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GENERAL RELATIVITY AND MACH’S PRINCIPLE
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Summary

Sciama, among others, has taken the view that general relativity has failed
to account satisfactorily for the inertial properties of matter. This paper
shows that general relativity is entirely consistent in principle with Sciama’s
ideas of inertia as an inductive effect predominantly of distant matter, and that
therefore his remarks concerning general relativity are not justified. It is
shown that general relativity provides a superior presentation of his idea of
Mach’s principle and appears to be the general tensor theory he was looking
for.

Arguments are put forward to show that general relativity may fully incor-
porate Mach’s principle contrary to Einstein’s own belief. This paper
emphasizes the fitness of the steady state theory as a cosmological solution
which permits this possibility.

1. Introduction.—A tentative theory has been presented by Sciama (), with
Mazxwell type equations, which is designed to provide a combination of Newton’s
laws of motion and of gravitation with the inertial frames determined by Mach’s
principle. In the introduction to his paper Sciama states that general relativity
has failed to provide an adequate theory of inertia. He claims that his theory
differs from general relativity principally in the following respects:

(i) it enables the amount of matter in the universe to be estimated from a
knowledge of the gravitational constant;

(ii) the principle of equivalence is a consequence of his theory, not an initial
axiom; and

(iif) it implies that gravitation must be attractive.

The chief characteristic of Sciama’s theory is that “in the rest frame of any
body the gravitational field of the universe as a whole cancels the gravitational
field of local matter so that in this frame the body is ‘free’. 'Thus in this theory
inertial effects arise from the gravitational field of a moving universe.” For
this purpose Sciama employs a scalar potential ® and a vector potential A to
calculate gravitational effects, using Maxwell type field equations in flat space-
time. ' ,

It is the purpose of this paper to show that general relativity is fully consistent
with this interpretation of Mach’s principle by Sciama, and to indicate that general
relativity may fully incorporate Mach’s principle.

2. Free particle in general relativity.—The motion of a free particle in general
relativity, when the gravitational field is weak and when the reference frame is
such that the spatial velocity of the particle is small compared with the velocity
of light, can be described by a Maxwell-type pondermotive equation. This idea
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is not new and has in fact, with limited application, been presented by Einstein
(2). But since Einstein’s derivation of the result appears to contain errors of
detail we give our own derivation here, before investigating its significance for
Mach’s principle.

" Let Latin letters indicate space coordinates running over indices 1, 2, 3 while
Greek letters cover the space-time indices 1, 2, 3, 4. The world line of a free
particle in general relativity is a geodesic in the field having equations, in a

standard form,
d(, A\ O dtde
ds\®= 45 ) T Pxr ds ds (1)
where |
ds® =g, (dx*)? + 2g,,dx*dx? + g, ,dxPdx1. (2)
For p=1 equations (1) may be written
d\ed( N Gy (d\ed( A\ Ggdw | Og,,dvde
dxt) as\E%7ds ) T2 ox T\@d) &s\F4ds )T Ton dnd TP ow dat dat
Write now x*=¢, dx?[dt= v?, and neglect squares and products of the spatial
coordinate velocities v?, getting
dsd dt .98 dsd dt\ = 9gys
cTtht(g"szvp>_§W_fﬁzt wgs)* G 3)
We shall now represent the metric (2) as that of a weak field in the form
ds? = (1 +y4)dt + 2y 4 dx?dt — (1 — y1, J(dx")? — (1 — y)(dn?)? — (1 — 33)(d®)?
+ypdxPdxt (2#9) (4)
Here we take the velocity of light, ¢, as unity. We see that the y,, are the
deviations of the g,, from the Galilean values in the so-called inertial frames.
They are the y,, of Einstein’s treatment of the problem except for sign due to his
employment of imaginary x*.
We make the assumption that the squares and products of the y,, and those
of their derivatives can be neglected. In solving the field equations to this
approximation Einstein showed (3) that the y,, were the solutions of the equations

() )+ (&) - @)t

provided 92 o2
S (Vi — 200 v8) + el ¢4 18%5) =0 (6)

to the order of the approximation. Here x =87G/c? where G is the Newtonian
constant of gravitation, and y%=08%y,; where 8 are the Galilean values of the
g*®.  Assuming the contribution of stress to the energy momentum tensor to be
vanishingly small compared with the density and momentum components for
the case considered by Einstein, equation (5) yields Einstein’s solution:

K D
'}’11='}’22=733=7'44="f7;JL¢—]dV» 7’4p='2;f‘[£':,i_]dV]
and - (7)
Vg =0 P74
In this solution p is the mass density, #? the space velocity, of the element of

mass in volume 4V at distance » from the point where the y,, are evaluated, all
quantities being measured by observers at rest in the reference frame. Square
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brackets indicate retarded values corresponding to the propagation of the field
with the unit velocity.

