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Abstract

It is known that spherically symmetric static spacetimes admit a foliation by
flat hypersurfaces. Such foliations have explicitly been constructed for some
spacetimes, using different approaches, but none of them have proved or even
discussed the uniqueness of these foliations. The issue of uniqueness becomes
more important due to suitability of flat foliations for studying black hole
physics. Here, flat spherically symmetric spacelike hypersurfaces are obtained
by a direct method. It is found that spherically symmetric static spacetimes
admit flat spherically symmetric hypersurfaces, and that these hypersurfaces
are unique up to translation under the timelike Killing vector. This result
guarantees the uniqueness of flat spherically symmetric foliations for such
spacetimes.

PACS numbers: 04.20.—q, 04.20.Ex, 04.20.Gz

1. Introduction

Splitting a space into a sequence of subspaces, such that every point in the space lies in one and
only one of the subspaces, is called a foliation. The foliation of an n-dimensional manifold,
M, is a decomposition of M into submanifolds, all being of the same dimension, p. The
submanifolds are the leaves of the foliation. The co-dimension, ¢, of a foliation is defined
as g = n — p. A foliation of co-dimension one is called a foliation by hypersurfaces. The
simplest and best-understood cases of foliation are when p = g = 1, e.g. the two-dimensional
xy-plane, R?, which can be foliated by the straight lines, y = mx + ¢, with ¢ taken as the
parameter and any fixed m. Note that a foliation of the xy-plane by straight lines is not unique,
as different ‘fixed’ values of m will give different sequences of foliating straight lines with a
different slope.
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In general relativity (GR), one is often required to use a sequence of spacelike or null
hypersurfaces to foliate the spacetime. There has been a lot of work to obtain foliations
by hypersurfaces of zero mean extrinsic curvature called ‘maximal slicing” [1-4] and by
hypersurfaces of constant mean extrinsic curvature known as ‘CMC-slicing’ [4—11]. There has
also been significant work on foliations by hypersurfaces of zero intrinsic curvature called
‘flat foliations’ [12—-18]. Existence of flat spacelike foliations for spherically symmetric static
spacetimes (SSSS) is shown via the Hamiltonian equations of general relativity in [14] and
using an initial value approach in [15, 16]. Complete foliations of the Schwarzschild and
Reissner—Nordstrom (RN) spacetimes by flat spacelike hypersurfaces are also obtained by
using the fact that the normals to such foliations are geodesics [17, 18]. Being indirect
approaches, earlier procedures do not guarantee the uniqueness of these foliations. As a flat
foliation covers the most interesting regions of spacetime describing realistic gravitational
collapse, it is specially suited for studying Hawking radiation from a fully quantum
gravitational viewpoint. Husain and Winkler [19] have presented a flat slice Hamiltonian
formalism to have ‘a standard model’ for studying black hole physics. The non-uniqueness
of flat foliations may raise the question on the validity of the results if a different sequence of
flat slices is used in their model.

In this paper, in order to obtain flat spacelike hypersurfaces, we use the direct approach
(i.e. solve R"},d = 0, where R;kl are the components of the Riemann curvature tensor for
the hypersurfaces). Solution of the above system gives a unique sequence of flat spherically
symmetric spacelike hypersurfaces admitted by SSSS, thus showing the uniqueness of flat
spherically symmetric foliations for such spacetimes. In the following sections, after
presenting a solution of the equations giving flat spherically symmetric hypersurfaces and
some examples, a conclusion is given.

2. Flat spherically symmetric hypersurfaces admitted by spherically symmetric static
spacetimes

The most general form of a spherically symmetric static spacetime metric in the usual
coordinates is

ds? = e’ ds? — 2 dr? — 2 dQ2, (1)
where

dQ? = d6? +sin® 6 d¢>. )

Now take an arbitrary hypersurface, f (¢, r, 6, ¢) = 0. Considering spherical symmetry, taking
0 and ¢ constant, this hypersurface in explicit form can be given as

t = F(r). (3)
The induced 3-metric (of the hypersurfaces) is then
ds? = —(e*") — e F?)dr? — r?dQ°. (4)

For the induced metric to be flat, a necessary but not sufficient condition, namely the Ricci
scalar = R = 0, implies

r(—=A'e* + VeV F?2 +2e"F'F") . 1 —e*+e"F? _

(e* —e"F?)2 eh —evF2 0, ®)
where ’ represents the derivative with respect to r. Using the substitution
2 1
g (r) = o _ o R’ (6)
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equation (5) becomes

