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Swimming versus swinging effects in spacetime
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Departamento de Matemática Aplicada, Instituto de Matemática, Estatı́stica e Computação Cientı́fica, Universidade de Campinas,

13083-970, Campinas, SP, Brazil
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Wisdom has recently unveiled a new relativistic effect, called ‘‘spacetime swimming’’, where
quasirigid free bodies in curved spacetimes can ‘‘speed up’’, ‘‘slow down’’ or ‘‘deviate’’ their falls by
performing local cyclic shape deformations. We show here that for fast enough cycles this effect
dominates over a nonrelativistic related one, named here ‘‘space swinging’’, where the fall is altered
through nonlocal cyclic deformations in Newtonian gravitational fields. We expect, therefore, to clarify
the distinction between both effects leaving no room to controversy. Moreover, the leading contribution to
the swimming effect predicted by Wisdom is enriched with a higher order term and the whole result is
generalized to be applicable in cases where the tripod is in large redshift regions.
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Recently, Wisdom unveiled a new beautiful relativistic
effect [1] (see also Ref. [2]) denominated spacetime swim-
ming, where quasirigid free bodies in curved spacetimes
can ‘‘speed up’’, ‘‘slow down’’ or ‘‘deviate’’ their falls by
performing local cyclic shape deformations (see Fig. 1).
This is a full general-relativistic geometrical phase effect
[3], which vanishes in the limit where the gravitational
constant G! 0 or the light velocity c! 1. Similarly to
the displacement attained by swimmers in low Reynolds
number fluids [4,5], the displacement attained by
swimmers in some given spacetime only depends on their
local stroke.

The fact that the swimming effect is purely relativistic
has caused some perplexity [6,7], since it has been known
for a long time that there is a similar classical effect in
nonuniform Newtonian gravitational fields, which is
present when c! 1. For example, an orbiting
dumbbell-shaped body can modify its trajectory by con-
tracting the strut connecting the two masses at one point
and expanding it at another one [8]. We stress here that this
is a nonlocal effect, which appears due to the fact that the
work performed by the dumbbell engine against the gravi-
tational tidal force during the contraction differs from the
one during the expansion. It is the resulting net work what
allows the dumbbell to change from, say, a bounded to an
unbounded orbit (see Fig. 2). The shorter is the period of
the whole contraction-expansion process, the smaller is the
change of the trajectory, although this cannot be made
arbitrarily small if one requires that the deformation ve-
locity does not exceed c. This is in analogy with play-
ground swings, where the oscillation amplitude is modified
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by an individual through standing and squatting in syn-
chrony with the swing motion [9].

Here we perform a direct numerical simulation for a
falling tripod to show that for fast enough cyclic deforma-
tions the swimming effect dominates over the swinging
effect, while for slow enough cycles the opposite is true.
We expect, thus, to set down any confusion concerning the
independency of both effect. In addition, we calculate and
discuss the idiosyncratic features of a higher order term
beyond the leading one obtained by Wisdom and extend
the whole result to be applicable in cases where the tripod
is in large redshift regions.

Let us begin considering a tripod falling along the radial
axis in the Newtonian gravitational field of a spherically
symmetric static body with mass M. The three tripod
endpoint masses mi (i � 1; 2; 3) are connected to the
mass m0 at the vertex through straight massless struts
with length l. The tripod is set with its vertex mass above
the three endpoint masses and aligned symmetrically with
the radial axis in order that the three struts make a common
angle �with it (see Fig. 3). The tripod legs are designed to
contract and expand, l � l�t�, and open and close, � �
��t�, as much as �l and ��, respectively, along a complete
cycle as ruled a priori by some internal engine. The
Lagrangian used in the action S �

R
Ldt to describe the

falling tripod is

L�
X3

a�0

GMma

ra
�
X3

a�0

ma

2
� _r2
a�r2

a
_�2
a�r2

asin2�a _�a
2�; (1)

where “_” � d=dt. The positions of the masses ma, a �
0; 1; 2; 3, are given through usual spherical coordinates
ra; �a; �a with origin at the central mass M. The tripod
is not assumed to rotate, _�i � 0, and the underlying sym-
metry guaranties that ri � rj and �i � �j for i; j � 1; 2; 3.
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FIG. 2 (color online). The top figure carries the information
that the swimming effect is a result of the nonzero area of the
square (in the shape space diagram) associated with the body
deformation. Were the deformation such that the area were null,
the swimming effect would vanish. The bottom figure illustrates
precisely this situation. Space displacements can be achieved in
this case, however, through the swinging effect, i.e. by expand-
ing and contracting the legs at different points of the trajectory.

FIG. 3 (color online). The positions of the masses ma �a �
0; 1; 2; 3� are given through usual spherical coordinates ra; �a; �a
with origin at the central mass M.