The integrals, supposed convergent, are over all matter producing the field.
Such a solution of the wave equation of Lorentz (equation (5)) is well known to
be valid only if the quantities solved for (the y,,) tend to zero in a suitable way.
Thus it is clear that the case considered by Einstein involves mass concentrations
only in the neighbourhood of the space origin and a field metric which is Galilean
at “infinity”’. The integrals in (7) evaluated over such mass concentrations
are therefore evidently convergent. The solution has to be consistent with
conditions (6) which will be satisﬁed if the expressions

(n 355 v8)

vamsh for all u, to the first order in the y,,. Using (7) and the fundamental
equations T, ‘,‘,”-—o, it is easily seen that for integrals over a finite region of mass
these expressions are indeed second order quantities.

To this approximation therefore, retaining only first order terms, we can

reduce equation (3) to

d [ &' 8344 d g C8p4

‘E<\/§4—4) o it gia) + FrAd
on using (2) to find the appropriate approximation for ds/dt in each term. There
is of course no summation over 7 on the left. Rearranging we can write:

d{ g e O d 9 |
a(-52) = 1% - Ga - plen fr @
so that
d oy 0 d 0o
7 {(1—va—dva)v’} = -3 ﬁ ~ 3 (—7a) + {5@ (va)— e (741;)} o7, (9)
. av D
Write now b= _GJ‘[P]r A7 = _4Gf[pl: ]dV (10)
so that by (7), Y11=V =Y33=Ysa =20, Ygp= — 47. (11)
Equation (g) can therefore be written in vector form covering i=1, 2, 3
dA
Z {(1 -3¢V} = —gradgb—— = TVA curl A, (12)

Equation (12) is the requrred Maxwell-type pondermotlve equation of the
field. The assumptions made during its derivation are:

(i) The particle velocity v in the reference frame is assumed small such that
22/c? is negligible compared with v/c.

(if) The deviations of the g,, from the Galilean values are small such that
their squares and products and those of their derivatives can be neglected.

(iii) The deviations y,, vanish at “infinity’’ so that the quantities A, ¢ are
defined in terms of convergent integrals. If in addition we now further assume
that

(iv) The source velocities of the field are also small in the reference frame so
that the same remark as in (i) applies for them, then equation (12) reduces to

(ciit —grad¢— -é +v AcurlA, (13)
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, The equation obtained by Einstein was (our notation) -
d oA
E[(I —@)v]= —grad$— = tVA curl A,

Since he assumed condition (iv) as well as (i), (ii), (iii), his resultisincorrect to
the order he was considering, and misleading. In obtaining this result he put

. 02y  Og,
1% _ 52p
[P4a Z] -2 (axp axi

thereby neglecting the term 9g;,/0x* which, when p =1, contributes to our result
in equation (9) as the term d( —y;;)/dt in the coeflicient of ¢ in the left hand side.
The neglect of this term is of course consistent with condition (iv), but on the
other hand the retention of the term d(—¢)/dt in the coefficient of v, arising in
our approximation from the term d ( —4y,,)/dt in the coefficient, is not consistent
with Einstein’s assumptions.

3. Interpretation of the pondermotive equation.—As Einstein pointed out,
equation (12) indicates that general relativity goes far towards incorporating
Mach’s principle. It may be compared with the Newtonian equation, viz.,

dv
ik grad ¢.

The additional terms are small in the quasi-Galilean frame considered by Einstein,
and, as he said, beyond physical measurement. Nevertheless they show in the
sense of Mach’s principle how concentrated matter affects the inertial mass of a
freely moving particle, and the acceleration of its locally inertial rest frame relative
to the given frame, in the following respects:

(i) The inertial mass is apparently proportional to 1 —3d.

