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Summary

Mach’s principle is incorporated into classical General Relativity by writing
Einstein’s equations as explicitly covariant integral equations involving
retarded bi-tensor Green’s functions. These Green’s functions must be found
for the Robertson—-Walker metrics in order to discover which, if any, of
those universes are Machian.

In this theory all empty universes are non-Machian and the cosmical
constant is zero.

It is argued that in any truly Machian theory space-time itself must be
caused by the matter and in this theory it may be considered as propagating
over itself out from the matter.

Our Mach’s principle may also be expressed as a boundary condition on
the past singularities of the universe in a way that corresponds to the idea that
all space-time and therefore all inertial and gravitational influences come
from matter.

1. Philosophical introduction. Since Bishop Berkeley (1) criticized Newton'’s
formulation of dynamics the absolute or relative nature of space and space-time
has been a subject of controversy. Does space-time exist merely as a consequence
of the matter and energy contained in it or are the laws and facts of astronomy at
variance with this philosophical concept?

The connection between space-time and local physics is beautifully expressed
in Einstein’s general theory of relativity. In Eddington’s interpretation (2)
matter is a secondary phenomenon to the underlying reality of space-time. In
such an interpretation space-time is ‘flat’, R***7=o0, ‘empty’, R**=o0 or bent
R#v+#0 at each point. ‘Flat’ and ‘empty’ are merely provocative names; still
more provocatively we say that the matter zs ‘bent’ space.

The aim of this paper is to show that General Relativity under certain boundary
conditions completes the philosophically satisfying cycle of being interpretable
in two ways. Those who choose to may consider space-time as absolute, but
those who like Berkeley reject this idea may consider space-time as being physically
caused by the matter in it.

We show that the whole metric tensor, g,,, at any point may be considered
as a tensor potential due to matter within its past light cone. This result is
foreshadowed in Davidson’s approximate theory (3).

The origin of inertia. Mach (4), Einstein, Weyl (5), Bondi (6), Sciama (%)
Wheeler (8) and others have given penetrating discussions of the origin of inertia
The problem here again centres around Berkeley’s criticism of Newton’s work
in particular his conclusion that rotation is absolute. It is extended to includ
the question of whether all accelerations are relative or absolute. The concep
that the inertial reference frames at all points of space-time are determined b
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some causal law as some average of the positions and motions of the matter of
the observable universe, is what we shall call Mach’s principle. It is equivalent
to Einstein’s more appealing dogma (6). There is no inertia of matter against
space but only inertia of matter against matter.

The aim of this section is to show that any theory that attributes the inertia
of a body to the influence of distant matter must attribute the very space-time in
which the body is situated to the same cause.

The observation that the velocity of light measured by any apparatus is
independent of uniform motion of both the source and the observer, shows that
the light velocity and the associated light-cones are fundamental invariant
structures of space-time. In order that no observer should see particles arrive
at their destinations before they set out, it is necessary that no particle travel
faster than light. In order that a specially large shove shall not send a fast
particle through this light barrier inertia must increase without limit as the
velocity of light is approached. Thus light cones are both the limiting surfaces
onto which the paths of very fast particles tend and invariant structures of the
space-time. When referred to accelerated or rotating axes these light cones
appear twisted as do the particle paths. From a Machian viewpoint the matter
current constituted by the universe itself accelerating or rotating with respect to
our axes causes a field which acts on particles to twist their paths. An inconsis-
tent but most illuminating theory of this effect was given by Sciama (7). For
consistency the light cones must be twisted in precisely the same way as the
limiting particle paths so we must attribute this twisting to the same cause. Also
from a Berkleian viewpoint a test particle alone in space-time is inconsistent,
for the light cones define ‘unaccelerated’ axes which are unaccelerated with
respect to no matter.

This intimate relationship between the space-time and the inertial axes of
dynamics implies that we cannot claim inertia to be caused by distant matter
without claiming in the same breath that the local space-time frame is also so
caused.

2. Method. Two key problems have foiled past attempts at a general
relativistic theory of Mach’s principle.

(1) Toshow how much inertia is due to each source, inertia must be expressed
as a sum over its sources. In general relativity these are represented by the
stress-energy—momentum tensor 7', so we expect integrals of this tensor over
space-time. However, if we sum values of T, at different points we are summing
contributions that transform differently under coordinate transformation so the
result is not a tensor anywhere.

