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the two zeros. This is equivalent to the statement that
the phase shift is decreasing through —,'x at the second
zero, because the derivative of the phase shift is
proportional to (—ReD'/1V). Thus, our second zero is
not due to the Abers-Zachariasen mechanism, and no
alternative solution of the Abers-Zachariasen type is
present.
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An analysis of the effect of gravitation on hypothetical experiments indicates that it is impossible to
measure the position of a particle with error less than Ax& Q 6=1.6X10 "cm, where 6 is the gravitational
constant in natural units. A similar limitation applies to the precise synchronization of clocks. It is possible
that this result may aid in the solution of the divergence problems of field theory. An equivalence is estab-
lished between the postulate of a fundamental length and a postulate about gravitational field Quctuations,
and it is suggested that the formulation of a fundamental length theory which does not involve gravitational
effects in an important way may be impossible.

I. INTRODUCTION

HE presence of divergences in quantum field
theory leads one to consider the possibility of

modifying the formalism by introducing a fundamental
length into the theory. Although the proof by Kallen'
has recently been questioned, ' ' it still seems not un-

likely that the renormalization constants of quantum
electrodynamics and other 6eld theories are indeed
infinite. Although the renormalization theory permits
one to get finite results for physically observable
quantities in any order of perturbation theory, the
existence of the infinite quantities makes one feel some-
what uneasy about the theory. Moreover, in the model
proposed by Lee,4 it has been shown' that the infinite
coupling constant renormalization leads in an exact
solution to the existence of physically unacceptable
"ghost" states, which destroy the unitarity of the 5
matrix; and it may be' that similar difriculties are
contained in the more realistic field theories as well.
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It is often stated that the divergences arise from the
concept of a point particle. This is true, but in a some-
what indirect sense. In the present theory, due to the
possibility of pair creation, a single particle cannot be
localized more closely than its Compton wave length
without losing its identity as a single particle; i.e., if the
mass of the particle is m, its position will be uncertain
by hx&1/ns (Thro. ughout this paper we use natural
units: A=c= 1.) Therefore, it might be more accurate
to say that the divergences arise from the assumption
that field quantities (such as electric field strength,
charge density, etc.) averaged over arbitrarily small
space-time regions are observable in principle, thus
making it physically meaningful to make use of local
interactions in the theory. The work of Bohr and
Rosenfeld~ ' tells us how these quantities can be meas-
ured in the case of quantum electrodynamics using test
bodies equipped with springs, etc. However, these
authors assume that test bodies having any desired
properties can exist in principle. It is clear that the
average of a field quantity in a volume V cannot be
measured by a test body unless the test body itself is
known to be located in the volume under study. It is
therefore possible to state that the divergences in a
field theory arise, not from the assumption that the
particles being studied in the theory are point particles,
but from the assumption that point (or arbitrarily
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small) particles can exist "in principle, " and can be
used as test bodies for measuring the various field
quantities. For instance, in the case of quantum electro-
dynarnics, in which the particles being studied are
electrons and photons, the electron cannot be localized
more closely than Ax 1/m without losing its identity
as a single particle. Nevertheless, the theory contains
divergences because the interactions are local, and this
depends for its physical interpretation on the assump-
tion that test particles exist in principle which can be
localized with unlimited precision.

Therefore, if there should exist a fundamental length"
4 such that no particle can be localized with greater
precision than Dx&E, it would appear from the above
discussion that this would remove the physical cause of
the divergences, and incorporation of the fundamental
length into the formalism should lead to a natural cutoff
for the divergent integrals. Moreover, the existence of
such a fundamental limitation on the possibilities of
measurement would be of some interest in itself,
independently of its eRect on the divergence problem.

The above discussion suggests at once a possible
physical postulate which would lead to a fundamental
length. If we postulate that no elementary particles can
exist with mass greater than M, then, as mentioned
above, an elementary particle will always have
Dx&1//3II, and composite particles will presumably
have "radius" &1/3II also. Therefore, the best possible
test particle can only be used to measure field quantities
averaged over regions of dimensions of order 1/M in
each direction, so that the length 1/M satisfies our
definition of a fundamental length. If we assume that
3f is of the order of the masses of the heaviest baryons
known at present, we obtain 8 10 "cm.

Another possibility, which has been speculated on by
several authors, '"" is that the fundamental length
might arise in some way from the consideration of
gravitational eRects. In this case, we would have

QG=1.6&&10 " cm, where G is the gravitational
constant in natural units. "Although the first possibility
would probably be favored by most physicists at the
presen, t time, this latter idea cannot be ruled out
completely, and it is our intention in this paper to
examine it from the point of view of a few thought
experiments.

Before starting, a few remarks on the meaning of a
fundamental length in terms of experimental results
might be in order. In the first place, it seems clear that
a single measurement can always be read to whatever
accuracy one pleases. For instance, one could focus
light from the body being measured through a pinhole

'0 From now on, whenever the term "fundamental length" is
used in this paper, it refers to a length having the physical inter-
pretation discussed here, that is, a limitation on the possibility of
measurement.

'~ J. A. Wheeler, Ann. Phys. (N. Y.) 2, 604 (1957)."S.Deser, Rev. Mod. Phys. 29, 417 (1957).
'3 In cgs units we would have 4~(GA/c')'~'.

on a photographic plate at a great distance, so that a
small change in the position of the body would produce
a large change in the position of the spot produced on
the plate by a single photon used in the measurement.
The uncertainty manifests itself in the nonreproduci-
bility of the results. That is, successive measurements
show fluctuations. Another point that should be
mentioned is that, for reasons of covariance, if a funda-
mental length exists we would expect a similar limita-
tion to apply to the reading of a clock, . Thus, the physical
content of a fundamental length postulate is that
successive measurements of the position of a body, or
of the reading of a clock, will show fluctuations at least
of the order of S.