(ii) The locally inertial rest frame of the particle is accelerated by means of :

(a) gravitational attraction towards the local mass concentrations indicated
by the term —grad¢;

(b) an inductive effect of local accelerating matter in the same sense as the
acceleration, indicated by the term —0A/dt;

(¢) an inductive effect of matter which is rotating relative to the compass of
inertia (to use Godel’s phrase) at ““infinity”’, in the sense of the rotation, as indi-
cated by the term v A curl A. This is of the same type as the “fictitious” Coriolis
force familiar in Newtonian dynamics, when a reference frame is used which is
rotating relative to the compass of inertia. Centrifugal force also arises in this
case as a fictitious gravitational force.

It is clear therefore that general relativity certainly incorporates in detailed
manner the aspects of Mach’s principle indicated above. For a satisfactory theory
of Mach’s principle, however, Einstein realised the necessity of showing how inertia
depended on the entire cosmic distribution of matter. Because he assumed that
the metric was Galilean at ““ infinity ” and therefore excluded any contribution to
A and ¢ other than that of the matter concentrated near the space origin, he was
unable to examine the cosmic influence on inertia.

We shall here put forward an analysis to show that general relativity actually
permits the same interpretation of inertia which has been presented by Sciama
as the inductive effect of the whole universe.

. 15
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4. Inductive effect of the universe in general relativity.—We shall investigate
the extent to which we may generalize the circumstances when the motion of a
free particle may be described by a Maxwell-type pondermotive equation. For
this purpose we make the assumptions less restrictive than in the quasi-Galilean
case as follows:

(i) The particle velocity v in the reference frame is assumed small such
that v?/c? is negligible compared with v/c.

(it) The velocities of the sources of the field, in the region of space-time
coordinates with which we shall be concerned, are also small of the same order
so that the same remark applies.

(iii) The deviations of the g,, from the Galilean values are small in the above
quoted range of space-time coordinates, such that their squares and products
and those of their derivatives can be neglected. We do not however assume that
these deviations vanish at “infinity”’, nor that they even remain small outside the
specified range.

It is clear from equation (8) that the equation of motion of a free particle can
in these circumstances be written

dvt 3 0 0 d '
- e+ e - e o (14)
fori=1, 2, 3.
This equation is generally covariant, in the sense that, in all reference frames and
regions of space-time which do not violate the assumptions above, it describes
the space motion of the free particle in terms of the derivatives of the g, involved.
We now generalize the quantities A, ¢ occurring in the quasi-Galilean analysis

by defining
(A, D)= (—gai» 3844)- (15)
The three equations in (14) may then be written concisely
Zt —grad ® — %é +vaAcurlA. , (16)

The vector notation implies the vector character of the terms for purely spatial
transformations. For space-time transformations however the quantities (A, ®)
do not transform as a 4-vector but as components of the tensor g,,. 'This is
because, unlike the corresponding electromagnetic pondermotive equation, the
permitted transformations are not necessarily between inertial frames and
therefore not in general linear.

It is to be noted that here we have not as in the quasi-Galilean case identified
A, ® with the deviations of the g,, involved, from their Galilean values but,
consistent with our endeavour to account for the whole of inertia according to
Mach’s principle, in terms of the total g,,. The covariance of (16) is secured by
the tensor character of the total g,, involved; the deviations do not transform as
tensors for general transformations. Indeed according to the field equations it
is the total g, field that is related inseparably to the distribution of matter in the
whole universe.

Bearing in mind therefore the physical interpretation of the quantities A, ¢
in the quasi-Galilean case we should expect analogous interpretation of A, @ in
(16) which would, if Mach’s principle is to be satisfied, take account of the
distribution and motion of matter in the whole universe, relative to the particular
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reference frame being used. It would be an immediate consequence of such an
interpretation of the terms in (16) that the “fictitious” forces of Newtonian
mechanics in accelerating or rotating reference frames would become directly
attributable to the inductive effect of a moving universe. !

