
International Journal o f  Theoretical Physics, Vol. 15, No. 11 (1976),  pp. 801-807 

Christoffel Symbols and Inertia in Flat Space-Time Theory 

J. KRAUSE 

Departamento de Ffsica Aplicada, Facultad de Ingenieria, 
Universidad Central de Venezuela, Caracas, Venezuela 

Received: 10 June 1975 

Abstract 

A necessary and sufficient criterion o f  inertia is presented,  for the  fiat space-time theory 
of general frames o f  reference, in terms of  the  vanishing o f  some typical componen ts  of  
the affine connect ion pertaining to curvilinear coordinate systems. The physical identifica- 
tion of  inertial forces thus arises in the  context  of  the  special theory o f  relativity. 

1. Introduction 

In this paper we examine the fundamental concept of inertia in the special 
theory of relativity, adopting for that purpose the broader scope of the principle 
of general covafiance. It will be shown that, provided space-time is flat, the 
vanishing of the components P/ou(X v) of the Christoffel symbols I represents 
a necessary and sufficient condition for the system of coordinates (x v} to 
define an inertial frame of reference. Some consequences of this will also be 
briefly discussed. 

It is today firmly established (even for the special theory) that we must 
look upon Einsteinian relativity as the geometry of space-time interpreted 
from the standpoint of physics [see, for instance, Synge (1969), p. 34]. 
Accordingly, we essentially consider special relativity as the theory of fiat- 
space-time. 2 Indeed, following this approach, one states the geometric character- 
ization of Minkowski space-time by requiring a vanishing Riemann-Chfistoffel 
curvature tensor everywhere on the relativistic manifold. Physically this means, 
of course, that one leaves out genuine gravitational phenomena. 

1 In this paper Greek indices ~, ~, h . . . .  run  over 0, 1, 2, 3, and Latin indices i , j ,  k . . . .  
over 1, 2, 3; thus  we write (x tz) = (x ° ,  xi), with their usual  meaning.  

z The name "general theory of  relativity" is usually reserved for Einstein 's  theory of  
gravitation; for example,  cf. Synge (1964, 1965), Tolman (1934). However, M¢ller 
(1952) considers "general relativity" as the theory of  space-time (flat or curved) when  
handled in a generally covariant manner .  
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As is well known, as a consequence o f  flatness there exist rectangular 
Cartesian (namely, Galilean) coordinates, which are preferred coordinates in 
special relativity only because handling them is simpler; that is, the metric 
tensor in terms of  the Galilean coordinates becomes the Minkowski metric 
throughout space-time. It is obvious, however, that flat space-time geometry 
is a generally covariant theory, for the vanishing of  the Riemann-Christoffel 
tensor is a generally covariant feature. Thus, general transformations o f  coordi- 
nates are quite permissible in special relativity (as in any theory whatever) 
since, in effect, the principle of  general covariance has a purely formal character, 
being devoid by itself of  any physical content. 3 

The geometric, as well as the physical, simplifications afforded by the use 
o f  Galilean coordinates are naturally due to the fact that every rectilinear 
coordinate system a defines an inertial frame of  reference in Minkowski space- 
time. We must here remark that in the present paper we do not identify the 
concepts of  "coordinate system" and "frame of  reference"; rather, M~ller's 
subtle distinction between these two notions will be adopted throughout 
[cf. M~bller (1952), Chap..VIII]'. From this point o f  view, while each space-time 
coordinate system (satisfying some very broad causality conditions) s corresponds 
to one, and only one, physically realizable frame of  reference, the converse 
does not hold. Indeed, we can obviously introduce an infinity o f  different 
coordinate systems attached, nevertheless, to one and the same physical 
frame. As we know, this is done by means o f  internal transformations of  
space-time coordinates, in M~bller's sense [see M~bller (1952), pp. 248 ff.]. As 
a matter of  fact, it is important to remark that these internal transformations 
leave invariant the spatial 3-geometry determined in a particular frame by 
means of  standard rod measurements or, equivalently, by means of  standard 

6 clock and closed light ray trip experiments. We finally recall the fact that the 
set of  internal transformations o f  space-time coordinates, attached to a given 
frame of  reference, form a special group of  continuous transformations. 

2. A General Criterion of lnertia 

It is clear that most allowable curvilinear coordinate systems we introduce 
in fiat space-time correspond to accelerated frames of  reference, while, con- 
versely, the study of  accelerated frames requires the use of  curvilinear coordi- 
nates. 7 Therefore the considerations stated in section 1 should not mask the 

3 This point was first emphasized by Kretschmann (1917); and Einstein (1918) also 
concurred in the remark. See also Tolman (1934), p. 168. 