This problem has been solved by Synge (9) and by De Witt & Brehme’s use
of bi-tensors (10). The basic idea here is to consider geodesic tracks from some
chosen point x at which we want the sum tensor. The tensors 7',,(x") are
transported parallelly to x along these tracks thus becoming tensors at x. Finally
they are added to form the sum (or integral ) tensor whichisatensor at x. Integrals
of tensors depend on the tensor field throughout the volume of integration and
on the point at which the integral is to be a tensor.  Using this technique De Witt
& Brehme (10, 11) and independently Lichnerowitz (12) have developed the
theory of vector and tensor Green’s functions (sometimes called propagators)
for linear differential equations in curved spaces.
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(2) The solutions of the non-linear general relativistic equations are non-
linearly dependent on the sources T',,. How then can we hope to find expressions
which are merely sums over the sources of inertia? Surely in any non-linear
theory the fact that body A is affecting body B will influence the effect that C has
on B and in the resulting mess it will be impossible to say which bit of the inertia
sum comes from what body.

An ingenious way out of this mélée was chosen by Hoyle & Narlikar in the
development of their ideas on inertia (3). 'They find the effect of each mass
in the presence of all the others by assuming that inertial effects add linearly
when they are considered as propagated over the space-time geometry as it
actually is. In Einstein’s theory and in the theory of Hoyle & Narlikar this
geometry is curved by the matterinit. 'The propagator of the inertial influence is
dependent on the geometry and is thus implicitly dependent on the sources
of inertia. 'The inertia integral though explicitly a linear sum over the sources
is implicitly non-linear, being dependent on the sources a second time via the
propagator for the geometry. Such a theory is linear over the self-consistent
geometry. It is the first aim of this paper to show that conventional general
relativity is such a theory.

3. Basic idea. Notationally it is unfortunate that geometry, gravity and
Green’s function all begin with G. We shall use G for the constant of gravity,
g, for the metric tensor but G_,, G, etc. we will reserve for Green’s functions.
This leaves us short of asymbol for the Einstein tensor.  Since geometry curvature
is involved C is natural but Weyl has already used it for his conformal tensor

so we use K, for the Einstein tensor. Einstein’s equations are

. R, —%g,R=—8xGc2T,,. (1)
We are writing
. . KquRuv_'%gan (2)
so Einstein’s equations are

K, =—8xGc2T,,. (3)

Our first aim is to produce an explicitly linear theory of gravity which is
implicitly non-linear and coincides with Einstein’s theory. For pedagogical
reasons I shall here produce such a theory out of a hat and shall give the details of
the construction of this theory in the next section.

We define the Einstein operator E, ,°" which acts on symmetric tensor
potentials ¢,

E,°$,=[3g)Vi+ g R}~ $g°"R,,,~ 38, R° "+ 1Rg 8% b, (4)

Round brackets about indices denote symmetrization, see equation (42). It
will be seen that this covariant differential operator is symmetric in the indices
o7 and in pv and that E . is symmetric for the pairwise exchange of o and pv.
Also v/=gE,, ., is self-adjoint and the operator reduces to $V? acting on ¢,
whenever the space is empty. It does not contain the Riemann Christoffel
tensor explicitly. It is simple to verify that the Einstein operator acting on
—g,, yields the Einstein tensor that is

Euch( _gO'T):KﬂV' (5)
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Einstein’s equations may therefore be written
E ' (—-g,.)=—87Gc2T,,. (6)

We have now demonstrated that —g_, is a solution for ¢, of the differential
equation
E, ¢, =—8xGc2T,,. (7)

Following the extensive discussions of De Witt and Lichnerowitz we shall assume
that the Einstein linear operator defined in our Riemannian space possesses a
unique retarded Green’s function or propagator ¢ ..(x,x’). This will be a
second order tensor density of weight £ at each of the points xand x” and will satisfy

E/J,va?gofx'([;' == Sﬂgux'gwp'84(x’ X,) (8)

and the retarded condition that ¥, is zero whenever the point x lies outside
the future light cone of the point x’. In equation (8) 8%(x, x") is the four dimen-
sional Dirac 8 function for the points x and x” which is a tensor density of weight
% at each of x and x’ and g, are the bivectors of parallel geodesic transport
between x and x' defined by De Witt & Brehme (10). Z*, may be loosely
thought of as a substitution operator which converts and index x” at x’ to an index
p at x.  The retarded solution of equation (7) with T',, regarded as the source
of the potential ¢, is thus

Bor(X) =G f G5 ) TH¥ (x') db . (9)

The integration is taken over all space but owing to the properties of ¥ it
may be reduced to integration over the past light cone of the point x and its
interior.

