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Is there a quantum equivalence principle?
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The understanding that has been gained of accelerated vacua sheds new light on the clas-

sic issue of the self-force suffered by a uniformly accelerated charge. Moreover, the fact

that, as a result of quantum theory, the radiative decay of an excited atom can be viewed

equivalently as the result of the vacuum fluctuations of the electromagnetic field or as the

result of the radiative self-force of the electron is shown to be nontrivially linked with the

equivalence principle.

INTRODUCTION

The aim of this paper is to point out that the
understanding that has been gained in recent years
of accelerated vacuum states, motivated in large part
by a desire to understand the phenomenon of black-
hole radiance, sheds new light on the classic issue of
the radiation reaction suffered by a uniformly ac-
celerated charge and also on related questions re-

garding the radiation emitted by a charge that is ei-

ther at rest in or freely falling through a static gravi-

tational field. We begin with the case of uniform

acceleration. The feature of this motion that has at-

tracted so much attention over the years is the seem-

ingly paradoxical relation between the radiation rate
and the radiation-reaction force.

In order to avoid boundary effects that would oth-
erwise obscure the issue, we shall consider only
motions of the charge such that the agency produc-

ing the acceleration has finite duration. A realiza-
tion of such a motion is: the charge initially moves

freely, at time t =0 it enters a region where there is
a uniform electric field, it remains in the field until
t =tj, at which time it leaves the region. Owing to
the phenomenon of preacceleration the acceleration
of the charge is nonzero before t =0 and nonuni-
form before t =ti. However, if the time t& is long
compared with the characteristic time

2 8

mc

(the time that light takes to traverse the classical
electron radius), then the motion of the charge may

be considered as being effectively inertial for t &0,
uniformly accelerated for 0&t &ti, and inertial

again for t & ti though, as we shall see presently, the
initial and final periods of nonuniform acceleration

play a crucial role in the discussion.

UNIFORM ACCELERATION:
THE NATURE OF THE PROBLEM

Following the detailed work of Bradbury' (see
also the recent article by Boulware ) we note that the
following facts are pertinent:

(i) By direct computation from the Lienard-
Wiechart potentials it is straightforward to show

that at each instant of retarded time the charge radi-

ates energy at a rate P given by the Larmor formula

28aP=-
C

with a the magnitude of the proper acceleration of
the charge. In particular it radiates at a uniform
rate whenever a is constant.

(ii) The classical radiation-reaction force is given,
in the instantaneous rest frame of the charge, by

2 8F =—— v3c dt

which depends on the second derivative of the
charge's velocity and hence vanishes when a is con-
stant.

(iii) The magnetic field of the charge is zero
everywhere in the accelerated frame of the charge
while it undergoes uniform acceleration. More pre-
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cisely, if the charge follows the worldline g =a ' in
the Rindler coordinate frame of the Appendix then
the magnetic components of the electromagnetic
field tensor F~z, Fg„andF~ are zero on the Rindler
manifold.

The apparent paradox is the seeming contradic-
tion between (i) and (ii) whereby during the period of
uniform acceleration there is a uniform rate of radi-
ation of energy yet no radiation-reaction force. That
there is in fact no blatant violation of the principle
of the conservation of energy follows from the fol-
lowing fact.

(iv) The radiation-reaction force acts, during the
initial and final periods of nonuniform acceleration,
in just such a way as to ensure that the total work
done by the agency accelerating the charge is equal
to the sum of the change in the charge's kinetic en-

ergy and the total amount of energy radiated to in-
finit.

This last statement amounts to the assertion that
the time integral of the rate at which work is done
against the radiation-reaction force is equal to the
total amount of energy radiated and is assured,
mathematically, by an integration by parts. The in-
tegrated term vanishes provided that the motion is
inertial at sufficiently early and sufficiently late
times.