4 I.e., coordinates obtained from a Galilean set by means of linear transformations. 
s These are discussed, for instance, by Landau and Lifshitz (1962), pp. 271 ff. 
6 The formal proof is given by M¢ller (1952), Appendix 4, pp. 374 ff. 
7 A very exhaustive study on the accelerated frames of reference in flat space-time theory 

can be found in Heintzmann and Mittelstaed (1968). The literature on this issue is 
rather extensive; the reader not familiar with the literature may profit from papers such~ 
as Hill (1951), Romain (1963, 1964), Marsh (1965), etc. Perhaps the best single intro- 
duction is in M¢ller (1952), Chap. VIII. 
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very special role fulfilled by the Galilean coordinates in flat space-time theory. 
Rectilinear coordinates are clearly not the only coordinates able to define 
inertial frames. However, this kind of coordinates provide us with the simplest 
direct criterion o f  inertia, since with them (and only with them) the Christoffel 
symbols vanish, which means that there are no inertial forces acting on a free 
particle, s 

Any kind of nonlinear coordinate system gives rise to some nonvanishing 
components of the affine connection, which may or may not correspond to 
inertial forces. This means that fiat space-time curvilinear coordinates do not 
provide us with a direct criterion for probing mathematically the inertial, or 
noninertial, character of  the frame they define. Furthermore, if  it so happens 
that the frame is an accelerated frame of reference, then there is no internal 
transformation of coordinates able to eliminate all the components of the 
Christoffel symbols; i.e., inertial forces, if present, cannot be removed by 
means of internal transformations of coordinates. Thus, in the spirit of the 
principle of general covariance, the problem arises quite naturally as to how to 
characterize inertia in terms of curvilinear coordinates in Minkowski space-time. 

Let us then search for a general criterion of  inertia. We will first briefly 
recall the concept of an internal transformation. We assume S and S' to be 
physical reference frames, i.e., reference frames that can be realized with the 
aid of real bodies, defined by the systems of  allowable coordinates {x u } and 
{x'U}, respectively. We denote this fact by writing, quite generally, S{xU} 
and S'{x'U}. In most cases, the reference frame S will be different from the 
frame S'. However, if the transformation of coordinates relating the system 
{x ~z } with {x'U} is of the form o f  an internal transformation, namely, 

x ,o = x,O(xO, x ]) (2.1 a) 

x 'i = x ' i ( x  ]) (2.1b) 

the systems of reference S and S' are identical [cf. MNler (1952), pp. 248 ff.]. 
The physical meaning of such transformations is immediate: Equation (2. i a) 
entails an arbitrary redefinition of the synchronizations of the clocks used in 
the frame of reference, while equations (2.1b) correspond to the introduction 
of new space coordinates in that frame. 

Now, we consider an inertial frame of reference/, say, with two attached 
systems of coordinates: {xU} and {x'U); that is, we have I{xU} and also I{x '"} .  
Assume the set {x~} to be a Galilean set, while {x '~} is a set of curvilinear 
coordinates attached to I. Thus, by hypothesis, an internal transformation 
scheme relates both sets, as in equations (2.1), say, and its inverse: 

x o = XO(x ,o, x'J) 

x i = Xi(xq)  (2.2) 

s This point has been already discussed by Gomberoff et al. (1969). 
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Since the set (x u } is Galilean, we have P~Ux(x) = 0, and therefore the Chfistof- 
fei symbols of the second kind pertaining to the curvilinear set {x '~ } are given 
by 

P ~  (x') = (3x'U/3x p)(32xP/3x'V3x '~) (2'.3) 

i.e., more explicitly, the following obtains: 
1 0 /  t , ,  Pvx(x ) = (Ox'O/3xP)(32xP/3x'V3x 'x) 
Pi t Pou(X ) = 0 (2.4) 

v;~(x') = Ox'~/ox m )O 2xm/Ox'i0x 'k) 

Moreover, one readily observes that, in any system of coordinates (x 'v } (not 
v i r necessarily attached to an inertial frame) the Pov(X ) components of the gamma 

symbols transform, under an internal transformation of coordinates 

x "° = X"°(x '°, xV) 
x,  i = x,,i(xq) (2.5) 

say, according to the following rule: 
" i  " " i  ff  tO " 0  r v , #  q i Pou(X )= (3x /3x )(3x /3x )(3x /3x )Coy(X) (2.6) 

Thus we have shown that, for an inertial frame of reference, we necessarily have 
r i Pou(X ) = 0 (2.7) 

quite generally, i.e., whatever coordinate system {x '~'} we may attach to the 
inertial flame. This is clear, because according to equation (2.6) conditions 
(2.7) correspond to an ilwariant property under internal transformations. 