To verify solution (9) apply the Einstein operator. On the right hand side
it operates only on the Green’s function since it alone is dependent on x. Thus

E, ", =Gc2 f E, o9, T dy. (10)
But this reduces by virtue of the definition of the Green’s function to
B, o7, = —8nGc? f 2, 8y TV B4(%, X') di’. (11)

But g =g,  when x=x' so by the property of the § function
E, ¢, =—8xGc2T,, (12)

which is the equation (7) that we set out to solve. Expression (9) is the only
retarded solution of this equation which does not involve extra free waves so if
we want a solution which is physically caused by the sources T, it must be
identified with ¢.,; but our Machian philosophy requires that g_, should be
physically caused by T',, and —g,, obeys the differential equation; so in any
Machian universe

8, =Ge [ @, T B8y (13)
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This remarkable integral for the metric tensor contains Einstein’s equations
for they may be recovered merely by applying the Einstein operator and the
analysis of equations (10)~(12). However over and above the differential
equations it contains a causality boundary condition and explicitly demonstrates
how each element of metric arises from its source by means of the retarded
propagator. 'The domain of integration in equations (9) and (13) is over all
points belonging to the past of timelike or null geodesics through x. One may
remark that if we have a universe which satisfies Einstein’s equations and which
satisfies equation (13) for all that part of space-time that lies in the past of a given
complete spacelike section of space-time, then that universe satisfies our Mach
condition (13) in the whole of space-time. By pushing our spacelike surface
back in time we see that we may regard equation (13) as a condition on the singu-
larities at the start of the universe or for non-singular universes as a condition
on the infinite past.

The general solution of the linear equation (7) is given by equation (9) together
with an additional free wave solution of the homogeneous equation

Euv‘” o"r=0’ (14)
The latter could be written as a surface integral of Cauchy data. Mach’s principle
could then be expressed as the vanishing of this surface integral. However
when this past surface is singular as it is in most cosmological models I find it
awkward to formulate the criterion in that manner and consider that equation
(13)isto be preferred. Equation (13), together with the equation (8) that defines

the Green’s function, is an integral for the metric in the same way that Poisson’s
integral

r
1= [6 L o, (15)
is a solution of Poisson’s equation in Newtonian theory.

We have justified the addition of solutions of Einstein’s equations provided
we first freeze the geometry to be the one we finally end up with and we have
shown how this quasi-linearity may be used to express Mach’s principle that the
whole metric of space-time is caused by the pieces of matter init. In this respect
conventional general relativity has the same properties as the theory of Hoyle &
Narlikar. Infactone may consider the space-time as being constructed progres-
sively like a wave. The influence of matter propagates out to make space and it
is that space over which the later influences propagate to make the space at a
later time. One is tempted to ask ‘Is there a Huygen’s principle for space?’
and then ‘ What else would it mean if there were?’

4. Construction of a quasi-linear theory equivalent to Einstein’s. We shall try
to construct the simplest possible linear field theory of a second order symmetric
tensor field of a zero rest mass particle in a Riemannian space. To do this we
shall be guided by three analogies.

(i) Maxwell’s electrodynamics;
(ii) Einstein’s theory linearized about flat space;
(iii) Einstein’s theory linearized about a given Riemannian space.

We shall concentrate our attention on the relationships between the potentials
and the fields.
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Electrodynamics. 'The fields are summarized in the field tensor F,, which
possesses the symmetry

Fu.v= _Fvu (16)
and satisfies the Maxwell equation
Fuv,0+Fau,v+Fva,u,=O’ (17)

where, o denotes ordinary differentiation with respect to x°. 'These relations are
the necessary and sufficient conditions that F,, can be expressed as the skew
derivative of a potential 4, i.e.

F,=4,,-4,,. (18)

General Relativity linearized about flat space. In Einstein’s theory linearized
about flat space the flelds are summarized in the Riemann Christoffel tensor

R, ., which possess the symmetry
Rm\p.v= —-RK/\VH. (19)
and satisfies the linearized Bianchi identity
RK/\ [LV,O‘+'RK/\ u’u,v+RK/\ vc,uzo' (20)

These relations are by analogy with Maxwell’s theory necessary and sufficient
conditions for R, ,, tobe expressible as the skew derivative of a potential 4, , i.e.:

R A — A, e (21)

However in the above we have been unfair on the indices kA which have equal
standing with the indices pv in the Riemann tensor by virtue of the further
symmetries

xAp.v= KAtis ¥

RK/\ av= _R/\K ny (22)

RK/\ u.v=Ruv KA* (23)

From these we may deduce that the Riemann tensor may also be expressed as a
skew derivative on the other pair of indices.

