Fig. 11)—than the
signal obtained with full shielding. Since the result obtained with full
shielding—12–15 dynes—is larger than prediction, the reduced shielding
results are still consistent with the predicted magnitude.

The similarity between the responses with full shielding (right hand
panel of Fig. 8) and reduced shielding (Fig. 11) might make one wonder if
the correspondence might not be due to a simple electromagnetic coupling
that is not screened by the Faraday cage for whatever reason. Unlikely
though this may be, a test was carried out to insure that this was not the
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Fig. 11. The 270–90◦ of relative phase results obtained with part (no lid) or all (no cage)
of the Faraday cage removed from the test chamber.

case. For this test, the capacitors in the test device were replaced by net-
works of bus wire, as shown in Fig. 12. The capacitors were removed to
the high voltage part of the circuit near the power amplifiers and step-up
transformers. In this way essentially all of the currents driven in the appa-
ratus were excited without the physical presence of the flux capacitors in
the Faraday cage. Thus, if the observed effect were due to electromagnetic
effects alone, one should see evidence of their presence in this configura-
tion. Since no Mach effects are present in this configuration, no prompt
displacement of the thrust/weight trace like those in Figs. 8 and 11 should
be present. The result of this test is displayed in Fig. 13. Given the absence
of any signal, the Mach prediction is corroborated.

Fig. 12. The currents emulation test device used to insure
that electromagnetic coupling to the environment could not
be the cause of the signals seen in Figs. 7–11.
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Fig. 13. The currents emulation test results obtained with the
dummy circuit shown in Fig 12.

Before moving on to the scaling tests, a few words about errors and
the accuracy of the results presented here are in order. As far as the like-
lihood that the promptly switched effect present especially in the 90 and
270 degrees data can be attributed to random error, that can be estimated
from the weigh/thrust sensor response in the traces of all of the data fig-
ures herein. There is no other feature that mimics the prompt switching in
these figures. Accordingly, it seems reasonable to assume that the displayed
effect, whatever its source, is real. As for the accuracy of the results, that is
a matter of calibration procedures. In the case of the weigh sensor, it was
calibrated by recording data cycles where a one gram mass was placed on
the sensor, and then removed. About two dozen such cycles were averaged
in order to compute ADC counts per gram scale factor that was applied
to the raw data. That scale factor is accurate to better than a few percent
of the sensor readings (and the sensor is linear over the sort of differential
weight/thrust readings involved in this experiment).

The power readings in the inductor and capacitor circuits are less
accurate. Each of these circuits has a resistor network used to detect the
instantaneous values of the voltage and current in them. The voltage is
sensed as the drop across a 5 k� resistor in a 200 to 1 divider network.
And the current is sensed as the voltage drop across a 0.27 � resistor in
series with either the inductor or the capacitor. The error with which the
voltage divider is known is better than a percent or two. But the error
in the current sense resistor value is on the order of ten percent. Since
the power readings are obtained by four-quadrant multiplication of the
voltage and current signals, those values are only known to an accuracy
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of about 10%. Nonetheless, since a little better than order of magnitude
accuracy is all that was sought, the lack of better accuracy is not a matter
of great moment at this point. The important question for now is: Are the
signals recorded in this experiment evidence for the predicted Mach effect
mass fluctuations? More light is shed on this question in the next section.

8. POWER AND FREQUENCY SCALING

A real Mach effect mass fluctuation induced result in this experiment,
in addition to surviving the phase dependence and spurious electromag-
netic coupling tests of the previous section must also display predicted
scaling behavior if it is to be taken seriously. The test of power scaling
was done by reducing the voltage signal driving the capacitors by a fac-
tor of 0.71 (±0.02) so that the power driving the capacitor circuit would
be halved. The current in the inductors was held constant, but since the
displacement current in the capacitors was reduced by the factor 0.71,
the magnetic force on the capacitors was reduced by this amount. Taken
together, these considerations lead to the prediction that the effect seen
should be reduced by a factor of 0.36. This test, crucial as it is, was per-
formed with inductor polarity reversal, so its result is to be compared
with the right hand panel of Fig. 10. From Fig. 10 we see that the twice-
differenced effect is about 50 dynes/mg. Thus we should expect a signal
in the range of 15–20 dynes/mg. Were the effect observed due to a mech-
anism such as that proposed by Brito, it follows from Eq. (20) that we
would expect to see a signal twice as large. The result of this test is dis-
played in the left-hand panel of Fig. 14, where several lines are included to