FIG. 1 (color online). Five snapshots of two tripods designed
to have legs with length l and angle � with the radial axis, along
which they fall down, are shown with and without cyclic
deformations, respectively. The swimming effect consists in
realizing that local cyclic deformations lead, in general, to
displacements of order G=c2 in the quasirigid tripod trajectory
when compared with the rigid one.
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The evolution r0 � r0�t� (�0 � �0 � 0) of m0 is given by
numerically integrating the corresponding Euler-Lagrange
equations with the constraints

ri � �r
2
0 � l

2 � 2r0l cos��1=2;

�i � arcsin��l=ri� sin��;
(2)

and �i � 2��i� 1�=3. Here we consider r0 and pr0
as the
024020
only independent dynamical variables. (ri and �i are im-
plicit functions of r0 through Eq. (2).) The solid line in
Fig. 4 shows how much a quasirigid tripod changing shape
as shown in Fig. 1 fails to follow a rigid one at the end of a
complete cycle, where both tripods are let free simulta-
neously and we have assumed that each quarter of the
whole cycle takes as long as T=4 of the total period T.
(For the sake of comparison we use the position of m0.)
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0 �rel, i.e. how much a
free-falling quasirigid tripod fails to follow a rigid one at the
end of a complete cycle assuming a Newtonian gravitational
field and a Schwarzschild spacetime characterized by a central
mass GM � 1, respectively. Here the tripod is assumed to
change its shape as shown in Fig. 1 and ! � 1=T is the cycle
frequency. The rigid and quasirigid tripods are set free simulta-
neously with Gma � 0:1 and r0 � 100 (a � 0; 1; 2; 3). Initially
� � 1 and l � 1 and they vary as much as �� � �0:01 and
�l � 0:01 along the cycle. Each quarter of the whole cycle takes
as long as T=4. (Here c � 1.)
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Clearly the slower (faster) is the cycle, the larger (smaller)
is �Cr0.

Let us examine in detail the high-frequency shape de-

formation region, ! � 1=T �
������������������������
GM=�r2

0�l�
q

, for the sake
of further comparison with the swimming effect. By ‘‘high-
frequency’’ we mean that along the whole period T the
tripods do not fall much in comparison with �l. We shall
assume in this regime that pr0

is arbitrarily small and
approximately conserved: pr0

� @L=@ _r0 � 0. As a result
one obtains, for mi � mj, i; j � 1; 2; 3,

dr0 � Udl� Vd�; (3)

where dr0 � _r0dt and

U � �
�@r1=@r0��@r1=@l� � r2

1�@�1=@r0��@�1=@l�

m0=�3m1� � �@r1=@r0�
2 � r2

1�@�1=@r0�
2

and

V � �
�@r1=@r0��@r1=@�� � r

2
1�@�1=@r0��@�1=@��

m0=�3m1� � �@r1=@r0�
2 � r2

1�@�1=@r0�
2 :

The net translation accomplished after the complete cycle
ABCDA shown in Fig. 2, which circumvents an area S, can
be computed using the Stokes theorem

�Cr0 �
Z
@S
�@V=@l� @U=@��dl ^ d�; (4)
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where dl and d� are treated as one-forms in the shape
space manifold covered with coordinates fl; �g. Now, be-
cause @U=@� � @V=@l [see Eq. (2)], we have that in this
regime �Cr0 � 0. Indeed, by associating the gravitational
potential energy gained by the tripod along the process
with the work performed against the gravitational tidal
forces, we can estimate that

�Cr0 � aGMl�l=�r4
0!

2�; (5)

where a is a constant, which depends on the detailed
geometry of the body. For the parameters chosen in
Fig. 4 a � 0:1. The fact that �Cr0 ���!!!10 is a general result
because in the high-frequency regime the one-form dr0

will be approximately closed for any classical (or, even,
semiclassical) potentials with no velocity dependence.
Free-falling panicking individuals performing fast cyclic
motions in Newtonian-like gravitational fields will not be
able to change significantly their trajectories despite the
strength of their local stroke; it had better that they swing
suitably with low frequencies.

Next, let us investigate how the above picture is modi-
fied when one replaces the Newtonian gravitational field by
the curved Schwarzschild spacetime associated with a
spherically symmetric body with mass M as described by
the line element

ds2 � f�r�c2dt2 � f�r��1dr2 � r2�d�2 � sin2�d�2�;

(6)

where f�r� � 1� 2GM=c2r. The Lagrangian used in the
action S �

R
Ldt to evolve the tripod is

L �
X3

a�0

ma�c2fa � _ra2f�1
a � r2

a
_�a

2 � r2
asin2�a _�a

2�1=2;

(7)

where fa � f�ra� and “ _ ” � d=dt. The constraints r1 �
r1�r0; l; �� and �1 � �1�r0; l; �� are obtained in this case
by requiring that the tripod struts be geodesics in the t �
const space section of the static observers (with 4-velocity
u / @=@t), who measure l � l�t� as the struts’ proper
length and � � ��t� as the proper angle of the struts
with the radial axis. (The ‘‘�’’ used above is because
although we are in the high-frequency regime, it takes
some time to complete each cycle.) Now, it is convenient
to expand Eq. (7) up to order v2=c2 to avoid nonlinear
equations. We obtain, then, in the high-frequency regime,