R 4 A 4

uvic, A Ap.w\, K (24)

This form suggests that R,,,, is expressible as a double skew derivative in the
sense that 4,,, is itself the skew derivative of a second order tensor potential
A4, 1e.:

Ki

K/\uv= KAps v KAVs [ =

AK/\;J.:AKu,A—A/\u, K* (25)

In fact this can only be so provided R,,,, possesses its familiar cyclic symmetry
because substitution of equation (23) into equation (21) produces only tensors
obeying

Rt R+ Ry =o0. (26)

Inpracticeitis well known that tensors satisfying all the symmetries of the Riemann
tensor and the linearized Bianchi identities can be expressed in the form

R A

KAuv

KA V_AK/\V, u? (27)

KAuv=

where
Am\uz - %(ngu,v\—Sg/\u, K)' (28)
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Thus the symmetries plus the linearized Bianchi identities are necessary and
sufficient for the existence of a second order tensor potential of the Riemann
tensor. Furthermore in thelinearized theory that potential is 8¢, or alternatively
N ut0g,., Where 9, is the Minkowski space metric tensor. In either case the
connection between the fields R,, , and the potentials 4, is

- 2Rm\p.v = (Axu, AT A/\u,x), v (AKV, A _An‘\l',K)) u* (29)

It is interesting to point out here that the same theory is obtained by Fierz &
Pauli in their discussion of zero rest mass spin two particles (x4). In their case
the equations are supplemented by the gauge condition (4,,—%4y,,y*=o0.
"Thisis the normal gauge condition for general relativity linearized about Minkowski
space and it is known as the Hilbert-de Donder condition.

Fierz & Pauli (14) write down the Lagrangian or Action density for these
field equations and one way to proceed is to adopt their Lagrangian, generalize it
to curved space by replacing ordinary derivatives by covariant ones, and so
deduce the form of the theory in a general Riemannian space. However such a
theory only reproduces the linearized Einstein equations when the curved back-
ground Riemannian space is empty and it is impossible to make a quasi-linear
theory of Einstein’s equations in non-empty space on this basis alone. We shall
eventually find such a basis by studying the relationship between the field and
the potential in general relativity linearized about a general Riemannian space.

Generalization to curved space-time. It is natural to generalize expression (29)
by turning the ordinary derivatives into covariant ones; however this procedure
fails on two counts one trivial, one fundamental. Firstly a straight replacement
of ordinary by covariant derivatives yields a tensor without the right symmetries
because the covariant derivatives do not commute. This objection is trivially
circumvented by taking the skew derivatives in either order and averaging the
results. (We obtain by this means the same theory as the generalized Fierz—Pauli
case alluded to above.) The more fundamental objection is that the resulting
field tensor does not satisfy the Bianchi identities identically because the covariant
derivatives involved in the statement of the Bianchi identities do not commute
with those in our trial expression for R, ,,.

Failure due to non-commutativity leads us to try adding terms that arise
from the commutators of derivatives. We therefore consider terms of the form

Re ,,A4.,. The combination of such terms with the symmetries of the Riemann
tensor is A, ,, where
Am\y.v—R /\uvA REKMVAAE+REVKAA;LE R um\A (30)

It is natural to add a multiple of A to the generalization of expression (29) just
proposed and so to try a field tensor of the form

m\uv i[(A Au x) (An:v; /\—A/\v;x);u
+ (Axu;v_Axv;u);/\_ (AI\M;V—A)W;M);K] +aA'm\nv' (31)

Expression (31) still fails to satisfy the Bianchi identities identically, but it does

so trivially when 4,,=g,, for then A, ,,=4R,,,, so we merely take a=}.
Seen from the point of view of general non-linear theories our failure to find

a linear covariant relationship between the fields and their tensor potential is

29
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easily interpreted. 'The Bianchi identities are a self-consistency condition on
the Riemann tensor of a certain space and knowledge of that space is necessary
before we specify the meaning of the covariant derivatives appearing in the
Bianchi identities. Our attempt to find a covariant expression for the field
tensor R,,,, in terms of the potentials 4, , would lead to a solution if the covariant
derivatives were with respect to 4, , regarded as a metric tensor. The Bianchi
identities are true of the field tensor if it is the Reimann tensor of the metric in
terms of which the Bianchi identities are stated. Seen in this new light we only
want to satisfy the Bianchi identities with respect to the self-consistent metric
(that is with respect to the potential regarded as a metric tensor). General
Relativity linearized about a given metric does precisely that, and the connection
between field and potential is again expression (31) with a=}. We now show
this in detail because we are going to base our theory on this connection ; but first
a word on our basic philosophy.