This paper will consist of two independent parts. The
first part (Secs. II—V) deals with the question of whether
present physical ideas about gravitation, together with
the uncertainty principle, are sufficient to lead to a
fundamental length. In these sections, it is initially
assumed that one can set up a well-defined I.orentzian
coordinate system, and that the position of a particle is
a well-defined quantity in this frame of reference. It is
then shown that the gravitational eRect of the act of
measurement on the particle being measured produces
an uncontrollable change in its position, such that the
result of an immediately subsequent measurement of
the same kind cannot be forecast with greater accuracy
than Dx QG. In detail, Sec. II shows that a particle
cannot be bound within a region of radius smaller than
E gG; Sec. III deals with position measurements on

free particles, and Sec. IV with clocks; Sec. V shows
that the results hold also for measurements on macro-
scopic bodies. In these sections we make no a priori
restrictions on the possible properties of elementary
particles. Thus it is always assumed, for i~stance, that
the bodies being measured are suKciently heavy to
avoid complications due to pair creation, and the
clocks satisfy the relevant criteria of Salecker and
Wigner. '4 Hence the possibility is not ruled out of a
larger fundamental length due, perhaps, to a maximum
elementary particle mass as discussed above. Our policy
is always to make the most optimistic assumptions
about the realizability of particles having desired
properties, so that the resulting limitation on the
accuracy of measurement is as general as possible. Ke
also assume that the gravitational interaction has
approximately its classical form, at least on the average.
The results of these sections cannot be considered as
rigorously established, because they deal with only a
finite number of thought experiments, and the possi-
bility always exists that someone will be clever enough
to design a hypothetical method of measurement which
avoids these results. Nevertheless, it is believed that
the results are reasonable, and the arguments for them
fairly convincing. This is reinforced by the fact that
more formal considerations"" lead to similar results;

H. Sale&ker @Lid E. P. Wigner, Phys. Rev. 109, 571 (1958).
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in this connection, an Appendix to this paper contains
a derivation of the fundamental length limitation on
clock synchronization which does not depend on the
particular method of measurement used.

The second part of the paper (Sec. VI) deals with the
relation between fundamental length and gravitational
field fluctuations; it is quite independent of the preced-
ing sections. The idea is roughly as follows: Suppose
there exists a fundamental length S. Since a space-time
coordinate system, to be physically meaningful, must
be referred to physical bodies, it follows that no
I.orentzian coordinate system can be set up capable of
specifying the coordinates of a space-time event more
precisely than Ax S. Conversely, if the limitation on
the coordinate system hoMs, the limitation on the
localizability of particles follows immediately. Thus,
the fundamental length postulate may be equivalently
stated as a postulate of a limitation on realizable
coordinate systems. Now a coordinate system may be
pictured as a distribution of bodies and clocks through-
out space; the clocks are synchronized by means of
light signals, and the distances between the bodies are
known and held constant, also by means of light signals.
In this picture, the fundamental length appears as a
limitation on the accuracy of the synchronization of the
clocks, and of the knowledge of the distances between
the bodies. In terms of the light signal experiments this
means, for instance, that the time required for a light
signal to propagate from body 3 to body 8 and back
(as measured by a clock at A) is subject to uncontrol-
lable fluctuations. However, from the point of view of
general relativity, it is completely equivalent to define
the coordinates associated with each body and clock
reading by some arbitrary convention, and to regard
the light signal experiments as yielding information
about the space-time metric associated with the
coordinated system so defined. From this point of view,
fluctuations in the results of the light-signal experiments
are to be regarded as indicating fluctuations in the
metric, i.e., in the gravitational field. Thus, it seems
qualitatively plausible that a fundamental length
postulate is equivalent to a postulate about gravita-
tional field fluctuations. In Sec. VI, this is taken up in
more detail, and it is shown, again by means of thought
experiments, that such an equivalence does exist. If
there is a fundamental length, it leads to uncertainties
in the measurement of gravitational fields; on the other
hand, if the gravitational fmld is uncertain, its unknown
effect on the motion of a particle between measurements
is such as to lead to a fundamental length. The question
of the measurability of gravitational fields has been
discussed before, ""but not from this point of view.

The results are discussed briefly in Sec. VII.

"E.P. Wigner, Revs. Mod. Phys. 29, 255 (1957); Phys. Rev.
120, 643 (1960).

"Wright Air Development Center Technical Report 57—216;
Armed Services Technical Information Agency Document No.
AD 118180, 1957 (unpublished).

The distribution of energy in this case is spherically
symmetrical, at least on the average, so we may use the
Schwarzschild exterior solution for the gravitational
potential outside the region in which the particle is
confined. " We have, for the potential at a distance
r& R from the center of the region:

g = —GM/r & G/Rr .— (2)

Just outside the region in which the particle is confined,
(2) reduces to

g = —GM/R & —G/R'. (3)

However, the physical interpretation of the general
theory of relativity requires" that

gpp
——1+2&&0.

Combining (3) and (4), we obtain

R'& 2G, R& (2G)'".

Equation (5) is the result we were seeking in this
section. It tells us that a particle cannot be bound in a
region whose radius is less in order of magnitude
than gG. This means that any particle can be con-
sidered more or less free as far as motion over distances
of order of magnitude gG or less is concerned. There-
fore, to show in general that a particle cannot be
localized with less uncertainty than hx&QG, it will
suffice to demonstrate this for free particles, which will
be done in the next section.

The distar ce R used in this section is defined by the
equation 0-=2mR, where 0 is the circumference of a
circle drawn around the region in question. The radius
of the region as measured directly by ideal measuring
rods is somewhat greater" than this R, so the inequality
(5) holds for this radius as welL

There may be some question as to whether (4) really
needs to be required, since, it may be said, it is at least
conceivable that some physical interpretation may be
given the Schwarzschild solution in the region in which
(4) is not satisfied. However, it is easy to show that a
signal can never penetrate into this region from outside,
so that the region in which (4) fails to hold is certainly

'7 L. D. Landau and E. Lifshitz, The Classical Theory of Fields,
translated by M. Hamermesh (Addison-Wesley Press, Inc. ,
Cambridge, Mass. , 1951), Chap. 11.

II. BOUND PARTICLES

Consider a particle of rest mass m bound by some
force field in such a way that it is confined in a spherical
region of radius R. According to Heisenberg s principle,
the uncertainty in the momentum of the particle is
given by hp&1/R. The gravitating mass M of the
particle is equal to its average energy, and is of the order

M = ((rosy Ps)
i ~s) & ( ~ P ~ )&gP & 1/R.
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inaccessible to observation. Thus, if a bound particle is
to be observable at all, the region in which it is bound
must satisfy (5).

III. FREE PARTICLES

A. Microscope Experiment: Nonrelativistic
Treatment

The simplest method for measuring the position of
a free particle is by means of a microscope. In this
experiment, a photon of frequency P is scattered by the
particle into the aperture of a microscope, where it is
focused and observed. The direction of the trajectory
of the photon from the particle into the microscope is
not known exactly but is spread over an angle c. The
photon interacts strongly with the particle over a region
of radius r. Now if it is desired to measure the x coordi-
nate of the particle by this method, there are several
sources of uncertainty. In the first place, due to the
limited resolving power of the microscope, we have

1

P Slllt P

Also, the photon may be scattered from any point in
the region of radius r surrounding the particle. There-
fore,

Presumably, r 1/v, but this will not be needed.
The photon cannot be focused while it is still inter-

acting strongly with the particle; therefore, the time v.

which must elapse between the scattering event and.
the recording of the result must in general be of the
order of the time required for the photon to move a
distance r away from the particle. Thus, at least v-) r.

