
I.1 Symmetry and Groups

Symmetry and Transformation

Symmetry plays a central role in modern theoretical physics.1

As the etymologist tells us, symmetry (“equal measure”) originates in geometry (“earth
measure”). We have a sense that an isosceles triangle is more symmetrical than an arbitrary
triangle and that an equilateral triangle is more symmetrical than an isosceles triangle.
Going further, we feel that a pentagon is more symmetrical than a square, a hexagon more
symmetrical than a pentagon, and an (n+ 1)-sided regular polygon is more symmetrical
than an n-sided regular polygon. And finally, a circle is more symmetrical than any regular
polygon.

The n-sided regular polygon is left unchanged by rotations through any angle that is
an integer multiple of 2π/n, and there are n of these rotations. The larger n is, the more
such rotations there are. This is why mathematicians and physicists feel that the hexagon
is more symmetrical than a pentagon: 6> 5, QED.

To quantify this intuitive feeling, we should thus look at the set of transformations that
leave the geometrical figure unchanged (that is, invariant). For example, we can reflect the
isosceles triangle across the median that divides it into equal parts (see figure 1a).

Call the reflection r ; then the set of transformations that leave the isosceles triangle
invariant is given by {I , r}, where I denotes the identity transformation, that is, the
transformation that does nothing. A reflection followed by a reflection has the same effect
as the identity transformation. We write this statement as r . r = I .

In contrast, the equilateral triangle is left invariant not only by reflection across any
of its three medians (figure 1b) but also by rotation R1 through 2π/3= 120◦ around its
center, as well as rotation R2 through 4π/3= 240◦. The set of transformations that leave
the equilateral triangle invariant is thus given by {I , r1, r2, r3, R1, R2}. That this set is larger
than the set in the preceding paragraph quantifies the feeling that the equilateral triangle is
more symmetrical than the isosceles triangle. Note that R1 . R1= R2 and that R1 . R2= I .
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(a) (b)

Figure 1

A circle is left invariant by an infinite number of transformations, namely, rotationR(θ)
through any angle θ , and reflection across any straight line through its center. The circle
is more symmetrical than any regular polygon, such as the equilateral triangle.

Symmetry in physics

In physics we are interested in the symmetries enjoyed by a given physical system. On a
more abstract level, we are interested in the symmetries of the fundamental laws of physics.
One of the most revolutionary and astonishing discoveries in the history of physics is that
objects do not fall down, but toward the center of the earth. Newton’s law of gravitation
does not pick out a special direction: it is left invariant by rotations.

The history of theoretical physics has witnessed the discoveries of one unexpected
symmetry after another. Physics in the late twentieth century consists of the astonishing
discovery that as we study Nature at ever deeper levels, Nature displays more and more
symmetries.2

Consider a set of transformations T1, T2, . . . that leave the laws of physics invariant.
Let us first perform the transformation Tj , and then perform the transformation Ti. The
transformation that results from this sequence of two transformations is denoted by the
“product” Ti . Tj . Evidently, if Ti and Tj leave the laws of physics invariant, then the
transformation Ti . Tj also leaves the laws of physics invariant.3

Here we label the transformations by a discrete index i. In general, the index could
also be continuous. Indeed, the transformation could depend on a number of continuous
parameters. The classic example is a rotation R(θ , ϕ , ζ ), which can be completely charac-
terized by three angles, as indicated. For example, in one standard parametrization,4 the
two angles θ and ϕ specify the unit vector describing the rotation axis, while the angle ζ
specifies the angle through which we are supposed to rotate around that axis.

Groups

This discussion rather naturally invites us to abstract the concept of a group.
A groupG consists of a set of entities {gα} called group elements (or elements for short),

which we could compose together (or more colloquially, multiply together). Given any two
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elements gα and gβ , the product gα . gβ is equal to another element,∗ say, gγ , inG. In other
words, gα . gβ = gγ . Composition or multiplication5 is indicated by a dot (which I usually
omit if there is no danger of confusion). The set of all relations of the form gα . gβ = gγ is
called the multiplication table of the group.

Composition or multiplication (we will use the two words interchangeably) satisfies the
following axioms:†

1. Associativity: Composition is associative: (gα . gβ) . gγ = gα . (gβ . gγ ).

2. Existence of the identity: There exists a group element, known as the identity and denoted

by I , such that I . gα = gα and gα . I = gα.

3. Existence of the inverse: For every group element gα, there exists a unique group element,

known as the inverse of gα and denoted by g−1
α

, such that g−1
α

. gα = I and gα . g−1
α
= I .

A number of comments follow.

1. Composition is not required to commute.6 In general, gα . gβ is not equal to gβ . gα. In

this respect, the multiplication of group elements is, in general, like the multiplication of

matrices but unlike that of ordinary numbers.

