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We consider conservation of momentum in AQUAL, a field-theoretic extension to Modified New-
tonian Dynamics (MOND). We show that while there is a sense in which momentum is conserved,
it is only if momentum is attributed to the gravitational field, and thus Newton’s third law fails
as usually understood. We contrast this situation with that of Newtonian gravitation on a field
theoretic formulation. We then briefly discuss the situation in TeVeS, a relativistic theory that has
AQUAL as a classical limit.

I. INTRODUCTION

Modified Newtonian Dynamics (MOND) is a hetero-
dox but intriguing proposal to accommodate dark matter
phenomenology, particularly at galaxy and cluster scales,
by modifying Newtonian dynamics [1]. First introduced
by Milgrom in 1983 [2], MOND has long been controver-
sial, for a range of reasons. Here we focus on just one of
those controversies; we set aside both other problems for
MOND and the empirical support for it.
Among the immediate criticisms of MOND is that it

fails to satisfy standard conservation principles, includ-
ing conservation of momentum and Newton’s third law
[3]. This feature of the theory represented a major depar-
ture from essentially all modern physical theorizing, and
even Milgrom took it seriously. The year after introduc-
ing MOND, Milgrom and Bekenstein introduced a second
theory, called AQUAL (“A QUAdratic Lagrangian”),
that they argued reproduced MOND’s characteristic pre-
dictions in central force problems while also satisfying the
conservation principles [4]. Since then, concerns about
conservation principles for MOND and its successors have
faded into the background, with little attention paid to
whether the solution offered by AQUAL is satisfactory.
Here we investigate conservation in AQUAL in more

detail, drawing on recent work on conservation of en-
ergy and momentum in the field-theoretic formulation of
Newtonian gravitation on which AQUAL is based [5]. In
section II, we briefly review AQUAL and MOND. Then,
in III, we discuss the two arguments that Bekenstein and
Milgrom offer for momentum conservation in AQUAL. As
we show, AQUAL does conserve momentum, but only if
the gravitational field carries momentum. It follows from
the form of the AQUAL field equation that momentum
is non-local in that it can propagate instantaneously. In
section IV, we compare this situation with Newtonian
gravitation.
Of course, neither MOND nor AQUAL is relativistic.

There is no universally accepted relativistic version of
MOND; but one frequently discussed candidate theory
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is TeVeS (Tensor-Vector-Scalar theory), introduced by
Bekenstein in 2004 [6], which recovers MOND-like behav-
ior in the sense that it has AQUAL as a non-relativistic
limit. In section V, we discuss what the arguments of
this paper look like in TeVeS. We argue that there, too,
conservation holds, but it has a different character from
general relativity, because energy-momentum must be at-
tributed to the “gravitational” sector.

II. MOND AND AQUAL

For present purposes, MOND can be viewed as a mod-
ification of Newtonian gravitational theory according to
which the magnitude of the force F exerted by a body of
mass M on another body of mass m at a distance r is:

F =
GMm

µ( a
a0

)r2
, (1)

where a is the magnitude of the acceleration of the body
of massm, a0 is a new constant of nature with dimensions
of acceleration, and µ(x) is an unspecified function with
the properties that for x ≫ 1, µ(x) ≈ 1, and for x ≪ 1,
µ(x) ≈ x. Thus in the regime where the body experiences
large accelerations, relative to a0, the force is approxi-
mately the same as in Newtonian gravitation, whereas in
the small acceleration (“deep MOND”) regime, the force
has a new acceleration dependence. In the case where
all acceleration is assumed to be due to gravitation, one
can replace a with ḡ, the MOND acceleration field due
to gravity at each point, and write:

ḡµ(
ḡ

a0
) =

GMm

r2
= g (2)

where g is the Newtonian gravitational field magnitude.
Investigating Eq. (1) shows that MOND does not sat-

isfy conservation of momentum or Newton’s third law
of motion. Consider two point masses, m1 and m2, at
some distance r and with accelerations of magnitudes a1
and a2, respectively. Then the magnitude of the force on
each body is given by Fi =

Gm1m2

µ(
ai

a0
)r2

, for i = 1, 2. If New-

ton’s third law held, it would follow that µ(a1

a0

) = µ(a2

a0

).
But also, since F = ma for both bodies, Newton’s
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third law would imply a1 = m2

m1

a2. Thus we conclude

µ((m2

m1

)a2

a0

) = µ(a2

a0

). Assuming a2 ̸= 0, for this equality
to hold for all values of m1,m2, µ must be constant. But
this contradicts the requirements on µ set by MOND.
To restore conservation of momentum, Bekenstein and