In this subsection, we treat the problem from a non-
relativistic point of view, in order to give a simple
physical picture. The final result. is then obtained
relativistically in the following subsection. The gravitat-
ing mass of the photon is P, so that during the time when
the photon is proceeding from the particle toward the
microscope, the particle experiences a gravitational
acceleration in the direction of the photon given by

a Gv/r'

If the particle does not attain relativistic velocities, the
time required for the photon to escape from the region
of strong interaction is of the order of r, so from (8), if
the particle is originally at rest, it acquires a velocity
in the direction of the photon given by

n Gv/r.

The average velocity of the particle during the process
is of the same order of magnitude as the final velocity,
so that in the time r it moves a distance

(10)

This motion is in the direction taken by the photon
which, however, is unknown. The projection of the
gravitational motion on the x axis, therefore, is un-
certain by approximately L sine, which gives with (10)
a further uncertainty in our knowledge of the x coordi-
nate of the particle at the end of the experiment.

AS~Gp sing.

Combining (6) and (11), we obtain

~x&gG. (12)

The above derivation is simple, but not entirely
correct even from a nonrelativistic point of view, since
it does not take proper account of the conservation of
momentum in assuming that the particle is at rest at
the time the photon starts toward the microscope.
Another derivation which exhibits the momentum
conservation explicitly, is the following:

Due to the gravitational attraction of the particle,
the photon acquires an increased energy and momentum
while it is in the vicinity of the particle. If the momen-
tum of the photon when it is far from the particle (such
as when it is focused in the microscope) is v, its momen-
tum during the scattering process is of the order

k v+mGv/r. (13)

with a corresponding velocity uncertainty

fv Gv)
»~ I +

I
sine.

&m r) (15)

The extra velocity due to the gravitational interaction
will be removed by the gravitational pull of the photon
as it moves away, but will persist while the photon is
in the vicinity of the particle, that is, at least for a time

r. This leads to an uncertainty in the final position
of the particle of the order

(vr
Ax& r».

~

—+Gv sine& Gv sine. (16)

(16) is identical with (11), and can, again be combined.
with (6) to give the desired final result (12).

The basic idea in both of these derivations is very
simple: In order to reduce the uncertainty (6), it is
necessary to use photons of very high energy; but a
high-energy photon carries with it a strong gravitational
field, which tends to move the particle. Moreover, the
effect of a gravitational field on the motion of the

The direction of this momentum is unknown, however,
since the direction taken by the photon is spread over
the angle e. This leads to an uncertainty in the x
component of the momentum of the particle during the
scattering process given by

Dp, -k sine (v+mGv/r) sine,
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particle is independent of the nature of the particle, a
property possessed by no other force. Thus, while the
position uncertainty arising from any other force
(e.g. , electromagnetic) could in principle be made
arbitrarily small simply by measuriog the position of a
very heavy particle, the result (12) is independent of the
mass of the particle being measured and is therefore a
fundamental limitation on the possibility of localizing
any conceivable particle.

The discussion in this subsection su6ers from a failure
to consider relativistic effects, and indeed it is easy to
see that the nonrelativistic approximation breaks down
just at the point where the gravitational interaction
becomes the dominant source of error. The uncertainty
due to (11) becomes comparable with that due to (6)
and (7) at about the same values of v and r at which
the velocity given by (9) becomes of the order of unity.
Moreover, the Newtonian law of attraction (8) is not
valid for the case of a gravitational 6eld which is
changing rapidly with time, such as that of a photon.
Nevertheless, the result (12) is still correct, as will be
shown in the next subsection.

B. Microscope Experiment: General
Relativistic Treatment

In this subsection we wish to establish that a result
similar to (10) holds in the general relativistic treatment
of the gravitational interaction. Since in a general
discussion it is necessary to consider the possibility of
particles other than photons being used to locate the
particle, and since this causes no special diKculties, we
will proceed to calculate approximately the gravita-
tional field of a test particle of rest mass p, and momen-
tum k. The case of the photon is obtained by letting
p ~ 0. Its energy v a~d velocity e are then given by

(g') =,; (g')o =1+24';
1+2&'

(18)

where

Gp, Gp,

x' ' x' ' (19)

The, primed and unprimed coordinates are related by
the transformation

Schwarzschild solution is a static solution, this neglects
the fact that the state of motion of the test particle
changes during the experiment. However, its gravita-
tional field should in a rather short time attain (at least
in order of magnitude) the value it would have if the
motion of the test particle had been uniform io the
direction taken after the scattering. Ke therefore
proceed as follows.

Ke choose a coordinate system with x' axis in the
direction taken by the test particle after the scattering;
the origin is a point which we take to be the beginning
of the motion of the test particle in the x' direction. The
world line of the test particle is thus x'=ex', for the
portion of its motion that we are considering. The
measured particle is somewhere "behind" the test
particle, that is, its x' coordinate is less than vx'. We
now transform the test particle to rest by a Lorentz
transformation, denoting the rest frame by primes. In
the rest frame, the measured particle moves along the
negative (x')' axis. Along this axis, the metric tensor is
given by'7

v —(~2+P2) 1/2

p —P (~2+P2)—1/2 (17)
(x')'= x', (x')'= x',

(x~)1 (gi i/go) (1 ~2)—i/2.

In calculating the detailed motion of the particle being
measured under the gravitational action of the test
particle, the time dependence of the gravitational field
is quite important, and this, of course, involves retarda-
tion effects in an important way. "However, we do not
need to calculate the detailed motion, and for our
purposes it will sufhce to know the average value of the
gravitational potential while the two particles are in
interaction, without inquiring as to how it came about.
To this end, we can transform the test particle to rest
by a Lorentz transformation, use the Schwarzschild.
solution for its gravitational Geld, and then transform
back to the laboratory coordinate system. Since the

"The two-body problem in general relativity has been treated
systematically by B. Bertotti, Nuovo Cimento 12, 226 (1954);
4, 898 (1956).

(x')'= (x'—vx') (1—e')—'/',

gi= L(x')i+it(g')oj(1 —P)—i/2.

x'= L(x')'+v(x') j(1—5')-'/'. (20)

To transform the metric tensor given by (18) to the
unprimed system, we use the general transformation
law for a second-order covariant tensor

(21)

where we use the usual Einstein summation convention.
To find the components of the unprimed metric tensor
in the region of interest to us, we use (18), (19), (20),



C. ALDER MEAD

and (21), and easily obtain:

g22 g88 i j g20 g80 g21 g31 g28 0 )

1+2/
goo= +2/;

1+2'(1—v')

—1+2&v'
g11= +2v Qq

1+2'(1—v')

the energy-momentum tensor of a massless particle
moving with constant momentum.