A group for which the composition rule is commutative is said to be abelian,‡ and a group

for which this is not true is said to be nonabelian.§

2. The right inverse and the left inverse are by definition the same. We can imagine mathemat-

ical structures for which this is not true, but then these structures are not groups. Recall (or

read in the review of linear algebra) that this property holds for square matrices: provided

that the inverseM−1 of a matrixM exists, we haveM−1M =MM−1= I with I the identity

matrix.

3. It is often convenient to denote I by g0.

4. The label α that distinguishes the group element gα may be discrete or continuous.

5. The set of elements may be finite (that is, {g0, g1, g2, . . . , gn−1}), in which caseG is known

as a finite group with n elements. (Our friend the jargon guy7 informs us that n is known

as the order of the group.)

Mathematicians8 of course can study groups on the abstract level without tying gi to
any physical transformation, but in some sense the axioms become clearer if we think of
transformations in the back of our mind. For example, gI = Ig = g says that the net effect
of first doing nothing and then doing something is the same as first doing something and
then doing nothing, and the same as doing something. Existence of the inverse says that
the transformations of interest to physics can always9 be undone.10

∗ This property, known as closure, is sometimes stated as an axiom in addition to the three axioms given
below.

† See also appendices 1 and 2.
‡ Named after the mathematician Niels Henrik Abel, one of the founders of group theory.
§ As the reader might have heard, in contemporary physics, the theory of the strong, weak, and electromagnetic

interactions are based on nonabelian gauge symmetries. See chapter IX.1.
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Examples of groups

To gain a better understanding of what a group is, it is best to go through a bunch of
examples. For each of the following examples, you should verify that the group axioms are
satisfied.

1. Rotations in 3-dimensional Euclidean space, as already mentioned, form the poster child

of group theory and are almost indispensable in physics. Think of rotating a rigid object,

such as a bust of Newton. After two rotations in succession, the bust, being rigid, has not

been deformed in any way: it merely has a different orientation. Thus, the composition of

two rotations is another rotation.

Rotations famously do not commute. See figure 2.

Descartes taught us that 3-dimensional Euclidean space could be thought of as a linear

vector space, coordinatized with the help of three unit basis vectors �ex =
( 1

0
0

)
, �ey =

( 0
1
0

)
,

and �ez =
( 0

0
1

)
, aligned along three orthogonal directions traditionally named x, y, and z. A

rotation takes each basis vector into a linear combination of these three basis vectors, and is

thus described by a 3-by-3 matrix. This group of rotations is called SO(3). We shall discuss

rotations in great detail in chapter I.3; suffice it to mention here that the determinant of a

rotation matrix is equal to 1.

(a)

(b)

Figure 2
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Figure 3

2. Rotations in 2-dimensional Euclidean space, namely a plane, form a group called SO(2),

consisting of the set of rotations around an axis perpendicular to the plane. Denote a

rotation through angle φ by R(φ). Then R(φ1)R(φ2) = R(φ1+ φ2) = R(φ2)R(φ1). These

rotations commute. (See figure 3. I was surprised to discover that this bust of Dirac at St.

John’s College, Cambridge University, was not nailed down but could be rotated around the

vertical axis. The photo depicts my attempt to give the bust a half-integral amount of angular

momentum.)

3. The permutation group S4 rearranges an ordered set of four objects, which we can name

arbitrarily, for example, (A, B , C ,D) or (1, 2, 3, 4). An example would be a permutation that

takes 1→ 3, 2→ 4, 3→ 2, and 4→ 1. As is well known, there are 4!= 24 such permutations

(since we have four choices for which number to take 1 into, three choices for which number

to take 2 into, and two choices for which number to take 3 into). The permutation group Sn
evidently has n! elements. We discuss Sn in detail in chapter I.2.

4. Even permutations of four objects form the group A4. As is also well known, a given

permutation can be characterized as either even or odd (we discuss this in more detail in

chapter I.2). Half of the 24 permutations in S4 are even, and half are odd. Thus, A4 has 12

elements. The jargon guy tells us that A stands for “alternating.”

5. The two square roots of 1, {1, −1}, form the group Z2 under ordinary multiplication.

6. Similarly, the three cube roots of 1 form the group Z3= {1, ω, ω2} with ω ≡ e2πi/3.

Chugging right along, we note that the four fourth roots of 1 form the group Z4 =
{1, i , −1, −i}, where famously (or infamously) i = eiπ/2.

More generally, the N N th roots of 1 form the group ZN = {ei2πj/N : j = 0, . . . , N − 1}.
The composition of group elements is defined by ei2πj/Nei2πk/N = ei2π(j+k)/N .