We want a quasi-linear theory of gravity. 'To this end we are studying linear
tensor theories in curved spaces; pedagogically it is extremely awkward that the
only successful theory of this sort is Einstein’s theory of gravity linearized about
a curved space. In what follows the fields and potentials should be regarded
not as being Riemann tensors and metrics but as the natural fields and potentials
in terms of which any zero rest mass spin two theory in a curved space would be
described. We are trying to solve the problem of Fierz & Pauli in a curved space
and we are looking to a particular linear theory as a guide. The fact that this
theoryisitselfa theory of space-time and gravity is unimportant although we use the
standard relations for the deduction of the form of the linearized Einstein theory.

General Relativity linearized about curved space. We consider two neigh-
bouring Riemannian spaces with metrics g, and g,,+8g,, on them. We note
that 8g,, are not physical quantities on account of the freedom of coordinate
choice sanctioned by General Relativity. In the present instance this choice has
to be made twice, once to choose the coordinates on the unperturbed space and
again to choose them on the perturbed one. We have already forgone some
freedom by dictating that 6g,,, shall be small but this only ties down our coordinates
to within an arbitrary small transformation. We shall show later that by suitable
choice of such transformations we may without loss of generality demand that the
dg,, are subject to certain subsidiary or gauge conditions. However, for the
present our analysis will be unrestricted by such conditions. Thus we can
create a 8g,,, on a given space by merely changing our mind as to what coordinate
system we will use and we can if we want generate waves in the 8g,, which travel
with the superluminous speed of Eddington’s thoughts.

When we compare two neighbouring spaces some such waves will normally be
present in the 8g,, as well as changes due to the physical difference between the
spaces.

The Riemann Christoffel tensor is defined by

Rey= =T, + 1%, + T T, =T Ty, (32)
where
U= 3848k at &rm x— & u): (33)
From these expressions it follows that
ORy,, = — (81'%,,),, +(81,)... (34)
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and that
SPEA.U.=%gsg(sggz\;u-}_agéﬂ;A“Sghu;g)’ (35)

where semicolons denote covariant differentiations in the unperturbed space.
Further

SR KApy =gK€8R€I\uV + Rez\uvagxe (36)
and so
1088 s 08— 08k =08 erins v — O s s T O nu; s v
aRW={2[g Ay +1§a AS; | i in— 08 casusy — O kusasw T O&au; s ]} (37)

Making use of the commutation relation for covariant derivatives and the triple
symmetry of the Riemann tensor one may re-express this in the form

8Rlc/\:.w=F‘m\uvmﬁaaﬂ (38)
where F,,,,*# is the covariant differential operator defined by
Fx)wvas: - %(DK/\uvaB_I—Bm\ﬁvaﬁ) (39)

where D, ,,*# is the covariant differential operator of double skew differentiation
l)m\uvo“9 = z(g(ﬁgg)v(vv)l) —g(ohtgﬁ)v(vvx) —g(zge)v(uvzl) +g(?\‘g€)v(uvx)) (4‘0)

B

and
K/\uvaB = - R(?\‘u.vgg) + R(iuvgﬁ) - R(% K)\gﬁ) + R(zm\gf)‘ (4‘1 )

V, is the operator of covariant differentiation with respect to #” and round brackets
about indices denote symmetrization in the sense

Qup=2(Dap+ Qpa)- (42)

From their definitions we see that

DK/\uvaﬂgaB=o (4‘3)
and
- iBKAuvaﬁgaB=Rm\uV’ (44‘)
Thus
FKAuvaﬁgaB=RKAnv (4‘5)

and since F is a linear operator we have from equation (38)
FKAp,VaB(gaB_I_SgaB)=Rx/\uv+8Rm\p.v' (46)

Thus for all metrics 4,, in the neighbourhood of the metric g,, the expression
F ,.,*FA,, gives the Riemann tensor and thus identically satisfies the self-
consistent Bianchi identities. By the last phrase we mean that the covariant
differentiations in the Bianchi identities are taken with 4, as the metric tensor.
This property together with the way the same operator naturally arose in equation
(31) picks out the operator F, ,,*? as the natural operator to apply to the potential
to obtain the field.