The components of the metric tensor "seen" by the
measured particle during the time we are concerned
with are given approximately by (27). We do not need
to calculate its motion in detail, but merely note that
its world line must be time-like. That is, if n is the
velocity of the measured particle in the x' direction, we
must have"

where

glo g01 —2',
1+2/ (1—v')

ds = {gpp+2gipQ+giiQ ) (dÃ ) &0.
(22)

(27) and (30) may be combined to give

~& (g —1)/(g+1),
he.e

(30)

(31)

—2p'= 2 (Gv/r) (1—v') (1. (24)

and r=vx' —x' is again the mean "distance" between
test particle and measured particle during the scattering
process.

Ke now proceed to discuss the sources of error, and
inquire whether it is possible to have Dx((QG. First,
to avoid a breakdown of space-time structure in the
rest frame, we must have Lcf. Eq. (4)$:

q= (2Gv/r) (1+n). (32)

The two particles remain in interaction until the test
particle has moved a distance r away from the measured
particle. Since the velocity of the test particle cannot be
greater than 1, the time ~ required for it to move a
distance r from the measured particle is at least
r&r/(1 —u). The distance moved by the measured
particle during this time is

It is clear that (6) and (7) continue to hold. Combining
them with (24), we find

L=u7&
1—I

ur r(g 1) rq—)
2 2

(33)

Ax'& r/v& 2G(1—v') .

I &Gv.

since by (26) and (29) q))1. From (29), (32), and (33)
25

Therefore, we see that we certainly cannot have
Ax2&&G unless (34)

(1—v')((1, and —P =Gv/r))1. (26)

1+2/(1+n) 1—2(Gv/r) (1+n)

Thus, we need only consider the case where (26) is
satisfied. Using (26), we can set v=1 in (22), which
then becomes

Equation (34) gives the distance moved by the meas-
ured particle in the direction taken by the test particle,
and is identical with (10). As before, its projection on
the x axis fixed in the laboratory is uncertain by L sin6,
leading to an uncertainty in the final x coordinate of
the particle,

goo=
Ax+Gv sine. (35)

g»=

glo gol

2 (Gp/r) (1+n)

where

Because of (24),

=n1+ y2(1 —v')

0&+&i.

—1—2 (Gv/r) (1+n)
(27)

(2g)

(29)

(6) and (35) combine to give Ax&QG, which is identical
with (12).

It should be noted that the treatment given here does
not contradict momentum conservation, although it
might appear to at first glance. If the test particle is
moving with velocity close to that of light, its gravita-
tional force on the measured particle is repulsive for
much of the motion. The particle is accelerated to a
velocity satisfying (31) largely by retardation effects
during the early part of the motion, and is then slowed

If the reader has any doubts as to the validity of (27)
in the limit p —+0, he may remove them by directly
substituting (27), along with its extension in, to other
regions of space, into the Einstein field equations, with

'9 We are neglecting any velocity the particle might have in the
x' or x' directions. However, it is easy to show that for fields
satisfying (26), such a velocity could not persist long enough to
interfere with the Anal result; in other words, the particle could
not achieve the "escape velocity" in this direction.
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down, being left with a momentum such that total
momentum is conserved for the whole process. This is
similar to the problem of the gravitational action of a
pulse of light, which has been worked out by Tolman. "

We have neglected the interaction of the test particle
with the gravitational field of the measured particle,
but it seems hardly likely that this will affect the result.
Its main effect should be to increase the kinetic energy
of the test particle while in the vicinity of the measured
particle, thus increasing the gravitational field of the
test particle, and increasing the result (34). So it seems
that inclusion of this effect would strengthen, not
weaken, the result.

We have also neglected the effect of quantum Quctua-
tions in the gravitational field. However, these would
be expected to provide an additional source of un-
certainty, not remove those already present. Hence,
inclusion of this effect would, if anything, strengthen
the result.

The main defect of the treatment given in this sub-
section is the neglect of the acceleration of the test
particle during the measurement. It seems clear on
physical grounds, however, that these effects must be
transient; that is, after a suKciently long time, the
gravitational field of the test particle should be nearly
the same as if its motion had been uniform in the
direction taken by it after the scattering process. What
we assume is that the field assumes its asymptotic form,
at least in order of magnitude, for an appreciable portion
of the time when the two particles are still close
together. Since we are only interested in orders of
magnitude, and don't care if we are in error by, say, a
factor of 10 or 20, this assumption seems reasonable.
To invalidate the results, one would have to assume
that Eq. (22) does not even give an order of magnitude
approximation to the field for any appreciable fraction
of the time of the experiment. This seems rather far-
fetched, though perhaps not impossible.

Another point worth mentioning is that the signifi-
cance of the coordinate x' during the measuring process
is not clear, and it may be incorrect to identify it with
a distance. However, at the end of the measurement, as
at the beginning, the strong gravitational field has
disappeared and x' has all the properties of a distance
in the ordinary sense. This is sufhcient for our purposes:
The value of x' at the end of the experiment differs from
that at the beginning by an unknown amount, which
makes it impossible to predict precisely the result of a
subsequent position measurement.

To summarize the argument of this subsection: It is
6rst shown that, because of (6) and (7), the result (12)
cannot be avoided unless (26) is satisfied. It is then
shown that if (26) is satisfied, the result (12) still holds,
so it follows that it holds in all cases. The result holds
no matter what kind of particles are used as test parti-

"R. C. TolmMI, Relativity, Thermodynamics, and Cosmology
(Clarendon Press, Oxford, 1934), Sec. 114.

cles. However, the microscope method is not the only
conceivable way in which the position of a particle may
be ascertained. In the next subsection we give a brief
discussion of some other methods, arid some possible
refinements on the microscope method.

C. Other Methods and Refinements

Dx& Dt& 1/Av& 1/v, (36)

where v is the average frequency of the light signal, Dv

We first consider some possible refinements of the
microscope method for locating the particle, in order to
ascertain whether they could be used to violate (12).
First, one might hope to "follow" the gravitational
acceleration of the particle by some means, perhaps
indirect. However, it is clear that this would not help.
If we ascertain the direction of the gravitational
acceleration experienced by the particle, we can infer
from this the direction taken by the photon toward the
Diicroscope; so all we gain is an effective reduction in
the angle e, which does not appear in the final result.
This argument is independent of the means used to
follow the gravitational motion, so we can conclude that
the uncertainties (6) and (35) cannot be reduced
simultaneously. However, suppose it could be arranged
that the microscope records the position of the particle
at the end of its contact with the photon. In this case,
its position at the beginning of the experiment would be
unknown, but we would know its position at the end.
But even if this is possible (which the author doubts),
the knowledge thus gained has no physical significance.
We can only say that we have measured the position
of a particle precisely if we can predict precisely the
result of an immediately subsequent identical measure-
ment. If a microscope experiment yields the position
of the particle at the end of its interaction with the
photon, a second measurement will give its position at
the end of its interaction with the second photon, and
this cannot be predicted from the result of the first
experiment with greater precision than that given by
(12). This argument also provides an additional
refutation of the possibility of avoiding (12) by follow-
ing the gravitational acceleration of the particle. Even
if this could be done, we could not predict the outcome
of a subsequent identical experiment, except within the
limitation imposed by (12). Still another possibility is
to attempt to compensate the gravitational force, e.g. ,
by having the particle emit a photon. But this could
never compensate the uncertainty, only shift the
average motion.