Quick question: Does the set {1, i , −1} form a group?
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7. Complex numbers of magnitude 1, namely eiφ, form a group called U(1), with eiφ1eiφ2 =
ei(φ1+φ2). Since ei(φ+2π)= eiφ, we can restrict φ to range from 0 to 2π . At the level of physicist

rigor, we can think of U(1) as the “continuum limit” of ZN with ei2πj/N→ eiφ in the limit

N→∞ and j →∞ with the ratio held fixed 2πj/N = φ.

8. The addition of integers mod N generates a group. For example, under addition mod 5 the

set {0, 1, 2, 3, 4} forms a group: 2+ 1= 3, 3+ 2= 0, 4+ 3= 2, and so on. The composition

of the group elements is defined by j . k = j + k mod 5. The identity element I is denoted

by 0. The inverse of 2, for example, is 3, of 4 is 1, and so on. The group is clearly abelian.

Question: Have you seen this group before?

9. The addition of real numbers form a group, perhaps surprisingly. The group elements are

denoted by a real number u and u . v ≡ u+ v, where the symbol + is what an elementary

school student would call “add.” You can easily check that the axioms are satisfied. The

identity element is denoted by 0, and the inverse of the element u is the element −u.

10. The additive group of integers is obtained from the additive group of real numbers by

restricting u and v in the preceding example to be integers of either sign, including 0.

11. As many readers know, in Einstein’s theory of special relativity,11 the spacetime coordinates

used by two observers in relative motion with velocity v along the x-direction (say) are related

by the Lorentz transformation (with c the speed of light):

ct ′ = cosh ϕ ct + sinh ϕ x

x ′ = sinh ϕ ct + cosh ϕ x

y ′ = y
z′ = z (1)

where the “boost angle”ϕ is determined by tanh ϕ = v. (In other words, cosh ϕ = 1/
√

1− v2

c2 ,

and sinh ϕ = v
c
/

√
1− v2

c2 .) Suppressing the y- and z-coordinates, we can describe the Lorentz

transformation by(
ct ′

x′

)
=
(

cosh ϕ sinh ϕ

sinh ϕ cosh ϕ

) (
ct

x

)
(2)

Physically, suppose a third observer is moving at a velocity defined by the boost angle ϕ2

relative to the observer moving at a velocity defined by the boost angle ϕ1 relative to the first

observer. Then we expect the third observer to be moving at some velocity determined by

ϕ1 and ϕ2 relative to the first observer. (All motion is restricted to be along the x-direction

for simplicity.) This physical statement is expressed by the mathematical statement that the

Lorentz transformations form a group:(
cosh ϕ2 sinh ϕ2

sinh ϕ2 cosh ϕ2

) (
cosh ϕ1 sinh ϕ1

sinh ϕ1 cosh ϕ1

)
=
(

cosh(ϕ1+ ϕ2) sinh(ϕ1+ ϕ2)

sinh(ϕ1+ ϕ2) cosh(ϕ1+ ϕ2)

)
(3)

The boost angles add.∗

12. Consider the set of n-by-n matrices M with determinants equal to 1. They form a group

under ordinary matrix multiplication, since as was shown in the review of linear algebra,

∗ To show this, use the identities for the hyperbolic functions.
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the determinant of the product two matrices is equal to the product of the determinants of

the two matrices: det(M1M2)= det(M1) det(M2). Thus, det(M1M2)= 1 if det(M1)= 1 and

det(M2)= 1: closure is satisfied. Since detM = 1 �= 0, the inverseM−1 exists. The group is

known as SL(n, R), the special linear group with real entries. If the entries are allowed to be

complex, the group is called SL(n, C). (Matrices with unit determinant are called special.)

From these examples, we see that groups can be classified according to whether they
are finite or infinite, discrete or continuous. Note that a discrete group can well be infinite,
such as the additive group of integers.

Concept of subgroup

In group theory, many concepts are so natural that they practically suggest themselves,12

for example, the notion of a subgroup. Given a set of entities {gα} that form a group G, if
a subset {hβ} also form a group, call it H , then H is known as a subgroup of G and we
write H ⊂G.

Here are some examples.

1. SO(2)⊂ SO(3). This shows that, in the notation {gα} and {hβ} we just used, the index sets

denoted by α and β can in general be quite different; here α consists of three angles and β

of one angle.

2. Sm ⊂ Sn for m< n. Permuting three objects is just like permuting five objects but keeping

two of the five objects untouched. Thus, S3⊂ S5.

3. An ⊂ Sn.
4. Z2⊂ Z4, but Z2 �⊂ Z5.

5. SO(3)⊂ SL(3, R).

Verify these statements.

Cyclic subgroups

For a finite groupG, pick some element g and keep multiplying it by itself. In other words,
consider the sequence {g , g2= gg , g3= g2g , . . .}. As long as the resulting product is not
equal to the identity, we can keep going. SinceG is finite, the sequence must end at some
point with gk = I . The set of elements {I , g , g2, . . . , gk−1} forms a subgroup Zk. Thus,
any finite group has a bunch of cyclic subgroups. If k is equal to the number of elements
in G, then the group G is in fact Zk.