In particular, in a reference frame in which a freely moving particle was
permanently at rest, equation (16) would reduce to

oA

—grad ® — = =0 (17)
holding at the particle. 'This is the equation postulated by Sciama. To use
Sciama’s expression the “gravoelectric” field of the whole universe would be
zero at the particle and it would be gravitationally ““free’ in its own rest frame.
For a reference frame at rest relative to the averaged motions of the rest of the
matter in the universe (the “‘smoothed-out” universe) we should expect by Mach’s
principle that, in the neighbourhood of the space origin, the derivatives of A, ®
on the right of (16) would vanish and therefore that the left hand side must vanish.
The real existence of such frames which are locally inertial is the basis of
Newtonian mechanics. This aspect of Mach’s principle is built into general
relativity theory since the field equations predict that such a reference frame will
be Galilean near the space origin, because of the spherical symmetry about it.

Thus in this neighbourhood the metric will approximate to '

]

d?=dft —dx® — dy? — dz2. (18)

It is emphasized that in this paper we attach importance for Mach’s principle
to the total g,, involved in equation (16) and not just their derivatives. General
reasons for this have already been given and further justification provided in
Sections 5, 6. Accordingly it is important to obtain the total value of ®. It
follows from equation (18) that the static potential @, at the origin of such a
frame, of the whole universe would be

@, = Lg4(0) = % (or %¢? in general units). (19)

The dimensions of ® and the significance we are trying to associate with it would
require @, to be of order — GM/R where M is the effective gravitational mass of
the universe and R its effective radius. Sciama’s approach is to define @, as

J7=R adV

— where o is the gravitational mass density, and he gets

Gq)oz —Cz-

Both results are numerically of the same order. The discrepancy in sign will
occupy us later. Before investigating to what extent general relativity theory
justifies this tentative physical interpretation of A, ®, we give some applications
of our theory. _

5. Applications of the inductive theory in general relativity.—(i) Sciama
considers the case of a free particle in rectilinear motion in the gravitational field
of a mass M which is at rest relative to the smoothed-out universe. If we choose
a reference frame at rest relative to the smoothed out universe with this mass M
at the space origin, we can neglect in that neighbourhood the deviations from the
Galilean values of the Luv 38 far as they arise from the universe as a whole, and

5%

=0
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include only the deviations due to the mass M. Thus to this approximation the
metric will be

ds? = (1 ~ ZGrM> dt? — (I + ZGrM) (dx? + dy? + d=?). (20)

It is to be noted that, according to the ideas presented in this paper, the contri-
bution to the g, potentials from the universe as a whole is present in the Galilean
terms of the g,,.

Since the universe is at rest in this frame we have

A=o
while D=

(S

(4

(1 B 2GM> : ‘ (21)

Suppose the particle is moving freely towards the mass M along the x axis.
If its space coordinates are (x,, 0, 0) at coordinate time ¢ then its coordinate speed

is dx,/dt= —v, where v>>0. Make now the transformation to a suitable rest
frame for the particle, by means of the relations
x=X+x,y=Y,2=Z,t=T ' (22)

yielding dx=dX —vdT, dy=dY, dz=dZ,dt=dT. We get therefore to sufficient
order for the covariance of (16) :

ds®= (1 —2— ZGrM)de +20dXdT — (I + 2—G7— (dX2+4-dY2+dZ?%). (23)

Thus in the particle’s rest frame

A=(-9,0,0) ¥

o=i(i-o-F) | =

Apply now equation (17) in the particle’s rest frame, yielding

a’ 2GM 0
‘a‘“x%(“”z“ r >}_5T(“”)=° s
leading to .
GM dv
= Ta° (26)

on substituting the original coordinates. This is the Newtonian equation of
motion of the particle and is also the equation which would follow from the general
pondermotive equation (16), applied in the original frame, using (21).

On examining (24) and (25) we see that the origin of the inertial term

0
— 57 (=)

in (25) lies in the relative motion of the universe, yielding A=(—9,0,0)in the
particle’s rest frame, and thus creating an inductive field at the particle which
balances the local gravitational attraction due to the mass }, thus connecting
with Sciama’s ideas. :

We note also that the A, @ in (24) arise by transformation of the whole g,, and
not just their deviations from the Galilean values, in accordance with our
tentative interpretation of the Galilean values as the static potentials of the whole
universe,
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(if) The other case considered by Sciama is that of a particle moving with
uniform motion in a circle under the attraction of a mass M at the centre, this
mass being again at rest relative to the smoothed-out universe.