A related method for locating a particle is that in
which the time for a light signal to propagate from
some reference point to the particle and back is meas-
ured. If the time of emission and/or return of the light
signal is in doubt by ht, then we have for the uncertainty
in the position
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the spread in frequency, and we have made use of the
Heisenberg principle

Avht&1. (37)

Zx&r. (38)

From (36) and (38), we have

As before, the light signal (consisting of at least one
photon) may be reflected from a region of radius r
around the particle, so that

end of the experiment by an amount

~T&Z«& 1/~» 1/. , (41)

where we have again made use of (37), and v is again
the frequency of the photon. T is also in error by an
amount of the order r, the time during which it is
strongly interacting with the photon; that is, the
reading brought back by the photon might correspond
to any time within the interval r. Also, 7-&r. So we
write

Ax'& r/v. (39)

In order to have Dx'((G, therefore, we must have
Gv/r))1. In this case, (26) is satisfied, so that from (34)
the particle moves during the experiment a distance of
the order Gv. If v is not known exactly, this leads to an
uncertainty in the final position given by

(40)

(36), (37), and (40) combine to give (12) again. Refine-
ments on this experiment similar to those already
discussed for the microscope experiment might be
tried, but would fail for similar reasons.

Another method for localizing a particle is to cause
it to pass through a very narrow slit. However, the slit
must be made up of elementary particles, and the
precision with which they can be held in fixed positions
is limited by (5). Therefore, the edges of the slit will

be "fuzzy" over a region at least of extent gG, with
the result that the slit could not be used to locate a
particle closely enough to violate (12). For a similar
reason, it will not help to tie the particle to a long
pointer. Because of (5), it could never be tied tightly
enough for the pointer to be sensitive to movements of
the particle over distances of order of magnitude gG
or less. Indeed, the pointer itself would be quite "limp"
with respect to movements of its constituent elementary
particles over distances of order QG or less.

Although a completely exhaustive discussion of
methods for locating a particle is obviously impossible
without taking up an undue amount of space, it is felt
that the examples discussed in this section are sufIi-

ciently typical so that there can be little doubt about
the result.

IV. CLOCKS

The usual method by which a clock is synchronized
with some standard clock is by passing light signals
between them, with a light signal consisting of at least
one photon. "If the time of emission and/or return of
the light signal from the standard is uncertain by At,
the reading T of the other clock is still in doubt at the

"An alternate treatment of the clock problem, applicable to
macroscopic as well as microscopic clocks, is given in the Appendix.

If the clock remains stationary during its interaction
with the photon, the time recorded by it during the
interaction is

"pT= rgg pp. (43)

If the frequency is not known precisely, this leads to an
uncertainty in the final clock reading given by

hT &2GAv/(1 —4Gv/r)'i'& 2GA v.

(37), (41), and (45) combine to give

(46)

The second inequality in (45) holds because we have
assumed that the clock remains at rest throughout, and
this is impossible unless goo~& 0.

A more general derivation is as follows: From (41)
and (42), we cannot have AT&(QG unless Gv/r))1. In
this case we can use the results of the preceding section.
The clock cannot remain stationary in this situation
but must move with a velocity satisfying (30).As shown
previously, it moves a distance of the order Gv during
its interaction with the photon; since its velocity cannot
be greater than unity, the time 7. during which photon
and clock are in interaction is also of the order Gv. The
time recorded by the clock during this time is the
proper time, given by [cf. Eq. (30))

pT= ds~ (goo+2goiu+giiN ) (47)

The elements of the metric tensor are given by (27),
with n= 1. Using (27) and (47), it is easy to show that

G. ~~2

bT&r 1 4—
r

Inserting p=n=1 in (27), which corresponds to the
test particle being a photon, we obtain

gpp= 1—4Gv/r.

Combining (43) and (44), and noting that r r in this
case since the clock remains stationary, we And

bT~ (1 4Gv/r)"'r = (1——4Gv/r)'"r
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That is, the clock is essentially stopped during the
interval 7- Gv, and this must be taken into account in
making predictions of future readings. However, if v is
not known precisely, we will not know how great an
allowance to make for this, and the error introduced
is given by

persisting for a time R is seem by the entire macroscopic
clock. during each microscopic measurement. Thus, as
in Sec. IV, the error in T produced by oiie microscopic
measurement is given in order of magnitude by (49),
and since E microscopic measurements must be made,
we have

AT&GAp. (49) ~T&X~I2G~. . (52)

(37), (41), and (49) can be combined to give (46) again.
The considerations of this section show that the same

limitations apply to the synchronization of clocks as
were derived in the earlier sections for the localization
of particles. This was to be expected on grounds of
relativistic invariance. Refinements similar to those
previously discussed for the localization experiments
might be tried, but could be refuted by similar
arguments.

V. MACROSCOPIC BODIES

The arguments of the preceding sections do not
include any assumptions about the mass or size of the
objects being tested, so it is clear that they apply
equally well to direct position aod time determinations
on macroscopic bodies. " However, there is another
kind of macroscopic measurement which deserves
further attention. This consists of determining, e.g. ,
the positions of a large number of microscopic bodies
and taking the average. This average might be inter-
preted as the position of a macroscopic body, or in the
case of time measurements, as the reading of a macro-
scopic clock. However, this method does not avoid the
results of the preceding sections. We show this below
for the case of the macroscopic clock; it is clear that
analogous arguments hold for position measurements.

Suppose we have a "macroscopic clock" made up of
X microscopic clocks spread out over a region of radius
R. The reading of the macroscopic clock is defined as

T=N 'P T;,

where the summation goes over all the microscopic
clocks, whose readings are taken i~dependently. Thus,
X photons must be used, and for simplicity we assume
the errors in the frequency and time of all the photons
are the same, although the result still holds without
this assumption. The average distance of one of the
microscopic clocks from the standard with which we are
trying to synchronize the macroscopic clock is at least
of the order of R. All the T; are subject to the limitation
(41), but due to the independence of these errors, this
leads to an error in T of only

ZT&r-»2~~.