Milgrom [4] introduced AQUAL. To describe AQUAL,
it will be convenient to suppose we are working with a
classical spacetime structure (M, ta, h

ab,∇), where M is
R

4; ta is a “temporal metric”, i.e., a closed one-form on
M ; hab is a “spatial metric”, which is a symmetric tensor
field such that (1) habtb = 0 and (2) hab induces a flat
Riemannian metric on surfaces normal to ta; and ∇ is a
flat, torsion-free covariant derivative operator relative to
which both metrics are constant [see 7, §4 for discussion].
Poisson’s equation may then be written as ∇a∇

aϕ =
4πGρ, where ϕ is a gravitational potential, ga = ∇aϕ is
the gravitational acceleration field, and indices are raised
using hab. It follows via Hamilton’s principle from the
Lagrangian density,

L = −ρϕ−
1

8πG
(∇ϕ)2, (3)

where (∇ϕ)2 is shorthand for hab(∇aϕ∇bϕ) and, in the
first instance, we assume that the mass density ρ is fixed
(so that only ϕ is varied in the extremization problem).
AQUAL is introduced by modifying Eq. (3):

L = −ρϕ−
1

8πG
a20F [

(∇ϕ)2

a20
] (4)

Here F is some function such that ∂F(x2)
∂x2 = µ(x), where

µ(x) is again an unspecified function assumed to have
the properties described above. If we assume again that
ρ is fixed, then the Euler-Lagrange equations yield the
following analogue of Poisson’s equation,

∇a[µ(
||∇ϕ||

a0
)∇aϕ] = 4πGρ, (5)

where we have invoked the assumed properties of F to
re-introduce µ(x) and where ||∇ϕ|| =

√

(∇ϕ)2. Eq. (5)
is the fundamental field equation for the gravitational
potential in AQUAL.

III. CONSERVATION OF MOMENTUM IN

AQUAL

Bekenstein and Milgrom offer two arguments that mo-
mentum is conserved in AQUAL.

A. Argument from Noether’s Theorem

They write that “the conservation laws follow from the
symmetry of the Lagrangian under spacetime transla-
tions and space rotations” [4, p. 9] via Noether’s firs
theorem. They do not explicitly provide the argument;

since field-theoretic approaches to Newtonian gravitation
are not often treated in a Lagrangian framework, it will
be helpful to present it in more detail. We will focus on
linear momentum conservation.
Following the Newtonian case [5], we first define a

mass-momentum tensor as:

T̃ a
b =

δL

δ(∇aϕ)
∇bϕ+ δabL,

where δab is the identity and L is the “saturated La-
grangian” for some field configuration ϕ, i.e., the field on
spacetime that results from evaluating the Lagrangian
functional L at ϕ and its derivative. From Noether’s
theorem and the invariance of the Lagrangian density L
under spatial translations, it follows that

∇aT̃
a
b = [

δL

δϕ
−∇a(

δL

δ∇aϕ
)]∇bϕ,

which vanishes for fields ϕ that solve the Euler-Lagrange
equations, because the Euler-Lagrange equations assert
the quantity in brackets vanishes. Thus we find that
the mass-momentum tensor as defined is the conserved
current associated with spatial translations.
In AQUAL, the mass-momentum tensor becomes:

T̃ a
b =

1

4πG
µ(

||∇ϕ||

a0
)∇aϕ∇bϕ

+ δab(−ρϕ−
1

8πG
a20F [

(∇ϕ)2

a20
]), (6)

which is guaranteed to be divergence-free by the argu-
ments already given. Thus we find a sense in which
momentum is conserved in AQUAL as a consequence of
Noether’s theorem.
Even so, the conservation law reflected in Eq. (6) is

not what one might have expected. It says that the
mass-momentum tensor associated with the gravitational
field is locally conserved, but it says nothing about the
momentum of matter. The conservation principles that
MOND was shown to violate, meanwhile, concerned the
momentum of massive bodies under the influence of grav-
itation. The behavior of massive matter does not enter
into Eq. (6) because we have assumed that the mass den-
sity is fixed—an unrealistic assumption. If we relax it,
we find that T̃ a

b is no longer 0. Instead:

∇aT̃
a
b =

δL

δρ
∇bρ = −ϕ∇bρ = −∇b(ϕρ) + ρ∇bϕ (7)

What does this show us? The AQUAL Lagrangian
does not describe matter dynamics. Any conservation
principle derived from this Lagrangian alone, assuming
only that the gravitational potential is a dynamical vari-
able, will establish only that the momentum of the gravi-
tational field is conserved. On the other hand, if we sup-
pose that mass density is not constant, then we should
expect momentum to be exchanged between the gravi-
tational field and momentum. If one added a suitable
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kinetic term to the Lagrangian, one would expect that
the total momentum, for matter and the gravitational
field, would be divergence-free, but that neither would
be conserved alone. This does not establish the conser-
vation principles one expects in Newtonian gravitation.