Lagrange’s theorem

Lagrange13 proved the following theorem. Let a groupG with n elements have a subgroup
H with m elements. Then m is a factor of n. In other words, n/m is an integer.
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The proof is as follows. List the elements of H : {h1, h2, . . . , hm}. (Note: Since H forms
a group, this list must contain I . We do not list any element more than once; thus, ha �= hb
for a �= b.) Let g1 ∈G but �∈H (in other words, g1 is an element ofG outsideH ). Consider
the list {h1g1, h2g1, . . . , hmg1}, which we denote by {h1, . . . , hm}g1 to save writing. Note
that this set of elements does not form a group. (Can you explain why not?)

I claim that the elements on the list {h1g1, h2g1, . . . , hmg1} are all different from one
another. Proof by contradiction: For a �= b, hag1= hbg1�⇒ ha = hb upon multiplication
from the right by (g1)

−1 (which exists, since G is a group).
I also claim that none of the elements on this list are on the list {h1, . . . , hm}. Proof: For

some a and b, hag1= hb �⇒ g1= h−1
a
hb, which contradicts the assumption that g1 is not

in H . Note that H being a group is crucial here.
Next, pick an element g2 of G not in the two previous lists, and form {h1g2, h2g2, . . . ,

hmg2} = {h1, h2, . . . , hm}g2.
I claim that thesem elements are all distinct. Again, this proof follows by contradiction,

which you can supply. Answer: For a �= b, hag2= hbg2�⇒ ha = hb. I also claim that none
of these elements are on the two previous lists. Yes, the proof proceeds again easily by
contradiction. For example, hag2= hbg1�⇒ g2= h−1

a
hbg1= hcg1, sinceH is a group, but

this would mean that g2 is on the list {h1, h2, . . . , hm}g1, which is a contradiction.
We repeat this process. After each step, we ask whether there is any element ofG left that

is not on the lists already constructed. If yes, then we repeat the process and construct yet
another list containingmdistinct elements. Eventually, there is no group element left (since
G is a finite group). We have constructed k lists, including the original list {h1, h2, . . . , hm},
namely, {h1, h2, . . . , hm}gj for j = 0, 1, 2, . . . , k − 1 (writing I as g0).

Therefore n=mk, that is, m is a factor of n. QED.
As a simple example of Lagrange’s theorem, we can immediately state that Z3 is a

subgroup of Z12 but not of Z14. It also follows trivially that if p is prime, then Zp does not
have a nontrivial subgroup. From this you can already sense the intimate relation between
group theory and number theory.

Direct product of groups

Given two groups F and G (which can be continuous or discrete), whose elements we
denote by f and g, respectively, we can define another group H ≡ F ⊗G, known as the
direct product of F and G, consisting of the elements (f , g). If you like, you can think of
the symbol (f , g) as some letter in a strange alphabet. The product of two elements (f , g)
and (f ′, g′) of H is given by (f , g)(f ′, g′)= (ff ′, gg′). The identity element of H is evi-
dently given by (I , I ), since (I , I )(f , g)= (If , Ig)= (f , g) and (f , g)(I , I )= (f I , gI)=
(f , g). (If we were insufferable pedants, we would write IH = (IF , IG), since the identity
elements IH , IF , IG of the three groups H , F , G are conceptually quite distinct.)

What is the inverse of (f , g)? IfF andG havem and n elements, respectively, how many
elements does F ⊗G have?

Evidently, the inverse of (f , g) is (f−1, g−1), and F ⊗G has mn elements.
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Klein’s Vierergruppe V

A simple example is given by Z2⊗ Z2, consisting of the four elements: I = (1, 1), A=
(−1, 1), B = (1, −1), and C = (−1, −1). For example, we have AB = (−1, −1)= C. Note
that this group is to be distinguished from the group Z4 consisting of the four elements
1, i , −1, −i. The square of any element in Z2⊗ Z2 is equal to the identity, but this is not
true of Z4. In particular, i2=−1 �= 1.

Incidentally, Z2⊗ Z2, also known as Klein’s Vierergruppe (“4-group” in German) and
denoted by V , played an important historical role in Klein’s program.

Note that the elements of F , regarded as a subgroup of F ⊗G, are written as (f , I ).
Similarly, the elements of G are written as (I , g). Clearly, (f , I ) and (I , g) commute.

The direct product would seem to be a rather “cheap” way of constructing larger groups
out of smaller ones, but Nature appears to make use of this possibility. The theory of the
strong, weak, and electromagnetic interaction is based on the group∗ SU(3)⊗ SU(2)⊗
U(1).