However, the errors due to the gravitational eRect on
the rate of the clocks are not reduced, but increased.
Due to the long-range character of the gravitational
force, an average gravitational potential of order Gv/R

Combining (51) and (52), we obtain

ST&G. (53)

That is, the fundamental length result holds equally
well for the reading of a macroscopic clock, and, for
similar reasons, for the position of a macroscopic body
as well.

VI. EQUIVALENCE OP FUNDAMENTAL LENGTH
WITH GRAVITATIONAL FIELD FLUCTUATIONS

A. Effect of Fundamental Length on Gravitational
Field Measurements

In this subsection, we postulate the existence of a
fundamental length and inquire as to its effect on
gravitational field. measurements. The fundamental
length postulate still allows us some freedom of choice
as to what assumption we make regarding errors in
macroscopic measurements. For instance, as was shown
in the preceding section, in the case of a fundamental
length arising from gravitational eRects we have

Ax&lP(R/4), (54)

for the error in a coordinate measurement on a body
(macroscopic or microscopic) spread over a cubic
space-time region of volume R4. Here P(y) is a non-
increasiog function which is approximately unity when

y is unity and need not be defined for y«1. Thus, for
the two special cases mentioned above, we have P=1
and P= y ', respectively. We choose a coordinate system
which is quasi-Lorentzian on the average and for the
moment assume that the gravitational field is not too
strong.

Now, assuming that (54) holds, suppose we wish to

for any measurement, microscopic or macroscopic.
Another possibility would be to postulate that the errors
in position measurements on elementary particles are
independent, but that the maximum number of such
independent measurements that can be made in a space-
time volume R4 is given by N= (R//)4. In this case we
would have, for the error in a macroscopic measurement
spread out over a space-time region of four-volume R4,

Ax&4/gN-4(//R)'.

We can include both these possibilities, and many
more, if we simply require
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where ~i and v2 are the results of two velocity measure-
ments separated by a time T. We see that Ii is uncertain
by at least

AF &61//T &60/R, (55)

where hv is the error in either one of the velocity
measurements, and we note that T cannot be greater
than R. A velocity measurement, in turn, consists of
two successive position measurements separated by a
time t&R. We find

0= (xp —xi)/t;

measure a component of the gravitational field F
averaged over a space-time region of volume E4. To do
this, we must measure the acceleration of a body
conhned in the given region. We have

F= (110 01)//T—,

time be assigned the space coordinates x=y =s=0, and
that of 8 the coordinates x=L, y=s=0. The time of
an event taking place at A is given by the reading of
2's clock, and that of an event at 8 by 8's clock, . If we
define our coordinate system in this way (which is as
good a way as any), there can be no question of fluctua-
tions in the coordinates of A and 8, since these are fixed
by convention; for the same reason the time of each
single event can be known exactly. In this case, the
light signal experiments must be regarded as yielding
information about the metric tensor associated with
the given coordinate system in the space-time region
swept out by the world-li~e of the light signal. This
world line must be a "null geodesic, " i.e.

ds = gppdt +2gpidxdt+giidx =0.

We find for the time of propagation:

and, with the aid of (54)

~.& ~x/t &ax/R&SP (R/8)/R. (56)

gpl+ (gpi g11gpp)

gao

L, (60)

Combining (55) and (56), we obtain

aF &8 p( R8/) /R'. (57)

From (57), we see that the average gravitational
potential (or component of the metric tensor) in the
region is uncertain by

in which the g's represent suitable averages over the
region through which the light signal passes. Thus, a
measurement of 7- gives us some information about the
metric tensor. If r is subject to fluctuations given by
(59), we see from (60) that the average value of one or
more of the components of g must be uncertain by

Ag &ZP (R/4)/R. Dg &Zp (R/8)/L. (61)

a.&gp(R/4) . (59)

On the other hand, we are permitted to regard the two
bodies and their clocks as defining part of our coordinate
system. Thus let the measured position of 3 at any

Equation (58) should riot be thought of as applying
independently to all components of the metric tensor,
but to those components, or linear combinations of
components, which are taken as independent. In
general, the different components may be related by
some subsidiary ("gauge") condition which is used to
fix the coordinate system. Equation (57) presumably
applies to any Christo6el symbol I', I„ in the given
coordinate system.

Another example, more closely related to the situation
discussed in the introduction, is as follows: Let there
be two bodies, 3 and 8, each of radius R, separated by
a distance L&R along the x axis. Each body is equipped
with a clock, and the two clocks are kept synchronized
as closely as possible; however, if (54) holds for clock
readings as well as for position measurements (as it
must), an exact synchronization will be impossible. In
particular, if a light signal leaves A at a time t (meas-
ured on A's clock), and arrives at 8 at a time t+r, as
measured on 8's clock, then the time of propagation ~
will be subject to fluctuations given by

Equation (61) agrees with (58) for the special case
L R. For the gravitational force, which is made up
of derivatives of the g's, we have

AF &ZP (R//)/L', (62)

B. Effect of Gravitational Field Fluctuations
on Coordinate Measurements

In this subsection, we initially postulate the existence
of gravitational field fluctuations given by (57), (58),
(61), and (62), and study the consequences of this
postulate with respect to coordinate measurements.

First, suppose we wish to measure the position of a
particle with radius E. The time required to carry out
such a measurement is at least of the order of E, so that
the time between two successive measurements is of
the order of E.. During this time, the body is acted on
by the gravitational field, whose magnitude is not
exactly known. We have for the uncertainty of the

which agrees with (57) if L R.
We see from the above examples that the funda-

mental length postulate, as expressed by (54) and (59),
has as a consequence the existence of certain gravita-
tional field fluctuations, given by (57), (58), (61),
and (62).
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acceleration of the particle, from (57):

Da& AF &EP(R/8) /R' (63)

During the time R, this unknown acceleration will lead
to an uncertainty in the coordinate given by

ax&SP(R/S), (64)

x,b, ——x—L sino x—L'F, . (66)

Ke must correct for this effect in deducing the position
of the body from the result of the measurement.

x x,b,+I.'F, .

If F, is not known exactly, then x is uncertain by

Ax&L'AF .

Equation (68), in conjunction with (62), gives

(67)

(68)

which is the same as (54). This means that, if (57) holds,
the result of one position measurement cannot be used
to predict the result of a subsequent one more precisely
than is permitted by (64) or (54).

Furthermore, a glance at (60) is sufficient to show
that (59) is a consequence of (61) for the experiment in
which light propagates between two bodies.

As a further example, we consider the measurement
of the x coordinate of a body of radius R by means of a
microscope. Ke imagine that the microscope is placed
above the body to be measured, at a distance L&R, in
the s direction. Now if F, is the average x component of
the gravitational field in the region traversed'by a light
signal between the body and the microscope, the light
signal will be deRected in the x direction from its
original trajectory, such that its final direction of
propagation makes an angle 8 with its original direction,
where

sintI LF,.