In the next section we deduce the generalized Hilbert-de Donder covariant
condition as the most natural gauge condition to be applied to our potentials 4 ,.

29*
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The slightly new discussion probably has some interest but some may consider
the most cogent reasons for adopting this condition are that

(i) It is the natural generalization of that of Fierz & Pauli,

(i) Itis the natural generalization of that used in comparing general relativity
with Newtonian theory,

(ii1) It greatly simplifies the Einstein operator.

Those not interested in a more detailed discussion of gauge conditions should
skip to equation (57) and assume the validity of equation (56).

Gauge conditions. For contact with physics it is desirable to have our theory
expressed in terms of physical quantities. 8g,, is not such a quantity. We can
only obtain a physical tensor 8g,, if we first decide which point in the perturbed
space corresponds to any given point in the unperturbed space. Then by
giving all corresponding points the same coordinate labels we shall find that
38g,; has physical meaning.

The same coordinates. We consider first how to specify the ‘same ’ pointin two
neighbouring but physically distinct spaces. We shall use the term ‘identical’
in the sense used for identical triangles in geometry. When the two spaces are
identical but are described in terms of slightly different coordinates, our problem
has been solved by the use of Lie derivatives. In our case the Lie derivatives
cannot be made zero because the spaces are not identical. In some sense the
Lie derivatives must be made as small as possible but to my knowledge the problem
has not been solved by the pure mathematicians. I shall take a physicist’s
short cut as follows.

First set up any coordinate system x* on the unperturbed space with metric
g.,» Then take any neighbouring coordinates x’# on the second space (metric
g ,,) and define 8g,, =g, —g',, where ¢’ and g, are evaluated at points x’, x
with the same coordinates i.e. X' =x. It would be both coordinate dependent
and stupid to regard such points as ‘the same but in the two spaces’. To fix
our ideas consider the trivial case when the two spaces are identical. One
possible g’ is then g, and it is our aim to ensure that we use this desirable metric
in the dashed space. Had we made the desirable choice we could force the dashed
space to fit the other, in the sense thatall points with the same coordinates coincide,
without any physical deformation (i.e. strain). In these circumstances it is
reasonable to regard points with the same coordinates as the ‘same’ points but
in the different spaces. However, with an undesirable choice of coordinates a
significant straining of the dashed space will be needed to force points with the
same coordinates to fit their counterparts in the unperturbed space. Let us
suppose we have some coordinate invariant strain index I which measures the
amount of this straining. I will be a functional of g’,, and g,,. Now we try to
reduce the strain index by changing our coordinates on the dashed space. Since
the spaces are in fact identical it will be possible to reduce the strain and the
strain index to zero. Thus we may discover the desirable coordinates in the
dashed space by minimizing the strain index. The advantage of this detailed
procedure is that it can be carried out in general when the spaces are not identical.
Minimizing the strain index with respect to all choices of coordinates in the
dashed space, leads to a coordinate system corresponding to that chosen for the
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unperturbed space. Furthermore using this system we may regard points with
the same coordinates in the two spaces as the ‘same’ point in those two spaces.
This identification is invariant under changes in the chosen coordinates in the
unperturbed space due to the invariance of the strain index.

Consider a small element of interval ds joining two neighbouring points
P, Pyintheunperturbedspace. Inanychosencoordinatesystemonthe perturbed
space there will be two points P,’, P,’ with same coordinates as P; and P,. The
strain involved in forcing P, and P, into coincidence with P;, P, is the increase
in interval per unit interval.

ds—ds' . g dx'rdx' "\ . (8ap— ‘b‘gaB)abc‘"a'xﬁ)”2
ds < g, pdx>dx? ) B ( g, gdx>dx®
dx> dx?

=1 -
28gaB ds dS . (4‘7)

We compare this with the formula for strain in elasticity

dxt dxd
e e 8
“ds ds (48)
and are lead to regard 48g, , as the strain tensor involved in forcing the coordinates
and spaces to fit. We need an invariant strain index based on this strain tensor.
The simplest such invariant is the dilation of the strain integrated over the
whole space; that is

I= f 100,488 (— g Y2 dix’ (49)

I is actually the change in 4-volume because

192.08°P=8(v=8)|V —¢ (50)

In all our applications our two spaces only differ due to a localized disturbance.
Far from this disturbance the spaces may be taken to coincide. Under such
boundary conditions we shall show that: '

(i) 8I=o0 leads to a unique choice of coordinates in the dashed space

corresponding to each choice on the original space.