Fig. 14. The results for the power scaling test (left-hand panel) and frequency/power scal-
ing test (right-hand panel). In both cases the line that roughly bisect the weight/thrust
trace in the 3–4 s interval is that which corresponds to expected Mach effect behavior.
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facilitate interpretation. The lowest line is the base line fixed by the weight
traces in the intervals where only one of the two power signals is applied.
Were no signal at all present in the domain where both power signals
are applied, this line should roughly bisect the weight trace. It does not.
The predicted weight traces are the one in the upper part of the actual
trace (Mach effect) and the one far above the actual trace (Brito’s effect).
And a line that seems to track the actual shift is shown just below the
Mach effect prediction line. Brito’s effect is clearly inconsistent with the
data. The Mach effect prediction scaled from the effect in Fig. 10 is a bit
larger than observation; but it is at least consistent therewith. Ironically,
the observed effect at reduced power coincides very nicely with the formal
prediction.

Ideally, in a frequency scaling test the only variable that would be
changed would be the frequency. Owing to impedance matching problems,
it was not possible to reduce the operating frequency to 30 kHz while
maintaining the capacitor voltage amplitude at its 50 kHz level. (Scaling
to a higher frequency was precluded because of yet more serious imped-
ance matching problems.) The amplitude of the inductor current was held
fixed (at 3 A), but the capacitor voltage amplitude had to be reduced by
a factor of 0.7 to avoid serious distortion of the signal. This led to a
reduction of the amplitude of the power signal in the capacitors by a fac-
tor of 0.34 (because the current in the capacitor circuit is a function of
frequency). When the changes in the frequency, power, and displacement
current in the capacitors are all figured in, the Mach effect prediction is
that the thrust at 30 kHz should drop by a factor of 0.12. For the case of
Brito’s effect, the predicted reduction is by a factor of 0.42. In this case,
the full polarity reversal/differencing protocol was not used. The result,
displayed in the right hand panel of Fig. 14, is thus to be compared with
the right-hand panel of Fig. 8. Taking the 50 kHz effect to be 25 dynes/mg,
the predictions then are Mach effect: 3 dynes; Brito’s effect: 11 dynes. As
for the simple power scaling result, lines have been included to facilitate
interpretation. Evidently, the result of this test is consistent with the Mach
effect, and not consistent with Brito’s effect.

9. CONCLUSION

What are we to make of the experimental results presented here? On
their face, they seem to be a fairly straightforward, reasonably complete
case for the reality of Mach effect mass fluctuations and the possibility
of producing thrust in flux capacitor systems. Further work will certainly
show whether that is true. It is worth noting that since the Mach effect
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scales linearly with the frequency of the exciting signals when the power is
held constant, the 2.5 kW power in the device used here activating a device
operating at, say, 100 MHz (with a comparable inductor current ampli-
tude) should produce on the order of 30,000 dynes (30 g) of thrust. This
may not seem very impressive, but it is enough, for example, to do Inter-
national Space Station reboost with a single device—without the need for
one-time-use propellant. So, in addition to shedding light on the origin
of inertia and elementary issues of momentum conservation in systems of
this sort, flux capacitors may have a practical application too if their oper-
ation can be successfully scaled to sufficiently high frequencies and powers.
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APPENDIX A

Armed with the definition of Mach’s principle presented in the body
of this paper, we tackle the detailed derivation of Eq. (6) above (which
was first obtained in complete form in Ref. 7). The correct gravitational
field equation, of course, is Einstein’s field equation of GRT, and the vec-
tor approximation to that equation is a set of Maxwell-like field equations.
But for our purposes we are less interested in the field per se than we are
in the sources of the field, for it is they that carry mass, and thus inertia.
In GRT, and in its vector approximation, the sources of the field are stip-
ulated. What we want to know, however, is: Does Mach’s principle tell us



1506 Woodward

anything interesting about the nature of the sources of the field? To answer
this question, it turns out, we do not need either the machinery of GRT
or its vector approximation with their stipulated sources. We only need the
relativistically invariant (i.e., Lorentz invariant) generalization of Newto-
nian gravity, for that is all that is necessary to recover the transient matter
terms found in Eq. (6).