A teeny14 bit of history: “A pleasant human flavor”

Historians of mathematics have debated about who deserves the coveted title of “the
founder of group theory.” Worthy contenders include Cauchy, Lagrange, Abel, Ruffini,
and Galois. Lagrange was certainly responsible for some of the early concepts, but the
sentimental favorite has got to be Évariste Galois, what with the ultra romantic story of
him feverishly writing down his mathematical ideas the night before a fatal duel at the
tender age of 20. Whether the duel was provoked because of the honor of a young woman
named du Motel or because of Galois’s political beliefs† (for which he had been jailed)
is apparently still not settled. In any case, he was the first to use the word “group.” Nice
choice.

To quote the mathematician G. A. Miller, it is silly to argue about who founded group
theory anyway:

We are inclined to attribute the honor of starting a given big theory to an individual just as we

are prone to ascribe fundamental theorems to particular men, who frequently have added only

a small element to the development of the theorem. Hence the statement that a given individual

founded a big theory should not generally be taken very seriously. It adds, however, a pleasant

human flavor and awakens in us a noble sense of admiration and appreciation. It is also of

value in giving a historical setting and brings into play a sense of the dynamic forces which

have contributed to its development instead of presenting to us a cold static scene. Observations

become more inspiring when they are permeated with a sense of development.15

∗ The notation SU(n) and U(n) will be explained in detail later in chapter IV.4.
† Galois was a fervent Republican (in the sense of being against the monarchy, not the Democrats).
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While symmetry considerations have always been relevant for physics, group theory did
not become indispensable for physics until the advent of quantum mechanics, for reasons
to be explained in chapter III.1. Eugene Wigner,16 who received the Nobel Prize in 1963
largely for his use of group theory in physics, recalled the tremendous opposition to group
theory among the older generation (including Einstein, who was 50 at the time) when he
first started using it around 1929 or so.17 Schrödinger told him that while group theory
provided a nice derivation of some results in atomic spectroscopy, “surely no one will still
be doing it this way in five years.” Well, a far better theoretical physicist than a prophet!

But Wigner’s childhood friend John von Neumann,18 who helped him with group theory,
reassured him, saying “Oh, these are old fogeys. In five years, every student will learn group
theory as a matter of course.”19

Pauli20 coined the term “die Gruppenpest” (“that pesty group business”), which probably
captured the mood at the time. Remember that quantum mechanics was still freshly weird,
and all this math might be too much for older people to absorb.

Multiplication table: The “once and only once rule”

A finite group with n elements can be characterized by its multiplication table,21 as shown
here. We construct a square n-by-n table, writing the product gigj in the square in the ith
row and the j th column:

. . . gj . . .
...

. . .

gi gigj
...

. . .

A simple observation is that, because of the group properties, in each row any group
element can appear once and only once. To see this, suppose that in the ith row, the same
group element appears twice, that is, gigj = gigk for j �= k. Then multiplying by g−1

i from
the left, we obtain gj = gk, contrary to what was assumed. It follows that each of the n
elements must appear once to fill up the n slots in that row. We might refer to this as the
“once and only once rule.”

The same argument could be repeated with the word “row” replaced by “column,” of
course.

For n small, all possible multiplication tables and hence all possible finite groups with
n elements can readily be constructed. Let us illustrate this for n = 4. For pedagogical
reasons, we will do this in two different ways, one laborious,∗ the other “slick.”

∗ An undergraduate in my class advised me to include also this laborious way as being the more instructive
of the two ways. I agree with him that textbooks tend to contain too many slick proofs.
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Finite groups with four elements: The slow way

First, we proceed very slowly, by brute force. Call the four elements I , A, B, and C.

1. By definition of the identity, the first row and first column can be filled in automatically:

I A B C

I I A B C

A A

B B

C C

2. We are to fill in the second row with I , B, and C. The first entry in that row is A2. There are

two possible choices: choice (a): A2= B, or choice (b): A2= I . (You might think that there

is a third choice, A2 = C, but that is the same as choice (a) upon renaming the elements.

What you call C I will call B.)

Let us now follow choice (a) and come back to choice (b) later.

3. The multiplication table now reads

I A B C

I I A B C

A A B 2 3

B B 4 5 6

C C

where for your and my convenience I have numbered some of the boxes yet to be filled in.

4. We have to put C and I into boxes 2 and 3. But we cannot put C into box 3, since otherwise

the fourth column will break the “once and only once rule”: C would appear twice:

I A B C

I I A B C

A A B C I

B B 4 5 6

C C

5. Again by the “once and only once rule,” box 4 can only be C or I . The latter choice

would mean BA= I and hence B = A−1, but we already know from the second row of

the multiplication table that AB = C �= I . Thus, box 4 can only be C. Hence box 5 is I , and

6 is A.
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6. Finally, the last three blank entries in the fourth column are fixed uniquely by the “once and

only once rule.” We obtain22

I A B C

I I A B C

A A B C I

B B C I A

C C I A B

Now that we have the multiplication table, we know everything about the group, and
we can ask: What group is this? From the second row, we read off A2= B, A3= AA2=
AB = C, A4 =AA3=AC = I . The group is Z4. Interestingly, we don’t even have to finish
constructing the entire multiplication table. In this simple case, by the time we had filled
in the second row, we could have quit.