Although there is in reality no difficulty posed by
overall conservation of energy, the fact that the
force of radiative reaction vanishes during the
period of uniform acceleration seems counterintui-
tive, especially in light of the observation first made
by Callen and Welton in their celebrated paper on
the fluctuation-dissipation theorem of the intimate
relation between the force of radiation reaction and
the zero-point fluctuations of the electromagnetic
field. Indeed, for an oscillating dipole, they show
that these quantities are related by precisely such a
fluctuation-dissipation theorem. This relation was
further elucidated by Senitzky and by Milonni
et a/. who showed that the decay of an excited
atom can be viewed equivalently as arising from the
perturbing effect of the vacuum electric field fluc-
tuations or from the radiative reaction due to the
electrons self-field or indeed any linear combination
of these processes. The net effect cannot, of course,
be altered, a definite answer being obtained for any
observable quantity. However the blame for a de-
cay, say, may be apportioned at will between vacu-
um fluctuation and radiative reaction, the relative
proportion being determined by the ordering chosen
for commuting operators. This somewhat remark-
able state of affairs indicates that neither vacuum
fluctuation nor radiation reaction furnishes a com-
plete or fully consistent statement of the quantum-
mechanical reality each being an oversimplification

motivated by a desire to attach a physical picture to
equations that arise at an intermediate stage of cal-
culation. Thus, for example, if one thinks solely in
terms of vacuum fluctuation it is difficult to under-
stand why an atom in its ground state should never
be promoted to a higher state as the result of electric
field fluctuations. If on the other hand one thinks
solely in terms of radiation reaction, then one is con-
fronted with the familiar difficulty of understanding
the stability of the ground state. Despite these
shortcomings the fluctuation and radiation-reaction
pictures furnish considerable intuitive understanding
of a number of processes, a good example of this is
provided by Welton's computation of the Lamb
shift viewed as the shift in the energy level of the
electron as the result of its interaction with the vac-
uum fluctuation of the electric field.

It is instructive to examine the absence of radia-
tive reaction on a uniformly accelerated charge in
the light of this duality between the fluctuation and
radiative-reaction pictures. We know from (ii)
above that the self-force vanishes by virtue of the
vanishing of the second derivative of the velocity.
What we seek here is an understanding of this fact
in terms of fluctuations. This is provided by the ob-
servation first made by Unruh that to a uniformly
accelerated observer whose acceleration is a the
Minkowski vacuum takes on the appearance of a
thermal mixture of temperature a/2n. We might
say that the charge perceives the vacuum fluctua-
tions as comoving and comprising a thermal bath.
Thus if the charge is constrained to move with con-
stant acceleration there can be no net transfer of en

ergy or momentum between the charge and the vacu-
um as seen in the accelerated frame. This explains
(ii) as well as drawing a close parallel with (iii)
which is the statement that the field of the charge is
nonradiative as seen in the accelerated frame.

It is also worth noting that the Unruh heat bath
observed in the constantly accelerating frame is sub-
ject to the Gaussian fluctuations of energy density
which a conventional heat bath would possess. If
the charge were acted on by a constant force, the
pressure fluctuations associated with these energy
fluctuations would confer on the charge an irregular
motion. This motion would represent a nonconstant
acceleration and so would also lead to a systematic
radiation damping force acting on the charge. We
would expect this combination of forces to lead to a
situation the importance of which was so often em-
phasized by Einstein, namely, that in which an ir-
regular activating force and a systematic damping
one lead to a steady state in which the system's
momentum distribution is that given by Maxwell for
thermal equilibrium. In the present case this would
mean that a charge subject to a constant external



27 IS THERE A QUANTUM EQUIVALENCE PRINCIPLE '2 1717

force would come to have the momentum distribu-
tion appropriate to the Unruh temperature of the
ambient quantum vacuum. If, on the other hand,
the charge were constrained to have exactly constant
acceleration, then the external force would have to
fluctuate to compensate for the pressure fluctuations
in the Unruh heat bath.

A converse argument can also be made. By
demanding that the spectrum of vacuum fluctua-.
tions be such that there be no net transfer of energy
or momentum between the field and the charge it
inay be inferred that the Minkowski vacuum ap-
pears to a uniformly accelerated observer to
comprise a thermal bath.