2rgg +g7 —1=0, (7)
and we have the general solution
¢
gy =1--, ®)

where c is an arbitrary constant with dimensions of length. The induced metric now takes the
form
dr?
ds? = — e r?dQ?. )

<

The above metric, equation (9), of the hypersurfaces is flat, i.e. all the components of the
Riemann curvature tensor are zero (which is the necessary and sufficient condition for the
hypersurfaces to be flat), only if ¢ = 0 or in other words only if

g = 1. (10)
Then, from equations (3) and (6), the flat spherically symmetric hypersurfaces are uniquely
given as

t=F@) = /e%\/l —erdr. (11)

The mean extrinsic curvature, K, of these hypersurfaces is

v+ ‘e? 2 l_ v
K=ol 2 vV ¢ (12)
21 —¢ r
and the Hamiltonian constraint gives
2 KZ AV 2v'e?
R+ K> — KK = ( € ve (13)

2

r r

(here for flat hypersurfaces R = 0).

3. Some examples

For the exterior Schwarzschild spacetime, given by the metric in equation (1) with e’ =
e ") =1 —2m/r, where m is the mass, the solution of equation (11) provides the unique
sequences of flat spherically symmetric spacelike hypersurfaces

/7
t=F(r) =1, —4m, |— —2min | Y20
2m

7+ 1
where 7. is an integration constant which gives the fime of the hypersurface, i.e. the distinct
values of #, correspond to the distinct flat hypersurfaces. Note that the expression in
equation (13) is same as the Lemaitre coordinates (see, e.g., [20]) for the Schwarzschild
geometry or the flat hypersurfaces obtained by using the fact that these hypersurfaces are
orthogonal to the unforced geodesics in [18]. The mean extrinsic curvature, K, of these
hypersurfaces is 3\/% . The Hamiltonian constraint in this case gives R + K> — K, K> = 0.
The exterior Reissner—Nordstrom spacetime is given by the metric in equation (1) with
eV = e ) = 1-2m/r+Q?/r?, where mand Q represent the mass and charge, respectively.
In the case when Q > m, the solution of equation (11) gives
r—E@r)| 2m?-Q?

r+E(@) \/W
X |:tan1 (%) +tan™! (%)} , (15)

, (14)

t=F@r)=t.—2E(r) —mln
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where

E(r) = 2mr — Q2, (16)

and 7. is the constant of integration. For Q < m, we have

r—E@| 2m*—Q* |mr—E(@)ym?—0%- Q?
(r) (r)—mln TTEG mn[mr+E(r)M—Q2
(I7)
and for the extreme case, i.e. Q = m, we have
t= Foy =1, —2E¢) + "ED 4 4 anh! [E(r)} .
r—m m

The mean extrinsic curvature, K, of the flat hypersurfaces in all cases of the RN spacetime
3mr—Q?

. . . . . 2
is , and the Hamiltonian constraint gives R + K> — K, K% = Zr%

4. Conclusion

There has been a lot of work on the existence and construction of foliation of SSSS by spacelike
hypersurfaces of zero intrinsic curvature. Perhaps, assuming the difficulty of solving the
system of differential equations, Rj « = 0, in all earlier works, indirect approaches have been
used. In this paper, in order to obtain all possible sequences of flat spherically symmetric
hypersurfaces admitted by SSSS, we have solved this system of differential equations. It is
found that there exists a unique sequence of flat spherically symmetric spacelike hypersurfaces
admitted by SSSS, guaranteeing the uniqueness of foliation by these hypersurfaces for
such spacetimes. To emphasize the point, it is not just that the foliation of SSSS by flat
spherically symmetric spacelike hypersurfaces is unique, but that these spacetimes admit a
unique sequence of flat spherically symmetric spacelike hypersurfaces which form a foliation.
Note that the flat spherically symmetric spacelike hypersurfaces can also be obtained simply by
changing the sign in equation (3) and in expressions for extrinsic curvatures. This corresponds
to the hypersurfaces orthogonal to the incoming instead of outgoing geodesics [18].

In this paper, we have studied flat slices of static, spherically symmetric spacetimes,
where the slices themselves are also assumed to have spherical symmetry. Dropping the latter
restriction would result in a study of a system of partial differential equations for the height
function, as opposed to the ordinary differential equation, equation (5), of the slice. This is
outside the scope we have set ourselves here.
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