The rest of the table, however, provides us with a lot of consistency checks to ensure that
we have not messed up. For example, from the last row, we have CB = A. But we know
from the second row that B =A2 and C =A3, and hence the statement CB =A says that
A3A2= A5= A, showing that indeed A4 = I .

We now go back to choice (b): A2= I , so that

I A B C

I I A B C

A A I 2 3

B B 4 5 6

C C 7 8 9

1. We are to fill boxes 2 and 3 with C and B. By the “once and only once rule” in the third and

fourth columns, these boxes can only be C and B in that order.

2. By the same reasoning, we can only fill boxes 4 and 7 with C and B, respectively. We thus

obtain

I A B C

I I A B C

A A I C B

B B C

C C B
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3. Now it looks like we could fill in the four remaining empty boxes with either

I A

A I

or

A I

I A

But the two choices amount to the same thing. We simply rename B and C. Thus, we

obtain

I A B C

I I A B C

A A I C B

B B C I A

C C B A I

Again, what group is this? It is just Z2⊗ Z2:A2= I , B2= I , C =AB = BA (and hence
also C2= I ).

A quick way: Construct the cyclic subgroups

Here is an alternative to this laborious procedure of constructing the multiplication table
step by step. We use the earlier observation that in a finite group, if we keep multiplying
an element by itself, we will reach the identity I .

Given a group G of four elements {I , A, B , C}, we keep multiplying A by itself. If
A4 = I , then G = Z4. By Lagrange’s theorem, the possibility A3 = I is not allowed. If
A2 = I , then we multiply B by itself. Either B2 or B4 equals I . The latter is ruled out,
so the only possibility is that B2= I , andAB = BA= C. ThenG= Z2⊗ Z2, with the four
elements represented by (1, 1), (1, −1), (−1, 1), and (−1, −1).

If you are energetic and driven, you could try to construct all possible finite groups with
n elements, and see how large an n you could get to.23 A quick hint: It’s easy if n is prime.

Presentations

For large groups, writing down the multiplication table is clearly a losing proposition.
Instead, finite groups are defined by their properties, as in the examples listed above, or by
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their presentations,24 which list the elements (sometimes called generators) from which
all other elements can be obtained by group multiplication, and the essential relations the
generators satisfy. Thus, in a self-evident notation, the groups Z4 and Z2⊗ Z2 are defined
by their presentations as follows:

Z4 : 〈A|A4 = I 〉 (4)

Z2⊗ Z2 : 〈A, B |A2= B2= I , AB = BA〉 (5)

The two groups are clearly distinct. In particular, Z4 contains only one element that
squares to I , namely A2.

Homomorphism and isomorphism

A map f :G→G′ of a groupG into the groupG′ is called a homomorphism if it preserves
the multiplicative structure ofG, that is, if f (g1)f (g2)= f (g1g2). Clearly, this requirement
implies that f (I)= I (more strictly speaking, the identity of G is mapped to the identity
of G′). A homomorphism becomes an isomorphism if the map is one-to-one and onto.

Now we can answer the question posed earlier: the additive group of integers mod N is
in fact isomorphic∗ to ZN .

For a more interesting example, consider Z2⊗ Z4. We use the additive notation here
and thus write the elements as (n, m) and compose them according to (n, m) . (n′, m′)=
(n+ n′mod 2, m+m′mod 4). We start with (0, 0) and add (1, 1) repeatedly: (0, 0)

+(1, 1)−→
(1, 1)→ (0, 2)→ (1, 3)→ (0, 4)= (0, 0); we get back to where we started. Next, we start

with (0, 1) and again add (1, 1) repeatedly: (0, 1)
+(1, 1)−→ (1, 2)→ (0, 3)→ (1, 0)→ (0, 1),

getting back to where we started. Thus we can depict Z2 ⊗ Z4 by a rectangular 2-by-4
discrete lattice on a torus (see figure 4).

Now we come in for a bit of a surprise. ConsiderZ2⊗ Z3 consisting of (n, m), which we
compose by (n+ n′mod 2, m+m′mod 3). Again, we start with (0, 0) and add (1, 1) re-

peatedly: (0, 0)→ (1, 1)
+(1, 1)−→ (2, 2)= (0, 2)→ (1, 3)= (1, 0)→ (2, 1)= (0, 1)→ (1, 2)→

(2, 3)= (0, 0). We are back where we started! In the process, we cycled through all six ele-
ments of Z2⊗ Z3. We conclude that the six elements (0, 0), (1, 1), (0, 2), (1, 0), (0, 1), and
(1, 2) describe Z6.