Transform therefore from the metric (20) to a suitable rest frame for the
particle according to the relations

x=XcosowT—YsinwT

=Y T+ XsinoT
Jz’_:z cosw sinw (27)

t=T
so that to sufficient order
ds?=(1 —2GM|R — v?R?) dT? - 2w (— YdXdT + XdYdT)
—(1+2GM|R) (dX?*+dY?+dZ?) (28)
with R2=X2+ V2

- Thus in this frame
A=(-wY,wX,o0)

2GM (29)
d):%(l - — —szZ).
R
The equation (17) then yields
GM
~ R +w?R=0 (30)

which is the Newtonian equation of motion, and also, putting R=7, what
would be given by (16) in the original frame.

Connecting with Sciama’s ideas we say that the gravitational attraction by M
is balanced by the grav1tat10nal field induced by a rotating universe, whose
rotational momentum is indicated by A in (29).

(i1i) As a final example we shall show how, by means of the covariance of (16),
the Newtonian “fictitious” forces may be attributed to the inductive effect of a
moving universe in the most general Newtonian motion of the reference frame
relative to a locally inertial frame.

Consider a free particle at rest in a reference frame which is locally inertial,
so that the metric is approximately as given by (18) in that region. Let r be the
position vector of the particle in that frame. Then by (15), (16) we have

r =constant. (31)

Transform to a second frame whose space origin has variable velocity V and
which has variable spin w relative to the first frame. If the position vector of
the particle in this frame is R, then a well-known kinematic result of Newtonian
motion gives

t=V+R+waR (32)
f=V+wAV+2wAR+cbAR+wA(wAR)+k (33)

differentiation being with respect to the common Newtonian time of either frame.
Thus for the particle in the second frame

k:—[V+wAV+2wAR+<bAR+wA(wAR)]. (34)
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The transformation connecting the two frames is, by (32), in differential form .

dr=(V+w aAR)dT+dR }

dt=dT (35)

Hence ds?=dt2—dr?
=[1-V2—2V . (w AR)—(w A R)?]dT2—2(V +w A R).dRdT — dR? (36)

so that in the second frame

A=V+waR
®=}[1—V2—2V.(waR)—(wAR)] (37)
Now grad ® =wAV+wa(waR)
A 3V  dw R
o7~ T " aT"
=V+oaR

while curl A =2w.

Hence by (16) R= —[V+wAV+2wAR+d)AR+wA(wAR)]

giving complete agreement with (34).
- Thus our theory gives an exact treatment of the fictitious forces as the
inductive effect of a moving universe.

6. Physical interpretation of A, © in general relativity.—The analysis in this
section is intended to be of a tentative nature, since complete rigour cannot be
claimed for it.

In Section 4, equation (19), we obtained the result

Do =%c*=$544(0)
for that value of the gravitational potential @ of the whole universe which enters
into the pondermotive equation (16), when evaluated at the space origin of a
reference frame locally inertial there. In order to interpret this result in terms of
Mach’s principle we recall the expressions for ¢ in the quasi-Galilean case given
by (7) and (11). Since the field equations are relations for the whole g, in terms
of the matter in the whole universe, we make the tentative inference that in some
way the Galilean terms themselves are related to world gravitation, so that inertia
would arise in accordance with Mach’s principle. To what extent does general
relativity provide justification of this inference?

In all cosmological models of general relativity in which the average inertial
density p does not vanish there is an effective radius R of the model which is the
distance, measured in a suitable way, to the horizon of the model where the
velocity of the matter relative to the space origin equals the velocity of light.
For an observer at the origin matter which goes beyond this distance virtually
ceases to exist because of the Doppler effect on its light and presumably on its
gravitation. 'This is the case whether the model be of the homogeneous rotating
type (Godel’s models) or the isotropic expanding or contracting types. We
shall discuss the latter as an example. These have the general metric

,(dr® +7°d6” + y*sin®0dg?) g

(1 + 7Y 4R ) (38)
where R,? may be positive, negative, or infinite, and the fundamental particles
have constant 7, 6, ¢.

ds? = c2d12 — 9
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The distance to the particle at (7, 8, ¢), measured in the simultaneity of the
fundamental observers at cosmological time ¢, from r=o0 is

4 dr
=eto0 | &
[=et J01+72/4R02'
Its radial velocity is therefore
=34l (39)
so that : |/|=cwhenl= ad
H
Thus R=+ ?gf according as gZo (40)
and I= + %—é (41)