B. Direct Argument

Bekenstein and Milgrom devote more space to their
second argument. We know from the foregoing that the
matter mass-momentum, T̂ a

b, must satisfy ∇aT̂
a
b =

∇b(ϕρ) − ρ∇bϕ in order for total mass-momentum

T̃ a
b + T̂ a

b to be divergence-free. Thus, if we interpret
hab(∇nT̂

n
b) = F a as a force density, we can directly

compute the total change of momentum associated with
some isolated system of bodies at a time t by integrating
F a over a compact volume V containing those bodies:

Ṗ a =

∫

V

F adV =

∫

V

−ρ∇aϕdV (8)

where we have neglected the total derivative, since that
will give rise to a boundary term. They then argue that
if Ṗ a = 0, one can conclude that total momentum is
conserved and Newton’s third law holds, since the to-
tal change in momentum attributed to material bodies
vanishes.
To evaluate this integral, we substitute for ρ using the

modified Poisson equation to find:

Ṗ a = −
1

4πG

∫

V

∇aϕ∇n (µ∇
nϕ) dV

= −
1

4πG

∫

V

(∇aϕ∇nϕ∇nµ+ µ∇aϕ∇n∇
nϕ) dV

(9)

where we have suppressed the argument of µ(||∇ϕ||/a0).
Eq. (9) can be rewritten as:

4πGṖ a = −

∫

S

µnb∇
aϕ∇bϕdS +

a0
2

2

∫

naFdS, (10)

where S is the boundary of the region V , na is the
unit normal to S, and we suppress the argument of
F((∇ϕ)2/a0). To see this, integrate Eq. (9) by parts
and recall that ∇ is torsion-free to find that the right
hand side of Eq. (9) is the difference of a divergence and
the gradient of 2

a0

F((∇ϕ)2/a0). Invoking the divergence

and gradient theorems then yields Eq. (10).
Bekenstein and Milgrom proceed to argue that the

right hand side of Eq. (10) is zero. To do so, they con-
sider the limit as the volume V becomes arbitrarily large.
The details depend on additional assumptions about the
potential ϕ, which need not concern us here. What mat-
ters is that they conclude that the integrands of both
surface integrals increase as 1

r3
, while the surfaces in-

crease as r2, from which it follows that as r → ∞, both
integrals vanish.

Suppose we grant the assumptions needed for this ar-
gument to go through. It follows that the change in
total momentum associated with all of space vanishes,
and thus total momentum is conserved. But this is not
the question with which we began. We wished to know
whether the momentum associated with massive bodies
in an isolated system was conserved. To answer this ques-
tion, we calculated the change of momentum for a fixed
volume V enclosing the system, as in Eq. (8). If the
answer were “yes”, it would follow that the result would
not depend on the volume V chosen, so long as it en-
closed the system. But what Bekenstein and Milgrom
show is that (a) this integral does depend on the volume
chosen; and (b) that the total momentum is conserved
only when one includes the contribution to momentum
from the gravitational field over all of space, i.e., it is
not conserved among the bodies in the isolated system.
Thus, one finds a sense in which momentum is conserved
in AQUAL, but only if some momentum is attributed to
the gravitational field. Newton’s third law is not recov-
ered after all, at least not for the gravitating bodies.

IV. COMPARISON WITH THE NEWTONIAN

CASE

It is useful to compare the foregoing with the New-
tonian field theory case. Some of the same consider-
ations arise there. For instance, the Newtonian mass-
momentum tensor also has a contribution from the grav-
itational field, and in general only the sum of the grav-
itational momentum and momentum due to matter is
conserved. This is because gravitational influences are
mediated by the gravitational field. The arguments in
Sec. III A were intended to show only that Noether’s
theorem does not show that AQUAL has the sort of con-
servation principles that critics worried about.