Thus, when focused in the microscope, the light signal
will appear to have come, not from the point x at which
the particle is "actually" located, but from a point

strict validity on the assumption of slowly moving
bodies and of weak fields. That is, we must have
Dg«1, and Dv«1. Comparing this with Eqs. (56) and
(58), we see that the derivations are valid if R»/. As R
becomes of the order of 4, but remains somewhat larger,
the relativistic corrections become appreciable, but the
results remain correct in order of magnitude. The
derivation definitely breaks down for R&E. However,
this case is inaccessible to observation anyway if (54)
holds, since it refers to space-time regions of extent less
than the fundamental length. It is also inaccessible if
we postulate (58), since the fluctuations in the metric
tensor then become of the order of unity, leading to a
breakdown of the metric structure of space-time due to
violation of Eq. (4). Hence, it seems that the qualitative
results of the preceding subsections are probably more
general than would appear at first glance.

It should also be emphasized that an attempt to
carry out an argument similar to that of subsections A
and B, but using some field other than the gravitational,
would not lead to similar results without also making
some postulates about the properties (e.g. mass, electric
charge) of the bodies being measured. No field other
than the gravitational has the property of imparting
the same acceleration to all bodies, regardless of mass,
charge, etc. Therefore, while the existence of the
fundamental length would of course limit all field
measurements to averages over regions of extent
greater than 4, the equivalence between fundamental
length and field fiuctuations deduced above holds only
for the gravitational field.

These results enable us to view the problem of
formulating a fundamental length theory in a somewhat
different light. Instead of asking how to formulate a
theory in which (54) is obeyed, we can ask. the com-
pletely equivalent question of how to formulate a theory
in which (58) is obeyed. This question may be somewhat
easier to answer. For example, if we restrict ourselves
to the special case p= 1, we can answer it in a tentative
way simply by expressing the metric tensor as

ax&lp(R/4), (69) a'~ =g'i(0)+hv,

which again is identical with (54).
The conclusion of this subsection is that, if we

postulate the existence of the gravitational fieM fluctua-
tions (57), (58), (61), and (62), we can deduce the
fundamental length limitations (54) and (59).

C. Remarks

The results of the preceding subsections show that
the fundamental length postulate, as expressed in
Eqs. (54) and (59) is equivalent to a postulate about
gravitational field fluctuations, embodied in Eqs. (57),
(58), (61), and (62), in the sense that either postulate
may be deduced from the other. The derivations are
not completely general, since they depend for their

where g;;") is the Lorentzian metric tensor, and in-
serting a term in the Lagrangian density:

Zg
——(1/8) 8 h iB'h'". (7o)

Ag&l/R, (71)

which is the same as (58) for the special case considered

The coupling with the matter field is determined auto-
matically up to first order in h, by covariance require-
ments; e.g. , derivatives are replaced by covarian t
derivatives, etc. If we calculate the vacuum fluctuations
of the metric tensor from the Lagrangian (70), we find,
for the Auctuation in the average of a component of g
over a cubic space-time region of volume R4,
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here."However, this approach is just the quantization
of the gravitational field in linear approximation with
the role of the gravitational constant G taken by P.
Hence, such a theory would lead to gravitational effects
contrary to experiment unless' QG. Of course, it does
not necessarily follow that any fundamental length
theory would have to have 8 QG; however, the
equivalence between fundamental length and gravita-
tiorjal field Auctuatioris deduced in this section indicates
that al'y fundamental length theory is likely to involve
gravitational effects of some kind in an important way.

VII. DISCUSSION

We may summarize our conclusions briefly as follows:
First, present-day physical ideas about gravitation,
together with the uncertainty principle, imply the
existence of a fundamental length of order QG. This
fundamental length applies to macroscopic as well as
microscope measurements; in the notation of Sec. VI,

gG, P= 1. This does not rule out the possibility of
some larger fundamental length, but is to be thought of
as a lower limit. However, a larger fundamental length
probably could not be deduced from present-day
concepts without making some assumptions about the
properties of the particles being measured. Furthermore,
it is shown in Sec. VI that a fundamental length
postulate is equivalent to a postulate about gravita-
tional field fluctuations, in which the fundamental
length appears as the distance at which the metric
structure of space-time breaks down due to these
fluctuations. Hence, any fundamental length theory is
likely to involve gravitat:ional effects of some kind.

A word might be said about the correspondence
between the results of Secs. II—V with those of Sec. VI.
The fundamental length result derived in the earlier
sections correspond to 4 QG, /=1 in the notation of
Sec. VI. According to Sec. VI, this is equivalent to
postulating (58) which, according to (71), is just what
one gets for the vacuum Quctuation of the gravitational
field when one quantizes in linear approximation. It is
also to be noted that our result for the gravitational
field uncertainty is stronger than that of Peres and
Rosen, " who derive essentially our Eq. (57) with

QG, P(y)=y '. Discussions similar to theirs had
been given previously by Anderson, '4 and by Regge."

Superficially, it might appear from all this that the
thing to do is to go ahead with the quantization of the
gravitational field, sticking as close to the usual method
of quantization as the peculiar properties of the gravita-
tional field will allow. However, it should be remem-

"The Geld Lagrangian (70) can only be used in conjunction
with some subsidiary "gauge" condition. Therefore, Eq. (71)
cannot be thought of as applying independently to all components
of g, but only to those taken as independent dynamical variables.
Cf. the discussion following Eq. (58).

'3 A. Peres and N. Rosen, Phys. Rev. 118, 335 (1960).
M J. L. Anderson, Rev. Mex. Fis. 5, 176 (1954)."T.Regge, Nuovo Cimento 7, 215 (1958).

bered that the usual method treats field quantities
averaged over arbitrarily small regions formally as
observables which can be measured in principle with

any desired degree of accuracy. But the existence of
the fundamental length, through Eqs. (57) and (58),
imposes definite limitations on the measurability of
these quantities. The greater the desired accuracy, the
larger must be the space-time region over which one
averages. Hence, a theory in which the gravitational
field is quantized in the usual way —at least if the
physical interpretation is to be analogous to that of
Bohr and Rosenfeld' ' for the electromagnetic field-
can at best be an approximate theory, though it may
be a very good approximation if one restricts oneself to
space-time regions large compared with the fundamental
length. The very careful analysis of DeWitt" leads to
the same qualitative result. Thus, if one wishes to
construct a theory which is applicable to regions of the
order of the fundamental length in extent, fundamental
changes in the quantization procedure would seem to
be in order.