The importance for Mach’s principle is that R is related to o, the cosmological
density of gravitational mass. In general relativity theory, gravitational mass
density is defined so as to lead to Gauss’ flux theorem for small regions of space
(see, for example, Synge (4)), and for the isotropic cosmological models
o=p+3p/c* where p is the pressure. The gravitational ‘“‘force’ on unit mass
due to the field is in this case the proper acceleration relative to the space origin.
With these definitions McCrea (5) has shown that the equations of general
relativity for the isotropic models are consistent with the variation of the gravi-
tational force according to the Newtonian inverse square law, using proper
radial distance but Euclidean geometry, for spatial regions of any size. 'The field
equations applied to the metric (38) give, with A=o, in general units,

387G c? 3.
T e = £ o) _ 5 3 5o
2 R.? 4 4g
32 3. (42)-
87TGp= ﬁe g(t)+ ;gz
0
so that
8nGo= —3(2+127).
Now for g>o, g= E}g , #=—2cR|R? by (40). Hence
2 .
87nGo= — % (1 —RJfc)
2 .
whence, if g>o, GoR?= — 3% (1 —RJc)
g (43)
2 . 43)
and, if <o, GoR?= — %(x +R/c)

which are the required relations between ¢ and R, at time ¢&. For g>o0 we see
that o2 o0 according as R=¢. If R>¢ matter is entering the region bounded by
the defined horizon; if R <¢ matter is passing beyond this horizon. Forg<o,020

according as R<e. ‘
By (41) and (43) we get the Newtonian type equation

1= —3uGol (44)

relating gravitational force and proper distance at time ¢.
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Comparing equation (44) with the pondermotive equation (16) we see that,
for a fundamental observer whose radial space coordinate is the proper distance /
and whose time is the cosmological time t, A=o0 and —grad ®= — —3—77Gal.
Equation (44) however holds for all /<R and not just in the neighbourhood of
the origin.  Consider therefore the gravitational “ work” done by the field when
a particle of unit mass is moved from its actual position at time ¢ to the horizon
and therefore beyond influence of the origin. This will be

R
O,= — ‘lﬂGJ oldl. (45)
3 l

This may be regarded as the analogue of the Newtonian potential at the distance /,
in the gravitational field as witnessed by an observer at the origin. Both ¢ and
R will vary with / in this integral as the motion proceeds, according to (42), (43).
However @, may be evaluated as

R. .
®,= J Jdl= y2— 32
l

c2
= S(-pRY), (46)
This is the potential at 1 at time ¢.
Putting /=0 we get O, =c?/2 (47)
which therefore provides a physical identification, in a natural way, of the
potential @, arising in equation (19).

The result given by (47) for @, is got as the limit of ®; when / tends to zero
irrespectively of the sign of o or g. For instance if >0 and g>o then R>¢,
so that for the field to carry the particle to the horizon of the space origin would
mean going backwards in time. The discrepancy in sign between our @, and
Sciama’s, referred to at the end of Section 4, arises because of Sciama’s arbitrary
definition of @ for an expanding universe. His definition appears to ignore the
above considerations and in particular to presuppose the identity of the cosmo-
logical gravitational mass density and the inertial density.

For cogent reasons which have been put forward elsewhere (6) a stationary
cosmological solution is to be preferred. The only known stationary solution
which does not contradict observational results (expansion, spatial isotropy) is
the steady state theory proposed by Bondi and Gold (6). This has the metric

ds® = c2dt? — e*B(dy? + r3d0? + r* sin? 0dg?) (48)
where R is a constant which is the effective radius for the model. The steady
state model, unlike the general cosmological models of metric given by (38) for
which equation (16) vanishes identically, allows a static metric to be used so that
the motion of a particle, relative to the observer at the origin, is measured by the
rate of change of the spatial coordinates. 'This is the De Sitter metric

2
ds?=c*(1 — 2| R*)d~? — I_—dlé/_R—z — 12d62 — I2 sin? 0d¢? (49)
connected to (48) by a well known transformation. In this metric /is the distance
from the origin, in the simultaneity of the fundamental observers, of our general
analysis The theory of Section 4 defines the @ involved in (16) as 3g4
which in the case of the metric (49) glves

0= (- 1R (50)
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agreeing with (46) and therefore having the physical interpretation associated
with (46).