Why does this work? Because inertia is already implicitly built into
Newtonian mechanics. The reason why it is possible to ignore the explicit
contribution of the distant matter in the universe to local gravity is
because of the universality of the gravitational interaction (crudely, it
affects everything the same way, in proportion to its mass), as pointed out
by Sciama and noted here, and so that contribution can always be elimi-
nated by a coordinate (i.e., gauge) transformation, as noted by Brans.(17)

[As an aside, this is the reason why gravitational energy is “non-localiz-
able” in GRT, a well-known consequence of the Equivalence Principle in
that theory.] Moreover, by demanding Lorentz invariance we insure that
correct time-dependence is built into our simplest possible approximation
to the field equation(s) of GRT.

To derive Eq. (6) one considers a “test particle” (one with sufficiently
small mass that it does not itself contribute directly to the field being
investigated) in a universe of uniform matter density. We act on the test
particle by, say, attaching an electric charge to it and placing it between
the plates of a capacitor that can be charged with suitable external appa-
ratus. That is, we accelerate the test particle by applying an external force.
The acceleration, via Newton’s third law, produces an inertial reaction
force in the test particle that acts on the accelerating agent. In view of
the Machian nature of GRT and Sciama’s analysis of the origin of iner-
tia, we see that the inertial reaction force produced in these circumstances
is just the action of the gravitational field of the chiefly distant matter in
the universe on the test particle as it is accelerated. So we can write the
field strength of the gravitational action on the test particle as the iner-
tial reaction force it experiences divided by the mass of the test particle
(since a field strength is a force per unit charge, the “charge” in this case
being mass). Actually, the standard form of field equations are expressed
in terms of charge densities, so one has to do a volumetric division to get
the force per unit mass expression into standard form.

There are two critically important points to take into account here.
The first is that the mass density that enters the field equation so con-
structed is the matter density of the test particle, not the matter density
of the uniformly distributed cosmic matter that causes the inertial reaction
force. The second point is that in order to satisfy Lorentz invariance, this
calculation is done using the four-vectors of relativistic spacetime, not the
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three-vectors of classical space and time. Formally, we make two assump-
tions:

1. Inertial reaction forces in objects subjected to accelerations are
produced by the interaction of the accelerated objects with a
field—they are not the immediate consequence only of some inher-
ent property of the object. And from GRT and Sciama’s vector
approximation argument, we know that the field in question is the
gravitational field generated by the rest of the matter in the universe.

2. Any acceptable physical theory must be locally Lorentz invariant;
that is, in sufficiently small regions of spacetime special relativity
theory (SRT ) must obtain.

We then ask: In the simplest of all possible circumstances—the accel-
eration of a test particle in a universe of otherwise constant matter den-
sity—what, in the simplest possible approximation, is the field equation for
inertial forces implied by these propositions? SRT allows us to stipulate
the inertial reaction force F on our test particle stimulated by the exter-
nal accelerating force Fext as

F = −Fext = −dP
dτ

(A.1)

with

P = (γm0c, p), (A.2)

γ = 1√
1 − (v2/c2)

, (A.3)

where bold capital letters denote four-vectors and bold lower case letters
denote three-vectors, P and p are the four- and three-momenta of the test
particle respectively, τ is the proper time of the test particle, v the instan-
taneous velocity of the test particle with respect to us, and c the vacuum
speed of light. Note that the minus sign has been introduced in Eq. (A.1)
because it is the inertial reaction force, which acts in the direction opposite
to the acceleration produced by the external force, that is being expressed.
One could adopt another sign convention here; but to do so would mean that
other sign conventions introduced below would have to be altered to maintain
consistency.