We next tackle the converse problem. Let us assume that in Minkowski 
space-time we are given a set {x'~} of allowable curvflinear coordinates. Let 
then I(x ~} be an inertial frame with an attached Galilean system of coordi- 
nates, and consider the transformations 

x" :XU(x '~) 
(2.8) 

x'" = x ' " ( x 9  

We will prove that, provided conditions (2.7) hold, the set {x '~ } defines indeed 
an inertial frame of reference I' (not necessarily identical to the frame/). 

Since the set {x # } is Galilean, we have [as in equation (2.3)] 
ti  t 

Pou(X ) = (3x'i/OxZ')(3 2x~'/~x' 0 ~x'U) = 0 (2.9) 

by hypothesis. We observe that every transformation of coordinates, like (2.8) 
for instance, may be factorized into a two-step process; namely, we first 
perform a "time-preserving" transformation, of the form 

20 = x°  (2.10) 
~¢i = x , i ( x O ,  X j )  
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for which the inverse scheme is, say, 

X 0 = ~ 0  

xi = 2i(2o ' 2j ) (2.i 1) 

and then we proceed with a "space-preserving" transformation, i.e., 

x 'o =20(20 ,2] )  
x, i = 2i (2.12) 

where we properly define 

20(2  °, 2 ]) = X'°(2 °, X/(2 °, 2i)) (2.13) 

Therefore, since (2.12) is an internal transformation, we use the general rule 
stated in equation (2.6), and we get 

P ~ ( 2 )  = (32i/Oxq)(~x'°/~2°)(~x'V/O2")Pqv(x') = 0 (2.14) 

by hypothesis. On the other hand, using the transformation scheme stated in 
equations (2.10) and (2.11), the following obtains: 

f'~o~,(2) --- (a~i /~x~)(a2x~/~s:%2~') = (~sd/~xJ)O2xJ/~sc°a2 ~') (2.15) 

since the xU's are Gatilean. Hence, from (2.14) and (2.15), taking into account 
the Jacobian of(2.10), we end up with 

2xJ/O2°O2U = 0 (2.16) 

i.e., transformation (2.11) is necessarily of the form 

X 0 = 2 0 

xi = ci2O + f i (2 i  ) (2.17) 

where the C's are three arbitrary constants and the f ' s  are three arbitrary time- 
independent functions. Clearly, the velocities of the reference points pertain- 
ing to the set (2u}, relative to the inertial frame I, are given by 

dxi [ v i C i 
(2.18) 

dx 0 ] cl2J=o C 

which shows that the coordinate systems {2 ~} and, thus, (x '~ } are necessarily 
attached to an inertial frame of reference. 

3. Conclusions 

In the previous section we have shown, in the context of the theory" of 
special relativity, the following physical identification to hold: 

S {x u } E inertial frame *~ P~u(x) = 0 (3.1) 

whatever space-time coordinates we may attach to the inertial reference frame. 
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Since (3.1) is an equivalence, it is clear that the inertial forces presented in an 
accelerated flame arise entirely from the nonvanishing Pou components of the 
Christoffel symbols. It is also clear that, when working with curvilinear coordi- 
nates in an inertial frame, the components P°  v are nothing but "clock artifacts," 
while the components P~k correspond, in this case, precisely to the affine 
connection of the space metric. One immediately visualizes the following prop- 
erty of  the inertial flames: In this kind of frame the space track of the space- 
time geodesic lines corresponds to geodesics in the space 3-geometry. Moreover, 
using result (3.1), one readily concludes that this property is an exclusive 
characteristic of  the inertial frames of reference. 

We also wish here to observe that the priviliged role played by the Poincar6 
group in special relativity becomes clarified by the kind of considerations 
discussed in this paper. It  is clear that Lorentz transformations are not the 
only allowable transformations of  coordinates connecting two inertial frames. 9 
It is only when both frames are specified in the simplest manner, i.e., by means 
of Galilean coordinates, that the Lorentz transformations appear on the scene. 
Thus, from the standpoint of inertia, we conclude that the Lorentz transforma- 
tions have a twofold meaning: a0 On the one hand, Lorentz transformations 
describe a Galilean system of coordinates moving with uniform velocity 
relative to a given Galilean system, while, on the other hand, they represent 
the transformation law of length and time interval measurements performed 
by means of standard tools. 

We conclude with the remark that one should not undervalue the significance 
of the result (3.1) if one is interested at all in drawing meaningful physical con- 
clusions, while studying the accelerated frames of reference by means of the 
generally covariant tensor approach to flat space-time geometry. H 
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