(ii) When the spaces are identical so are the coordinates.

(iii) The covariant relative coordinate condition is the natural generalization
of the usual Hilbert-de Donder condition.

(iv) This condition greatly simplifies the mathematical form of the Einstein
operator.

(1)-(iv) gives us some confidence that our choice of strain index is the most
natural one but we do not claim to have proved it is the only possible or reasonable
choice. Tofind the equations for the minimizing 8g_, we make a small coordinate
transformation away from the minimizing coordinates x’ and denote the resulting
changes by the symbol §,

5=} f 2.01(¢ /=) d'x’ — } f 51(¢ s 5V =F) diu.
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The second integral vanishes owing to the invariance of the 4-volume to
coordinate change. Following Schrodinger (15, p. 98) the first integral may be
put in the form

8,0= %f(ga,s — 38 0p8 ""8,)00 (g )V g A (51)

The condition that §,/=o0 for all §,(g’*#) that arise from coordinate transfor-
mation leads as usual to the equations

V)18 78— 18 up8 *8)] =0
But
V., [g7(8 p— 38 p8 8 )] =0

and hence on substracting

V18708 0p— 28 op8™ 08, )] = 0. (52)
If we define
Oy = g0 ue— 28.°08,,8" (53)
then to first order in § equation (52) reads
Vs (@y.f)=o. (54)

These are the generalized Hilbert-de Donder conditions.

The mathematicians will still require a uniqueness proof. Assume there
are two 0g , called 8'g,; and 6%,,. 'Their difference 6%¢,,— 5%, will be due to
a small coordinate transformation in the dashed space and hence

82ga3_81gaﬁ= Va,gﬁ—I— Vﬁ,ga

where x'—>x" + £ is the small coordinate transformation. Since ¢ is already small
the dashes on the covariant differentiations may be dropped to first order in 8.
Now by hypothesis 8'g,, and 5%, both satisfy the Hilbert-de Donder conditions
and both vanish atinfinity so their difference must also have this property. Hence
£ must satisfy

VAZPIVis+ Vifa— 388" (VE,+ V.6 )] =0

V.,V Er+ VYV £ —V (VEE )=0

that is

ie.
VrV €.~ R;€ =0 (55)

which is the vector wave equation in the curved space. When this has a unique
solution our boundary conditions that § must vanish at infinity will ensure that
E=o.
The gauge condition
V(A4S -$g2d)=o0 (56)

where A=g# 4, is satisfied when 4,,=208g,,. It is also satisfied trivially when
A 5=g,4 and so it is satisfied when 4 ,,=g . +08g,. All potentials in our quasi

linear theory will be subject to gauge condition (56).
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The field equations. Our potentials are related to the fields by
sz\uvaBAaﬁ:Rm\yv' (57)

Einstein’s equations tell us that the fields are related to their sources by
(gwg/\ygf -3 Kvgybg/\u)Rm\av= Rm - %g,\“R = K/m = —8nGcT,, (58)
thus our potentials are related to the sources by
K, #A,,= —87Gc=2T,, (59)
where the differential operator K, *# is defined by
K ®=(8)78,°— 3878008 F - (60)
The detailed form of K, *# is found from equations (39, 40, 41 and 60)
Ky P A4,5=
[~ $((8°%0,—868R) V2 +8EVIV )~ 80 Vi Vi — 82, VEVP 20V, VB’)] y

+ 3 (R%,P + RGgR — R*¥g,,) “
(61)
oo V2 4 gBRN _1o#8R  _1owR 4 loWby R
818, +& 4 8V Ryt 1878
={2 a8 —[2:8 %L)Vﬂ)] T2 Tap T A5 S }(Aap—%—ga,ed). (62)

It appears that both our gauge condition and this operator look simpler when we
adopt the new variable
an,BEAaﬂ‘_%gaﬂA‘ (63)

In future we shall regard ¢,, as our potential. The following relations are
useful for translation from A4 language to ¢ language.