We specialize to the instantaneous frame of rest of the test particle.
In this frame we can ignore the difference between coordinate and proper
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time, and γ s (since they are all equal to one). We will not recover a gen-
erally valid field equation is this way, but that is not our objective. In the
frame of instantaneous rest of the test particle Eq. (A.1) becomes

F = −dP
dτ

= −
(

∂m0c

∂t
, f

)
(A.4)

with

f = dp
dt

. (A.5)

Since we seek the equation for the field (i.e., force per unit mass) that pro-
duces F, we normalize F by dividing by m0. Defining f = f/m0, we get

F = F
m0

= −
(

c

m0

∂m0

∂t
, f

)
. (A.6)

To recover a field equation of standard form we let the test particle
have some small extension and a proper matter density ρ0. (That is, oper-
ationally, we divide the numerator and the denominator of the time-like
factor of F by a unit volume.) Eq. (A.6) then is

F = −
(

c

ρ0

∂ρ0

∂t
, f

)
. (A.7)

From SRT we know that ρ0 = E0/c
2, E0 being the proper energy density,

so we may write

F = −
(

1
ρ0c

∂E0

∂t
, f

)
. (A.8)

With an equation that gives the gravitational field strength that causes
the inertial reaction force experienced by the test particle in hand, we next
calculate the field equation by the standard technique of taking the diver-
gence of the field strength and setting it equal to the local source density.
Note, however, that it is the four-divergence of the four-field strength that is
calculated. To keep the calculation simple, this computation is done in the
instantaneous rest frame of the test particle so that Lorentz factors can
be suppressed (as mentioned above). Since we will not be interested in sit-
uations where relativistic velocities are encountered, this simplification has
no physical significance. The relativistic nature of this calculation turns out
to be crucial, however, for all of the interesting behavior arises from the
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time-like part of the four-forces (and their corresponding field strengths).
The four-divergence of Eq. (A.8) is

− 1
c2

∂

∂t

(
1
ρ0

∂E0

∂t

)
− ∇ · f = 4πGρ0. (A.9)

Carrying out the differentiation with respect to time of the quotient in the
brackets on the LHS of this equation yields

− 1
ρ0c

2

∂2E0

∂t2
+ 1

ρ2
0c2

∂ρ0

∂t

∂E0

∂t
− ∇ · f = 4πGρ0. (A.10)

Using ρ0 = E0/c
2 again

− 1
ρ0c

2

∂2E0

∂t2
+

(
1

ρ0c
2

)2 (
∂E0

∂t

)2

− ∇ · f = 4πGρ0. (A.11)

We have written the source density as Gρ0, the proper active gravita-
tional matter density. F is irrotational in the case of our translationally
accelerated test particle, so we may write f = −∇φ in these particular cir-
cumstances, φ being the scalar potential of the gravitation field. Note that
writing f = −∇φ employs the usual sign convention for the gravitational field
where the direction of the force (being attractive) is in the opposite sense to
the direction of the gradient of the scalar potential. With this substitution
for f Eq. (A.11) is

∇2φ − 1
ρ0c

2

∂2E0

∂t2
+

(
1

ρ0c
2

)2 (
∂E0

∂t

)2

= 4πGρ0. (A.12)

This equation looks very much like a wave equation, save for the fact
that the space-like part (the Laplacian) involves a scalar potential, whereas
the time-like part (the time-derivatives) involve the proper rest energy
density. To get a wave equation that is consistent with local Lorentz invari-
ance we must write E0 in terms of ρ0 and φ so as to recover the d’Alem-
bertian of φ. Given the coefficient of ∂2E0/∂t2, only one choice for E0 is
possible

E0 = ρ0φ. (A.13)

Other choices do not affect the separation of variables needed to
recover a relativistically invariant wave equation. But this is just the con-
dition that follows from Mach’s principle (and SRT). [Note that another
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sign convention has been introduced here; namely that the gravitational
potential energy of local objects due to their interaction with cosmic mat-
ter is positive. This differs from the usual convention for the potentials
produced by local objects, which are negative. Unless the cosmic matter
is dominated by substance with negative mass, this convention must be
simply imposed to replicate the fact that by normal conventions the rest
energies of local objects are positive. Note farther that “dark energy”, with
its “exoticity”, fills this requirement very neatly, making the imposition of
a special sign convention here unnecessary.]