We turn now to a consideration of the radiation-
reaction force experienced by a freely falling charge.

FALLING CHARGES

For the case of charge moving inertially at nonre-
lativistic velocity through a static gravitational field
it has been shown that "the field in the iinmediate
vicinity of the particle tends to fall freely with the
particle, and although it suffers a local tidal distor-
tion characteristic of an explicit occurrince of the
Riemann tensor the net retarding force due to this
distortion is zero when integrated over solid angle.
The deviation of the particle motion from geodetic
when F„'"„=0is caused not by the local field of the
particle but by a field which originates well outside
the classical radius . . . Physically the nonlocal
term arises from a back-scatter process in which the
Coulomb field of the particle, as it sweeps over the
'bumps' in space-time, receives 'jolts' which are pro-
pagated back to the particle. "

This effect is analogous to the nonzero self-force
which acts on a charge even when it is held at rest,
for example, in the gravitational field of a stationary
black hole. The distortion of the Coulomb field of
the charge due to the Riemann tensor of the back-
ground gravitational field leads to the existence of
such a self-force, which we could call a polarization
force. Of course, for a general gravitational field
which lacks a timelike Killing vector there is no in-
variant definition of "at rest, " and the self-force,
which will continue to depend on the charge's
motion, cannot be invariantly decomposed into a ra-
diation and a polarization force.

Returning to the radiation problem, we now seek
to understand from the fluctuation point of view the
absence of radiation emanating from the region near
a charge moving inertially at nonrelativistic velocity
through a static gravitational field, and for simplici-
ty we shall confine the discussion to spherically
symmetric gravitational fields. Naturally the classi-

cal analysis makes no reference to the state of
motion of the electrodynamic vacuum. We know
now that there are three natural vacua that are asso-
ciated with the spacetime geometry. ' These are the
following: (i) the Boulware vacuum, which is the
natural vacuum state for the spacetime geometry of
an extended massive body such as a neutron star,
and may be thought of as a vacuum state which has
come to equilibrium loaded under the action of the
gravitational field in a manner not wholly dissimilar
from an equilibrium atmosphere; (ii) the Hartle-
Hawking vacuum which corresponds to the natural
vacuum state of a black hole enclosed by a (suffi-
ciently small) box; this state corresponds to a black
hole in equilibrium with a bath of blackbody radia-
tion; and (iii) the Unruh vacuum which is the natur-
al vacuum state to assign to a black hole that results
from the collapse of an extended object.

The question that comes naturally to mind is
whether the classical calculation applies with equal
validity to a charge falling freely through each of
these three vacua. To put the matter graphically we
might care to think of the Hartle-Hawking vacuum
as a state in which the vacuum fluctuations move
inertially, so that it is intuitively plausible that an
inertially moving charge should find itself in har-
mony with the vacuum field fluctuations and hence
that there should be little systematic retarding effect
on the charge due to the fluctuations. However in
this picture it is not quite so evident that a charge
falling freely through the Boulware vacuum, the
fluctuations of which may be thought of as compris-
ing a static ether, should not be subject to a sys-
tematic force due to its interaction with these fluc-
tuations. Furthermore, returning to the case of the
Hartle-Hawking vacuum, a fact that now requires
explanation is that a charge held fixed in the gravi-
tational field of a black hole (and hence accelerated)
should not be able to extract energy from the freely
falling vacuum fluctuations and hence radiate in
contravention of the classical result. That this does
not occur is due to the fact that in the Hartle-
Hawking vacuum the fluctuations are distributed
with a thermal spectrum so that there can be no sys-
tematic exchange of energy between the charge and
the field. The former case of a charge falling freely
through the Boulware vacuum requires a more de-
tailed analysis, which we present in the Appendix;
the result of which is that for the case of a charge
moving inertially in Minkowski space-time through
an accelerated vacuum the spectrum of field Auctua-
tions perceived by the charge is the same as if the
vacuum mere unaccelerated, i.e., the spectrum of
field fluctuations is the same as that of the Min-
kowski vacuum. From this we may understand why
a charge that falls freely in a gravitational field is
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not subject to a local reactive force due to its in-
teraction with the field fluctuations, but only the
reactive force referred to above, which arises in vir-
tue of the field lines feeling out the "bumps" in
spacetime and which originates well outside the clas-
sical radius. We may understand in the same way
the fact that the radiation emitted by a freely falling
charge does not originate at the charge.