When
A.p=8.pthen ¢ .= —g.; (64)
Aop=bap—38up$ (65)
$=8%b.5=—4. (66)
The gauge condition is
Vg =0 (67)

and as a result of this condition

K MaBA ag = E A“aﬁqg af (68 )
where

E/\;.Lozﬁ = %ga(/\gu)ﬁ V24 %(gﬂ(uR/\)a +ga(uR/\)ﬂ - Rz\ugaﬁ = Raﬁg.\p,) + %Rgasgm- (69)

We have at last reached the Einstein operator of Section 3. Equations (68) and
(69) show us that Einstein’s equations may be written

E,\u“ﬂgéaﬁ = —8nrGc~2T,, (770)

it is readily verified that ¢ ,= —g_; satisfies these relations as well as the gauge
condition (67). We have therefore derived the quasi-linear theory required
in Section 3. '
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5. Programme to determine which universes are Machian. For the Robertson—
Walker universes and possibly also for Godel’s universe it seems possible to
carry out the following programme:

I, take the metric in some suitable coordinates and write out the form of the
Einstein operator (4);

I1, solve equation (8) for the Green’s function;

ITI, discover whether equation (13) holds for that universe. It is interesting
to note that equation (13) will determine the size and sign of the constant of
gravitation if the matter distribution for space-time is known. This follows
because the constant of gravitation is involved only on the right hand side.

It is probably no easy matter to carry out this programme and it may turn out
that our Mach condition is so restrictive that no universe satisfies it. However
even if the mathematics is hard the problem of which universes are Machian is
one that will be raised so long as enquiring minds exist and must be of considerable
philosophical import.

6. Comment. The uniqueness of the theory as presented may readily be
calledin question.  The choice of strain index was supported by strong arguments
of expediency and mathematical simplicity, but it is by no means clear nor even
likely thatanother choice of strainindex, equally simple after its own fashion, would
give the same Mach condition. The whole theory leading to our choice of linear
operators is to some extent arbitrary though we have tried to make the simplest
and most analogous step at every cross roads. 'The theory as presented ends with
a highly symmetrical self-adjoint Einstein operator with the added bonus that it
does not involve the Riemann tensor but only the Ricci tensor. These happy
coincidences lead us to believe that we have taken the right path. It is simple to
modify and complicate the theory for those who believe that the fundamental
law of gravity contains a non-zero dimensionful cosmical constant. The term
AglogD must be added to the Einstein operator and the rest of the theory is
unchanged. However, in my mind such a step is no better than the introduction
of an unobservably small mass to the photon with the resulting change in Maxwell’s
equations. Since the latter change is taken seriously by almost no-one I don’t see
why the cosmical constant is taken as sensible. Perhaps cosmologists have had too
small a subject in the past and have needed more cases to explore which are still
simpleenoughtosolve. Howeverwereitshown thatonly if the cosmical constant
had some particular value would the universe be Machian, then a theory with that
value of the cosmical constant would be attractive. I gather it was this belief
that led Einstein to introduce the cosmical term.

Finally, comparison with Wheeler’s formulation of Mach’s principle in terms
of the closure of space-like hypersurfaces, shows that we have chosen what is
perhaps an unnecessarily strict interpretation of causality. We have demanded
a whole formulation of Mach’s principle in terms of Green’s functions strictly
within and on the light cone. As Wheeler points out a formulation in terms of
the closure of space like hypersurfaces is ‘ ostensibly instantaneous’ but can
yet be made causal in the sense that all events can be traced to causes within their
lightcones. Perhapsitwould be rational to call our stricter postulate Berkeley’s
principle . :

It seems to me likely that our strictly causal interpretation will imply that the
whole of space-time will be in or on the light cone of any of the elements of matter
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taking part in the initial singularity of the universe, but at present this is only a
guess. Penrose’s electrodynamic paradox (x6) casts interesting light in that
direction.

An approach to Mach’s principle very different from that considered here
has been proposed by Dicke (17).

Two doubts arise, firstly it is not obvious that our Mach condition will be
obeyed by any metric, and secondly must those that do so have a + + +—
signature ?
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Note added in proof.—The reader’s attention should be drawn to a similar
article just published in the Russian Journal for Experimental and Theoretical
Physics 51, 1143, 1966 by B. L. Altshuler. A theory similar to that developed
here is presented and it is shown that the nature of the singularity of the
Friedmann universe violates the resulting Mach Principle.

Although the operator corresponding to our Einstein operator is of a different
form with fewer symmetries, nevertheless it seems likely that the discussion of
the singularity will be little changed by this. In fact it may be that the Freidmann
universe cannot be Machian in any theory of the type considered here. This
would be in line with Penrose’s suggestion that perhaps all theories of this
type might agree as to which universes were Machian.

Further comparison of the authors work with Altshuler’s must await the
translation of the latter. It is remarkable that just as the observed low helium
abundance in high velocity stars is leading to difficulties in big-bang cosmologies
the basis for those cosmologies is being found to be unsatisfactory.
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