! � 1=T �
���������������������������������
GMf1=2

0 =�r2
0�l�

q
with T being the total co-

ordinate period, the relativistic analogue of Eq. (3):

dr0 � Xdl� Yd�; (8)

where

X �
��@r1=@r0��@r1=@l� � f1r

2
1�@�1=@r0��@�1=@l�

�m0=3m1��f1=f0�
3=2 � �@r1=@r0�

2 � f1r2
1�@�1=@r0�

2
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and

Y �
��@r1=@r0��@r1=@�� � f1r2

1�@�1=@r0��@�1=@��

�m0=3m1��f1=f0�
3=2 � �@r1=@r0�

2 � f1r
2
1�@�1=@r0�

2
:

Afterwards, we integrate Eq. (8),

�Rr0 �
Z
@S
�@Y=@l� @X=@��dl ^ d�; (9)

along the complete cycle ABCDA (see Fig. 2), obtaining
for small enough l=r0 and ��, �l

�Rr0 �
�3m0m1

�m0 � 3m1�
2

GM

c2r0
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GM
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p

�
l3

r3
0

cos�
�

sin����l;

(10)

which corresponds to a proper distance �� � �Rr0=
�����
f0

p

as measured by the static observers assuming �Rr0=r0 	
1. A numerical integration of Eq. (8) with no restriction on
�� and �l was performed and is in agreement with
Eq. (10) in the proper limit. Assuming that the leading
term in this equation dominates over the next order one, we
conclude that ��	 �l. The term of order l2=r2

0 in
Eq. (10) coincides with the result obtained in Ref. [1] for
r0 � 2GM=c2 and goes beyond, since it also holds close
to the horizon: r0 * 2GM=c2. It is interesting to note that
the leading term of �Rr0 tends to decrease as the tripod
approaches the horizon. This can be understood from the
fact that assuming that l is fixed, the coordinate size of the
tripod decreases as l

�����
f0

p
. As a result, the tripod is only able

to probe smaller coordinate size regions. Now, close to the
horizon the t� r section of the Schwarzschild line element
(6) can be approximated (�;� � const) by the Rindler
wedge one [10]: ds2 � ��c2=4GM�2c2dt2 � d�2; where

� � �4GM=c2�=
�����������������������
f�r��1 � 1

p
, which has vanishing curva-

ture. Thus, for the same reason �Rr0 vanishes in flat space-
times, this is damped in the horizon’s neighborhood.
Clearly, it remains the fact that the corresponding �� not
only is not damped but increases as the tripod approaches
the horizon, as a consequence of the fact that the space
curvature gets larger. Concerning the next order term, it is
interesting to note that it can be positive, negative or null
depending on the masses and tripod position. �Rr0 is
plotted in Fig. 4 (see dashed line) as a constant in the
high-frequency region. We have taken care to keep the
deformation velocity v < c. For the frequency range
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shown in the Fig. 4, we have 10�2 & v=c & 10�1. We
see that for high enough frequencies the swimming effect
can dominate the swinging effect by orders of magnitude.
For the parameters chosen in the graph, the swimming
effect begins to dominate over the swinging effect at ! *

0:9. This can be estimated analytically quite well by equat-
ing Eqs. (5) and (10). A full general-relativistic numerical
simulation, which would involve formidable difficulties
associated with the relativistic rigid body concept, is ex-
pected to approach smoothly the swinging and swimming
predictions in the low- and high-frequency regions, respec-
tively. (For a movie on the swinging and swimming effects
see Ref. [11].)

It seems to be a challenging problem to take into account
the decrease (or increase) of the quasirigid body mass (i.e.,
rest energy) as a consequence of the swimming. This is
desirable when the work W spent (or gained) along the
process is of order of �m0 � 3m1�c

2. The work associated
with a displacement �Rr0 can be estimated for W 	
�m0 � 3m1�c2 to be

W � �m0 � 3m1�GM�Rr0=�f0r
2
0�; (11)

where �Rr0=r0 	 f0r0c
2=�GM�. Equation (11) suggests

that this is very costly to swim close to the horizon.
Actually, even far away from it, we do not expect the tripod
to be able to climb upwards the space. This can be seen as
follows. Along a complete period T, the free rigid tripod
falls down about �Fr0 � GMf0T2=�2r2

0�. By imposing
that the deformation velocity v & c, we obtain T *

l=�c
�����
f0

p
� and, thus, �Fr0 * GMl2=2c2r2

0 > �Rr0. This
raises the interesting ‘‘engineering’’ issue concerning
what would be the most efficient geometry and stroke for
quasirigid spacetime swimming bodies. In this vein, it
would be also interesting to see how the tripod could
accomplish more complex maneuvers through asymmetric
deformations. This is remarkable that General Relativity,
which is a quite studied 90-years-old theory did not lose its
gift of surprising us. After all, free-falling panicking indi-
viduals may change their trajectories by doing fast cyclic
motions because the world is relativistic.

E. G. is indebted to J. Wisdom for various conversations
and P. Letelier for the support. Two of us, C. M. and G. M.,
would like to acknowledge full and partial financial sup-
ports from Fundação de Amparo à Pesquisa do Estado de
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