In all cases, therefore, the classical results regard-
ing the radiation emitted by and the radiative-
reaction force on an electron undergoing the various
states of motion that we have discussed can be un-
derstood in terms of the spectrum of field fluctua-
tions perceived by the charge. This is a remarkable
fact since a priori the classical results might have
been incorrect either because the quantum-
mechanical equations might differ from the classical
ones by terms of the order of Planck's constant or
because the classical results for a given motion
might apply for one vacuum state but not for anoth-
er.

An understanding of the fact that neither possibil-
ity is realized can be gained under the assumption
that the Heisenberg operator equations of motion
take the same form as the classical equations (this
point is not entirely trivial since the classical equa-
tions are not derived directly from a Hamiltonian
but rather by a process of successive approximation
involving, among other operations, the renormaliza-
tion of the charge's mass). This is in fact known to
be the case at least for a charge bound to an atom
that is at rest in flat spacetime. It then follows in
virtue of the duality between the radiation-reaction

FIG. 1. The world line of an observer who is uniformly
accelerated with acceleration H ' before t =0 and who
moves inertially thereafter.

and vacuum-fluctuation pictures referred to earlier
that the spectrum of the field fluctuations for a
given motion and vacuum must be such as to accord
with the classical result. In particular since the
Heisenberg operator equations of motion make no
reference to the state of the field, the classical results
must apply with equal validity to each of the dis-

tinct vacua.
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APPENDIX: CALCULATION OF
THE RESPONSE OF AN UNRUH BOX

THAT MOVES INERTIALLY THROUGH
AN ACCELERATED VACUUM

We study in this appendix the extent to which an
observer who moves inertially through an accelerat-
ed vacuum state is, by virtue of his interaction with
the vacuum fluctuations, able to detect his motion
relative to the ether. In order to concentrate on ef-
fects which might be directly attributed to the
motion of the vacuum relative to the observer rather
than effects which might be attributed to the effects
of spacetime curvature, we shall perform the calcu-
lation for an observer moving inertially through the
Fulling vacuum, to be denoted by

~
F), which can

be thought of as the natural vacuum state above a
uniformly accelerated plane mirror or equivalently
as a state representing a static vacuum in the gravi-
tational field of an infinite "flat earth. "'

A necessary complication is that an observer mov-
ing inertially can only remain in the Rindler wedge
for a finite time although the observer's world line
can be chosen so as to render this time arbitrarily
long (in terms of our flat-earth picture a freely fal-
ling observer released from rest will strike the earth
after the elapse of a finite time). We specify the ini-
tial conditions by supposing that before t =0 the ob-
server, who is equipped with an Unruh box, is sub-
ject to uniform acceleration and in fact that he fol-
lows the world line g =H of a Rindler coordinate
system; after t =0 we shall suppose that he moves
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FIG. 2. The contour appropriate to the evaluation of
II(co, t) for the case m &0.

inertially in such a way that his velocity suffers no
discontinuity at t =0. This motion is depicted in
Fig. 1. Since the observer will leave the Rindler
wedge after a time H he can only make reliable
inferences about components of the vacuum fiuctua-
tions of frequency to for frequencies such that
toH) 1. We shall therefore suppose H to be very
large. At time t the acceleration of the vacuum with

respect to the observer has magnitude (H2 —t2)
Since we are primarily interested in effects that
inight be ascribed to the relative motion of the vacu-
um with respect to the observer and less so with
transient effects that might be ascribed to the
discontinuity in the observer s acceleration at j =0
we shall ultimately take the limit (H, t)~ 00 in such
a way that the acceleration (H —t2) '~ remains
constant.