Even the arguments in Sec. III B look similar in New-
tonian gravitation. Running identical arguments, with
the same assumptions, one would conclude that Ṗ a, com-
puted for larger and larger surfaces, goes as 1/r2 as
r → ∞. Thus it, too, vanishes in the limit, but only
in the limit, with contributions from all of space. More
generally, it is not the case that for every solution of Pois-
son’s equation one gets local conservation of momentum.
For example, consider the case of a background acceler-
ation field at all points in space. So one might conclude
that the situation in AQUAL is no different from New-
tonian gravitation after all.

But of course in ordinary (non-field-theoretic) Newto-
nian gravitation, momentum is conserved among bod-
ies in an isolated system and Newton’s third law holds.
How does this come about in field theoretic formulations?
Here is one argument. There exists a class of formal so-
lutions to Poisson’s equations, for compactly supported
mass density ρ, with Green’s functions that vanish at
spatial infinity. Relative to an arbitrarily chosen origin,
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these may be written:

ϕ(r) = G

∫

ρ(r′)

||r− r′||
d3r′ (11)

where r and r
′ are vectors based at an arbitrarily chosen

origin and G is Newton’s constant.
For such fields, Ṗ a, computed over a sphere V cen-

tered at the origin and containing all of the support of ρ,
becomes

∫

V

ρ(r)∇ϕ(r)d3r = G

∫

V

ρ(r)ρ(r′)
−(r− r

′)

||r− r′||3
d3r′d3r

(12)
Now observe that the integrand is antisymmetric in the
position variables, but the order of integration can be
swapped. Thus we find that Ṗ a = −Ṗ a, and so Ṗ a = 0,
independent of the radius of the volume over which the
integral is taken.
Could similar argument go through in AQUAL?

Though one cannot derive a Green’s function without
specifying a form for µ, heuristically one would expect
not. The reason is that the the corresponding integrand
would be expected to depend on 1/µ, which would gener-
ically break the anti-symmetry between r and r

′.

V. CONCLUSION

We have assessed the claim that AQUAL restores the
conservation principles that MOND lacked. We showed
that the arguments of Bekenstein and Milgrom do estab-
lish a sense of momentum conservation in AQUAL, but
we also showed that they do not recover conservation
of momentum between bodies in an isolated system or
Newton’s third law; instead, conservation of momentum
is restored only if one attributes momentum to the grav-
itational field over all of space. In this sense, momentum
conservation is non-local in AQUAL.
We conclude by discussing two possible responses to

these arguments. The first is that there is nothing sur-
prising about AQUAL here. After all, it is a field theory,
and we know that in other field theories, such as elec-
tromagnetism, the fields carry momentum. This is a fair
remark, but there are two points to emphasize. First, it
is still the case that AQUAL does not restore the Newto-

nian conservation principles; it requires a novel interpre-
tation of the gravitational field. Second, in electromag-
netism, the momentum-carrying fields satisfy hyperbolic
equations, so that their momentum propagates at a finite
speed. This recovers a sense in which momentum propa-
gation is local, even though fields carry momentum. This
is not the case in AQUAL. Momentum propagates instan-
taneously, just as in Newtonian gravitation. And yet not
all momentum changes can be attributed to the bodies.
The second response is to say that AQUAL is a non-

relativistic theory, and some of the odd features of the
theory are likely to go away in a fully relativistic formu-
lation. It is true that in relativistic versions of MOND,
such as Bekenstein’s TeVeS [6], the same pathologies do
not arise, and indeed, one would not expect quite the
same behavior, since even in general relativity, momen-
tum is not conserved among (distant) bodies.
Nonetheless, there are hints of AQUAL in full TeVeS.

That theory is a bimetric theory, with a dynamical
Lorentzian metric and a conformally transformed “phys-
ical metric” that couples to matter. Thus we have two
different definitions of the stress-energy tensor for matter
fields, and two different possible conservation laws. Ap-
plying standard arguments, one can show that the phys-
ical stress-energy tensor (the functional derivative of the
matter Lagrangian density with respect to the physical
metric) is divergence-free relative to the physical met-
ric’s Levi-Civita derivative operator. But from the per-
spective of the background metric, neither this stress-
energy nor the “background” stress-energy is divergence-
free; instead, in both cases, conservation is restored only
if one includes additional terms depending on the scalar
field generating the conformal transformation between
the metrics. Thus we see a certain sense in which a
“gravitational stress-energy” contributes to stress-energy
conservation. It is this behavior that ultimately gives rise
to the modified Poisson equation in the classical limit.
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