It should also be emphasized that, because of the
equivalence established in Sec. VI, the remarks of the
preceding paragraph apply regardless of what funda-
mental length postulate one makes. For example, if a
fundamental length of the order of nuclear dimensions
is postulated, it follows that gravitational field Auctua-
tions become large in regions of the order of nuclear
dimensions (and conversely). With such a fundamental
length, according to (58), the fluctuations in the com-
ponents of the metric tensor become of the order of
unity in regions of the order of nuclear dimensions. The
Ructuation in gravitational potential energy of a
nucleon is therefore

where M is the mass of a nucleon. Coulomb energies in
this region are of the order

F, e'/r = e'M,

where e is the electronic charge, and r by hypothesis is
about 1/M. This means that, if one postulates a funda-
mental length of the order of nuclear dimensions, one
must conclude that gravitational energy fluctuations
in nuclei should be greater than Coulomb energies by a
factor of about 137. Since no such effects are observed,
this appears to be an argument aguirIst a fundamental
length of the order of nuclear dimensions.
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;Z'= [Z',ae] =;. (A1)

This refers, however, to the local time. The rate p of the
clock relative to the "world time" (as measured by a
clock at infinity) is

p=1+y=1 —GK/R. (A2)

Here it is assumed that the gravitational potential is
constant i' the interior of the system, though it will be
clear that the result does not really depend on this
assumption. Combining (A1) and (A2), we find

[Z',p] = iG/R. —(A3)

» y, Aharonov and D. Bohm, Phys. Rev. 122, 1649 (1961).

APPENDIX' ALTERNATE TREATMENT OF
CLOCK PROBLEM

In this appendix we give a treatment of the clock
problem which does not depend on the particular
method of measurement being used, but only on
commutation properties of operators. It is based on the
concept of an "inner time" as discussed, for instance,
by Aharonov and Bohm."

Initially, we assume that all gravitational fields are
weak, , so that we can speak unambiguously of such
things as "distance, ""time, "etc., with the gravitational
effect on the rate of a clock being a small correction. We
consider a physical system spread out over a region of
radius R which is to be used as a clock. The energy
operator of the system is BC. The "inner time" Z' (e.g.
the position of a pointer on a scale marked o6 in time
units) is a dynamical variable of the system whose time
derivative is unity. Thus we have

The time required to make a measurement (e.g. ,
synchronization by means of light signals with a nearby
clock) is at least of the order of R, so the smallest
possible change 7- in the reading of the clock during the
course of the measurement is

7=pE. . (A4)

ATA(T+r))G. (A7)

Since T+r is just the reading of the clock at the end of
the measurement (also the predicted result of an
immediately subsequent measurement), the meaning
of (A7) is that the clock cannot be kept synchronized
with the "world time" with greater root-mean-square
accuracy than QG. Successive synchronization measure-
ments will therefore show unpredictable fiuctuations,
and all the consequences discussed previously will
follow.

It is clear that the above considerations apply equally
well to macroscopic clocks, since no assumptions were
made about the specific nature of the dynamical
variable T. In particular, it could be a macroscopic
time such as that defined by Eq. (50).

It is also clear that the result applies equally well to
the difference T~—T2 in the readings of two separate
clocks (that is, the errors cannot be made to cancel).
To see this, we simply note that

The time for a synchronization measurement is at least
Ri+Rs, so we have

&1 &2 (pl p2) (Ri+R2) 1

from which we find

i[(Z'i —Ts), (ri —rs)]=G(Ri+Rs)'/RiRs) G. (A8)

It is also easy to verify that the assumption of weak
fields is not necessary by doing a more accurate calcula-
tion. In what follows, we will use the words "distance"
and "time" to refer to the radial and temporal coordi-
nates, respectively, in the usual Schwarzschild coordi-
nate system. " "Velocity" will mean "distance" per
unit "time. "It is understood that these coordinates do
not have all the usual properties of distance and time,
but it is nevertheless convenient to have some words to
call them by. We also assume that E is large enough so
that there is no singularity in the Schwarzschild
solutioq,

Equations (A3) and (A4) may be combined to give

(A5)

We therefore have the uncertainty relations

(A6)
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where
[T,X'j= i,

BC'=Kp—'

(A10)

is the "local Hamiltonian. " (A9) and (A11) may be
solved to give

~'= (R/2G) (P
'

P)— (A12)
The velocity of light is now not unity but p', so the time
for a measurement is R/p'. It follows that

7-=Ep ',
p=R/r.

Combining (A12) and (A13), we find

X,'= (1/2G) (r—R'/r);

d~'/dr = (1/2G) (1+R'/r') .

d7. 2G 2G
)G.

1+R2/r2 1+p2

(A13)

(A14)

(A15)

Combining (A10) and (A15), we finally obtain

dT—i[T,rj=—i[T,BC']—= 2G/(1+p') &~G. (A16)
de

Thus, the more accurate treatment results in a change
in sign of the commutator (the difference between K
and X' and the effect on the velocity of light were not
treated even in lowest order in the approximate treat-
ment), but the resulting uncertainty relations are the
same.

The results of this appendix permit a somewhat more
precise interpretation than those of the body of the
paper. The quantity T alone can apparently be meas-

With this understanding, we now have instead of
(A2) the more exact relation

p= [1—2(GBC/R)]'i' (A9)

and if T is to measure the local time we must have

ured with arbitrary accuracy, which means that one
may say that two clocks are arbitrarily well synchro-
nized at a particular time. However, one cannot prepare
a pair of clocks which will remain reliably synchronized
over a period of time. This situation is exactly the same
as that discussed in the introduction: The result of a
single measurement may be read with arbitrary
accuracy, but successive measurements will show
unpredictable fluctuations. Since the description of
phenomena in terms of a I.orentzian coordinate system
presupposes the physical possibility of setting up clocks
at different points in space which can be relied on to
remain synchronized, the conclusion is that such a
coordinate system can only be set up with a mean error
of the order of the fundamental length.

The considerations of this appendix, depending as
they do oddly on the commutation properties of the
operators, have some advantages over the methods used
in the body of the paper. As stressed by Aharonov and
Bohm, '~ when one considers a particular experiment,
one runs the risk that the experiment chosen may not
be sufficiently typical for the result to be generally
valid. Hence, a result is to be believed only when it has
been derived from the mathematical formalism. This
point of view is unquestionably correct when one is
concerned with interpreting a theory for which a
definitive mathematical formalism exists. In the present
case, however, as pointed out in the discussion section,
the existence of the fundamental length may necessitate
fundamental changes in the formalism, so that it is at
least conceivable that the physical considerations of the
body of the paper have a wider validity than the
operator formalism. In this case, one must simply live
with the risk of choosing atypical methods of measure-
ments until a satisfactory formalism has been developed.
This is the philosophy behind the relegation of these
considerations to an appendix. In any case, it is highly
satisfying that both approaches lead to identical results.
Each reader may decide for himself the question of
which approach is more convincing.