We shall assume that the Unruh box with which
the observer is equipped interacts with the vacuum
fiuctuations of a scalar field P via a monopole
charge p(t} such that the interaction Lagrangian is

W;„,=p(t)p(t)

evaluated at the instantaneous position of the box,
and that at t =0 the box is in an energy eigenstate
/m).

Standard analysis reveals that the probability of
finding the box to be in an energy eigenstate

~

n ) at
time t is

P „(t)=
~
(n ~p(0) ~m)

~ f dt, f dt2e
'" ' ' (F (p(ti)p(t2) ~F),

where

co =E„—E
and P(t) means P(x) evaluated at

x(t)=(t,H,y,z) .

Differentiating P~„(t)we obtain an expression for the transition rate in the form

with

P„(t)=(
(—n

~
p(0)

~
m) ['II(to, t)j

II(co,t)=2Re f dt'e+' ' ' '(F
~

P(t)((}(t')
~

F) .

If we now substitute an explicit expression for the Wightman function occurring on the right-hand side of this
relation and take note of the fact that, in the sense of distributions,

(F ~p(t, )p(t2)~F)-—
4ir (ti —t2 —ie)

as t i ~t2, where e is an infinitesimal, then we find
r

g —jg dt&e+kQ(f t)—
1 1II(ro, t}=—

2 Re +(t2 —t' ) ln[(H+t)/(H+t')] ln[(H t)/(H —t')]—
It reinains now only to evaluate this integral. For co &0 we deform the contour of integration into the

lower-half t' plane until we arrive at the contours of Fig. 2.
It is easy to see that the contribution to II(co,t} of the contour that extends from the origin to i ao ap-—

proaches

since j 1 1

eit2 ln[H/(H+t)] ln[H/(H —t)]
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in the asymptotic limit. The evaluation of the contribution to II of the other contour, which extends from
t —i ao to t i—e, requires a certain amount of care. Setting t =t iy—we see that this contribution is the real
part of

r

p" dye 1

2' "& y(2t iy—) In[1 iy/—(H+t) j I n[I+ yt/(H t)]

It is convenient to separate I into the sum of three terms,

with

1 dye 1J=
y(2t iy—) In[1 iy/(H—+t)] '

K= 1 ~ dy e "~ 1

y (2t —iy) In[1+ iy/(H —t) j

I " dye "~ I(H —t)L=-
~ + 2 t ~2H ' y(2t iy) —' iy

(H —t)

ly

We shall consider these integrals in turn. It is easy to see that in the limit t~~
i(H+t) I" dye

4mt ' y

H ~ dye ~ 1+0
8m t ~ y mt

the last term indicating a quantity independent of e.

The quantity inside the braces in E has been
chosen such that it is O(y) as y —+0. Thus it is
redundant to retain the infinitesimal e in this term
and we may therefore take the lower limit of in-
tegration to be zero Settin. g also y =(H —t)u and
taking the asymptotic limit we find

e
—(H —t)u

4rr t o u In(1+iu) iu 2

1 ao rf —eu(H —t)ue8/t "0 u

1
In[to(H —t)] .

8 t

The final integral is straightforward. We find

4' t ~ y
r+, , I"".-""+O

8~2t2 & y cot

Combining the expressions for J, E, and E. we find
that

ReI-
2 In[co(H —t)] .1

8m' t

Thus we have shown that for m positive and t~ oo

II (co, t) differs from zero only by transient terms.
The analysis for c0 negative is entirely similar

apart from the fact that the contour is deformed
into the upper half plane (see Fig. 3). The portions
of the contour that are parallel to the imaginary axis
represent transient terms just as in the previous case,
while the semicircular portion of the contour yields
(in the limit a ~0) the contribution co /2ir.

fhus finally we have, in the asymptotic limit,

II(m, t)~ 8( —co),
2m'

where 8 denotes the step function. This is precisely
the result that would obtain for an Unruh box mov-
ing inertially through the Minkowski vacuum.

Re t

FIG. 3. The contour appropriate to the evaluation of
II(co, t) for the case ~ &0.
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