Thus, Z2⊗ Z3 and Z6 are isomorphic; they are literally the same group. Note that this
phenomenon, of a possible isomorphism between Zp ⊗ Zq and Zpq , does not require p
and q to be prime, only relatively prime. (Consider the example of Z4 ⊗ Z9.)

As another example of isomorphism, the groups SO(2) and U(1) introduced earlier
in the chapter are isomorphic. The map f : SO(2)→ U(1) is defined simply by f (R(φ))
= eiφ.

∗ That the additive group of integers mod N is also isomorphic to the multiplicative group Zn foreshadows
the confusion some students have between the addition and multiplication of angular momenta in quantum
mechanics. We discuss this later in chapter IV.3.
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(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 0)
Z2 − Z4

(1, 1)

(1, 2)

(1, 3)

Figure 4

Appendix 1: Weakening the axioms

Two of the three axioms that define a group can in fact be weakened to the following:

2′. Existence of the left identity: A left identity I exists, such that for any element g, Ig = g.

3′. Existence of a left inverse: For any element g, there exists an element f , such that fg = I .

We now show that these imply axioms 2 and 3 given in the text. In other words, given the left identity and the
left inverse, we are guaranteed that the right identity and the right inverse also exist.

Take the left inverse f of g. By 3′, there exists an element k, such that kf = I . Multiplying this by g from
the right, we obtain (kf )g = Ig = g = k(fg)= kI , where the second equality is due to 2′, the third equality to
associativity, and the fourth equality to 3′. Therefore g = kI . We want to show that k = g.

To show this, let us multiply g = kI by I from the right. We obtain gI = (kI )I = k(II )= kI = g, where the
second equality is due to associativity, and the third equality to 2′, since I also qualifies as “any element.” Thus,
gI = g, so that I is also the right identity. But if I is also the right identity, then the result g = kI becomes g = k.
Multiplying by f from the right, we obtain gf = kf = I . Therefore, the left inverse of g, namely f , is also the
right inverse of g.

Appendix 2: Associativity

Mathematically, the concept of a group is abstracted from groups of transformations. To physicists, groups are
tantamount to transformation groups. In fact, if we are allowed to think of group elements as acting on a set of
things S = {p1, p2, . . .}, we can prove associativity. The “things” could be interpreted rather generally. For the
geometrical examples given in this chapter, pi could be the points in, for example, a triangle. Or for applications
to fundamental physics, pi could be some physical law as known to a particular observer, for example, an inertial
observer in discussions of special relativity.

Suppose the group element g takes p1→ p′1, p2→ p′2, . . . , so that the things in S are rearranged (as, for
example, when a triangle is rotated). Suppose the group element g′ takes p′1→ p′′1 , p′2→ p′′2 , . . ., and the group
element g′′ takes p′′1 → p′′′1 , p′′2 → p′′′2 , . . ., and so on.

Now consider the action of g′′(g′g) on S. The element g′g takes pj to p′′
j
, and then the element g′′ takes p′′

j

to p′′′
j

. Compare this with the action of (g′′g′)g on S. The element g takes pj to p′
j
, and then the element g′′g′

takes p′
j

to p′′′
j

. The final result is identical, and associativity is proved.
Most physicists I know would probably regard this kind of fundamental proof as painfully self-evident.
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Appendix 3: Modular group

The modular group has become important in several areas of physics, for example, string theory and condensed
matter physics. Consider the set of transformations of one complex number into another given by

z→ az+ b
cz+ d (6)

with a, b, c, and d integers satisfying ad − bc = 1. The transformation (6) can be specified by the matrix

M =
(
a b

c d

)
with detM = 1 (7)

Clearly,M and −M correspond to the same transformation in (6).
In the text, I introduced you to SL(n, R), the special linear group of n-by-n matrices with real entries, and

SL(n, C), the special linear group of n-by-nmatrices with complex entries. The matrices in (7) define the group
SL(2, Z), the special linear group of 2-by-2 matrices with integer entries.∗ The group that results upon identifying
M and −M in SL(2, Z) is known as PSL(2, Z) (the letter P stands for “projective”), otherwise known as the
modular group.

The transformation in (6) can be generated by repeatedly composing (that is, multiplying together) the two
generating transformations

S : z→− 1
z

(8)

and

T : z→ z+ 1 (9)

They correspond to the matrices S =
(

0 1
−1 0

)
and T =

(
1 1
0 1

)
, respectively.

Using the language of presentation introduced in the text, we can write

PSL(2, Z) : 〈S , T | S2 = I , (ST )3= I 〉 (10)

Incidentally, the modular group can be generalized to the triangular group T , denoted by (2, 3, n) and
presented by

T : 〈S , T | S2 = I , (ST )3= I , T n = I 〉 (11)

The modular group is thus sometimes written as (2, 3,∞).