It is to be noted that the steady state forms a natural cosmological background
to mass concentrations. For instance the exact solution of the field equations
for an isolated mass m superimposed on the steady state is

2 2
ds2=cz(1 _ 2_’6_”212 _ }%)472_ -an‘lc“—ﬁ — Pdf®— Psin®dgr. (1)
. TR
For this metric
G
< (I PR - 27 (52)

to be interpreted physically as the work done by the field in removing unit mass
from the point in question to the horizon of the model, regarding mG|R as
negligible.

A Newtonian type integral for @ in terms of the distribution of the mass does
not follow simply in the case of the general models because of the stated dependence
of o and R on cosmological epoch. However, for the steady state, o and R are
constant and we may write for the potential of unit mass, at distance / from the
mass odV constantly in the volume element dV,

d(D———GJ O'dV
1
Th 0= —Go [ (% = L) gmial
us 0= — UJO —l——R 4.’7T
= - T GoRre.
3

Equation (43) gives for the steady state GoR2= — 3¢2/47 so that

Dy=c?/2
in agreement with (47) and justifying our physical interpretation of @, as the
gravitational potential of all the matter in the universe apparent to an observer
at the origin and having influence there.

The quantity A of our theory defined in equation (15) of Section 4 is zero for
the cosmological metric (38). On making a transformation such as that of the
first example in Section 35, equation (22), a non-zero A arises by transformation of
the g,,. If we accept the association of the Galilean values of the g,, with world
gravitation, according to the tentative analysis presented above, the association
of A with the relative momentum of the universe would also follow. While the
Galilean gy, viz. ¢%, is associated with @, as 2@, the spatial Galilean g,, are
- associated with A.  Thus in the first example in Section 5 to get A in the particle’s
rest frame we have to multiply the Galilean g, in the original frame, viz.
—1=g11(0), by v. According to the subsequent application of the ponder-
motive equation —g,(0) is proportional to the inertial mass of the particle, the
whole equation indicating equality of gravitational and inertial mass in the case
of a particle. Since —g;,(0)=g4(0)/c2=2D,y/c? we see that inertial mass can
therefore be associated with the influence of the whole universe, in accordance
with Mach’s principle,
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7. Comparison with Sciama’s theory.—In this final section we shall remark
briefly on the three principal differences claimed by Sciama between his theory
and general relativity, enumerated (i), (ii), (iii) in the introduction to this paper.

(1) It is evident from the analysis in this paper that a knowledge of G,
occurring in the integral (45) leading to (47), together with R given as ¢T where
T is the reciprocal of the Hubble parameter, leads to an estimate of the amount
of matter in the universe in general relativity as well as in Sciama’s theory.

(it) Sciama states that in general relativity the principle of equivalence
predicts that one gravitating mass in an otherwise empty universe produces the
same inertial effects as in his theory, and since there is no universe in this case
to give rise to the inductive field it is difficult to see why the principle of equi-
valence should be true”. Such an argument however implies a solution of the
field equations involving the use of coordinates for all points of space-time in a
universe which, except for the isolated mass, is empty. Such coordinates are
purely conceptual, defined without reference to matter and restoring to space an
objective substance, independent of matter, which general relativity has sought
to deny. The logical course for general relativity, according to the field
equations, is to relate the Galilean g,, of special relativity to world gravitation in a
full universe. That general relativity may be capable of doing so has been
indicated in this paper, where, independently of the value of p as long as it does
not vanish, § g,,(0) has been identified as ®,=c?/2, the potential of the universe.
The case of the empty universe can only logically be approached as a limit where
p—>o0 and R— oo (equation(43)), so that inertia is always accounted for.

(iii) Sciama’s determination of the sign of the field in his theory is of doubtful
significance as it depends on his ® as defined turning out to be negative. Reasons
for questioning this arbitrary definition of @ have been given in Section 6.

In general relativity the coeflicient of 7% in the field equations is chosen so
as to make gravitation attractive on the small scale (the pressure being then
relatively negligible). However, on the cosmological scale this leads to gravi-
tational mass being interpreted as negative if the expansion is accelerating
(equation (44)). Thus there would appear to be no intrinsic importance to be
attached to the sign of the field in any theory that allows for factors at present
unknown, that is whether the gravitational effect of a lump of matter is more
primary than that of a cosmological region containing ‘‘zero-point’ stress.
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