Substituting ρ0φ for E0 in Eq. (A.12) makes it possible to, in effect,
separate the variables ρ0 and φ to the extent at least that the d’ Alem-
bertian of φ can be isolated. Consider the first term on the LHS of Eq.
(A.12) involving time-derivatives. Substituting from Eq. (A.13) into (A.12)
gives

− 1
ρ0c

2

∂2E0

∂t2
= − 1

ρ0c
2

∂

∂t

(
ρ0

∂φ

∂t
+ φ

∂ρ0

∂t

)2

= 1
c2

∂2φ

∂t2
− 2

ρ0c
2

∂φ

∂t

∂ρ0

∂t
− φ

ρ0c
2

∂2ρ0

∂t2
. (A.14)

Making the same substitution into the second time-derivative term on the
LHS of Eq. (A.12) and carrying through the derivatives produces:

(
1

ρ0c
2

)2 (
∂E0

∂t

)2

=
(

1
ρ0c

2

)2 (
ρ0

∂φ

∂t
+ φ

∂ρ0

∂t

)2

= 1
c4

(
∂φ0

∂t

)2

+ 2φ

ρ0c
4

∂φ

∂t

∂ρ0

∂t
+

(
φ

ρ0c
2

)2(
∂ρ0

∂t

)2

. (A.15)

Now, taking account of the fact that φ/c2 = 1, we see that the coefficient
of the second term on the RHS of this equation is 2/ρ0c

2, so when the two
time-derivatives terms in Eq. (A.12) are added, the cross-product terms in
Eqs. (A.14) and (A.15) will cancel. So the sum of these terms will be

− 1
ρ0c

2

∂2E0

∂t2
+

(
1

ρ0c
2

)2 (
∂E0

∂t

)2

= − 1
c2

∂2φ

∂t2
− φ

ρ0c
2

∂2ρ0

∂t2
+

(
φ

ρ0c
2

)2(
∂ρ0

∂t

)2

+ 1
c4

(
∂φ

∂t

)2

. (A.16)

When the first term on the RHS of this equation is combined with the
Laplacian of φ in Eq. (A.12) one gets the d’Alembertian of φ and the
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classical wave equations (A.17) below is recovered.

∇2φ − 1
c2

∂2φ

∂t2
= 4πGρ0 + φ

ρ0c
2

∂2ρ

∂t2

−
(

φ

ρ0c
2

)2 (
∂ρ0

∂t

)2

− 1
c4

(
∂φ

∂t

)2

. (A.17)

The remaining terms that follow from the time-derivatives of E0 in Eq.
(A.16), when transferred to the RHS, then become transient sources of
φ when its d’Alembertian is made the LHS of a standard classical wave
equation. That is, we have recovered Eq. (6) above.

APPENDIX B

There may be those unconvinced by this argument, for in the case of
the “rocket equation” vdm/dt seems to be treated as a real force. But brief
reflection on the “rocket” case reveals that this is not strictly speaking cor-
rect and, moreover, there is an important difference between the “rocket”
case and the situation involving “impulse engines” discussed here. Recall
the circumstances of the elementary “rocket equation.” A rocket of mass
M experiences an acceleration a as a result of the expulsion of propellant
at a rate dm/dt with an invariant velocity v with respect to the rocket. (We
work in the Newtonian limit here where Galilean invariance is all that is
required.) Since the total “force” on the system is zero, we have

F = Ma + v
dm

dt
= 0, (B.1)

from which it immediately follows that

Ma = −v
dm

dt
(B.2)

and the acceleration of the rocket due to the “thrust” of the propellant is

a = − v
M

dm

dt
. (B.3)

It is easy to believe, since a is proportional to dm/dt , that a is caused
by dm/dt . But this is not correct; a is actually caused by the momen-
tum reflection of half of the combustion products of the propellant by the
forward wall of the combustion chamber. It is the direct contact action
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of the momentum reversal of the propellant—the Ma term that is—that
causes the rocket to accelerate. The vdm/dt term does not describe this
force; it merely records the rate at which momentum is added to that
already present in the exhaust plume of the rocket—something that must
be done to properly account for momentum conservation in any event.