Exercises

1 The center of a group G (denoted by Z) is defined to be the set of elements {z1, z2, . . .} that commute with
all elements of G, that is, zig = gzi for all g. Show that Z is an abelian subgroup of G.

2 Letf (g) be a function of the elements in a finite groupG, and consider the sum
∑
gεG f (g). Prove the identity∑

gεG f (g)=
∑
gεG f (gg

′)=∑gεG f (g
′g) for g′ an arbitrary element ofG. We will need this identity again

and again in chapters II.1 and II.2.

∗ In mathematics, Z denotes the set of all integers, of either sign, including 0.
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3 Show that Z2⊗ Z4 �= Z8.

4 Find all groups of order 6.

Notes

1. See Fearful.
2. See parts VII and VIII.
3. We go into this in detail in chapter III.3.
4. See chapter IV.7.
5. Of course, we could also be more abstract and say that a group G is a structure endowed with the map
(G, G)→G and so on and so forth.

6. In Strange Beauty, the biography of Murray Gell-Mann by G. Johnson, the following explanation about
commutation is mentioned. When Gell-Mann was admitted only to MIT rather than the graduate school
of his choice, he resolved to kill himself. But then he realized that killing himself and attending MIT do not
commute, and so decided that he should go to MIT first and kill himself later, rather than the other way
around.

7. He is one of several characters that populate my previous books Quantum Field Theory in a Nutshell and
Einstein Gravity in a Nutshell. Hereafter QFT Nut and G Nut, respectively.

8. In the late nineteenth century, mathematicians felt that, with group theory, they had finally invented
something of no use to the physicists. See p. v in R. Gilmore, Lie Groups, Lie Algebras, and Some of Their
Applications.

9. Note the conceptual distinction between transformation and invariance. For example, the laws governing
the weak interaction are famously not invariant under the interchange of left and right (known as a parity
transformation P ). But, regardless of whether a given law is invariant under parity, we still have P . P = I .

10. This unfortunately is not true of many transformations in everyday life, such as cooking and aging.
11. See, for example, G Nut.
12. I once had a math professor who spoke of self-proving theorems. In the same sense, there are self-suggesting

concepts.
13. Lagrange fell into a deep depression in his old age. Fortunately for him, the daughter of Lemonnier, an

astronomer friend of Lagrange’s, managed to cheer him up. Almost forty years younger than Lagrange, the
young woman offered to marry him. Soon Lagrange was productive again. “Mathematicians Are People,
Too,” by L. Reimer and W. Reimer, p. 88.

14. “Teeny bit of history,” because you can easily read your fill on the web.
15. “The Founder of Group Theory” by G. A. Miller, American Mathematical Monthly 17 (Aug–Sep 1910), pp.

162–165. http://www.jstor.org/stable/2973854.
16. My senior colleague Robert Sugar, who took a course on group theory at Princeton from Wigner, told me the

following story. On the first day, Wigner asked the students whether they knew how to multiply matrices.
Given Wigner’s reputation of delivering long dull discourses, the students all said yes of course, and in
fact, as graduate students at Princeton, they all knew how to do it. But Wigner was skeptical and asked a
student to go up to the blackboard and multiply two 2-by-2 matrices together. The guy did it perfectly, but
unfortunately, Wigner used a convention opposite to what was (and still is) taught in the United States.
Wigner was convinced that the students did not know how to multiply matrices, and proceeded to spend a
week tediously explaining matrix multiplication. If you look at the English edition of Wigner’s group theory
book, you would read that the translator had, with Wigner’s permission, reversed all of his conventions.

17. The stories Wigner told about the early days of group theory used here and elsewhere in this bookare taken
from The Recollections of Eugene P. Wigner as told to Andrew Szanton, Plenum Press, 1992.

18. As you might have heard, the four Hungarians, Leo Szilard, Eugene Wigner, John von Neumann, and Edward
Teller, all Jewish, formed a legendary group that had major impact on physics. Listed here in order of age,
they were born within 10 years of one another. Wigner considered himself to be the slowest of the four, and
anecdotal evidence suggests that this assessment is not due to exaggerated modesty; yet he is the only one
of the four to have received a Nobel Prize.

19. Well, not quite—not even close.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



54 | I. Groups: Discrete or Continuous, Finite or Infinite

20. This surprises me, since one of Pauli’s famous contributions involves group theory. See the interlude to
part VII. From what I have read, Pauli was brilliant but mercurial and moody, and always ready for a good
joke.

21. As a child you memorized the standard 9-by-9 multiplication table; now you get the chance to construct your
own.

22. Conspiracy nuts might notice that the acronym CIA appears not once, but four times, in this table.
23. Mathematicians have listed all possible finite groups up to impressively large values of n.
24. As in the rather old-fashioned and formal “May I present [Title] So-and-so to you?”
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