In addition to the vdm/dt term in the “rocket equation” not describ-
ing the actual acceleration of the rocket caused by the force created by
momentum reversal of the propellant in the combustion chamber, another
important point should be noted. Eqs. (B.1)–(B.3) are instantaneously
applicable. That is, if combustion of fuel is stopped and Ma immediately
goes to zero, so too does vdm/dt . One cannot have these two terms be
different at the same time, but “average out” over some extended time
(which might be one cycle of a cyclic process). In quantum systems one
might get away with this; but not in a strictly considered classical system.
(This, after all, is the reason why momentum is associated with, for exam-
ple, the electromagnetic field.)

To make plain the difference between rockets and “impulse engines,”
consider the device in Fig. 1 operated in the following way. Each cycle of
operation is broken up into four parts. During the first part of the cycle, a
voltage signal is applied to the device so as to produce a stationary mass
increase in the FM (by arranging dP/dt to be constant). While this takes
place, the actuator expands so that the FM suffers acceleration a. During
this part of the cycle the RM, owing to the inertial reaction force F com-
municated through A to it, experiences an impulse �p:

�p =
∫

Fdt = −
∫

(m + δm)adt = −(m + δm)a�t, (B.4)

where a of the FM is taken positive when A expands. In the second part
of the cycle A is manipulated so as to keep the velocity of the FM con-
stant while its mass is changed from m+δm to m−δm. In the third part of
the cycle A accelerates the FM in this mass-reduced state so as to reverse
the velocity of the FM relative to the RM, imparting an impulse, via the
inertial reaction force on the RM,

�p =
∫

Fdt =
∫

(m − δm)adt = (m − δm)a�t (B.5)

to the RM. The sum of these impulses generated while the mass of the
FM is held constant (at different values) is

�p = −2δma�t. (B.6)
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The RM, accordingly, experiences this impulse from the parts of each
cycle where A produces a force between it and the FM.

In the fourth part of the cycle the mass is changed from m − δm to
m+δm while the FM moves at constant velocity. This is just the reverse of
the circumstances in the second part of the cycle. Now we must deal with
the vdm/dt “force”. This only acts during two parts of the cycle when the
FM is moving, by design, with constant velocity ±v. That velocity will be
equal to ±a�t/2 after continuous cyclic behavior is established. This force
presumably acts on the FM, so as A is expanding:

�p =
∫

v
dm

dt
dt = −v2δm = −a�tδm. (B.7)

When the part of the cycle where A is contracting occurs, the signs of v
and dm/dt both reverse, so the contribution of that part of the cycle is the
same as the expansion part. The sum of these two parts is

�p = −2δma�t. (B.8)

If the “force” producing this impulse generated an equal and opposite
impulse on the reaction mass, then the ma and vdm/dt impulses would
cancel each other out, and no net momentum would occur in the RM over
a complete cycle. But this cannot be the case, for if a mass fluctuation is
produced in capacitors in an inertial frame where they are at rest, they do
not spontaneously accelerate as the mass fluctuation takes place.

Only if the mass fluctuation is engineered to produce a directed
momentum flux, in this case, in the gravinertial field, will there be a force
on the FM that is communicated through A to the RM. Absent such engi-
neering, the RM acquires a −2δma�t momentum impulse in each cycle.
This may seem a violation of local momentum conservation, but we have
not allowed for the momentum carried by the gravinertial field to/from
the FM during the parts of the cycle when dm/dt �= 0 and v = a con-
stant, which must supply the difference. In other words, just as the vdm/dt

term in the “rocket equation” takes account of the rate of change of
momentum in the exhaust plume—which itself does not exert any force
on anything—in this case the vdm/dt term takes account of the rate of
momentum transfer to/from the FM as the mass changes due to the Mach
effect mass fluctuation—which likewise does not exert any force directly on
any part of the system. Should any doubt about this remain, the exper-
iment described in this paper tests both for the presence of Mach effect
mass fluctuations and the correctness of this analysis of momentum trans-
fer in flux capacitor systems. Should either part of this analysis turn out to
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be wrong, no thrust should be detected with the device used in the exper-
iment described herein.
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