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We propose a relativistic gravitational theory leading to modified Newtonian dynamics, a paradigm that
explains the observed universal galactic acceleration scale and related phenomenology. We discuss
phenomenological requirements leading to its construction and demonstrate its agreement with the
observed cosmic microwave background and matter power spectra on linear cosmological scales. We show
that its action expanded to second order is free of ghost instabilities and discuss its possible embedding in a
more fundamental theory.
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Introduction.—Alternative theories of gravity to general
relativity (GR) have received immense interest in the past
20 years or so [1,2]. The driving force behind this interest is
not so much that gravity has not been tested in a large
region of parameter space [3], but, more importantly, the
cosmological systems residing in some parts of that region
exhibit behavior from which dark matter (DM) and dark
energy (DE), collectively called the dark sector, are
inferred.
While most investigations deal with DE, the hypothesis

that the DM phenomenon is due to gravitational degrees of
freedom (d.o.f.) has received less attention [4–14]. Earliest
evidence for the existence of DM [15–17] was later
supported by observations of the motion of stars within
galaxies [18,19]. Milgrom proposed [20–22] that this
could, instead, result from modifying the inertia or dynam-
ics of baryons or the gravitational law at accelerations
smaller than a0 ∼ 1.2 × 10−10 m=s2. The latter is further
explored in [23] where, if gradients of the potential Φ are
smaller than a0, nonrelativistic gravity is effectively gov-
erned by

∇⃗ ·

�j∇⃗Φj
a0

∇⃗Φ
�

¼ 4πGNρ: ð1Þ

Here, GN is the Newtonian gravitational constant, and ρ the
matter density. These models are referred to as modified
Newtonian dynamics (MOND).
Much work has gone into deducing astrophysical con-

sequences of MOND, its consistency with data [24–46],
and alternative DM based explanations of this law [47–50].
It is inherently nonrelativistic and, thus, difficult to test in
cosmological settings (but see [51]) as systems such as the
cosmic microwave background (CMB) require a relativistic
treatment. CMB physics involves only linear perturbing
a Friedmann-Lemaître-Robertson-Walker (FLRW) back-
ground, making it a particularly useful system, devoid of

nonlinear modeling systematics, for testing relativistic
MOND (RMOND). Relativistic theories that yield
MOND behavior have been proposed [23,52–67] making
clear predictions regarding gravitational lensing and
cosmology. In cases where the CMB and matter power
spectra (MPS) have been computed, no theory has been
shown to fit all of the cosmological data while preserving
MOND phenomenology in galaxies [68–76] (Though,
see [77].).
We present the first RMOND theory which reproduces

galactic and lensing phenomenology similar to the
Bekenstein-Sanders Tensor-Vector-Scalar (TeVeS) theory
[53,54] and, unlike TeVeS, successfully reproduces the key
cosmological observables: CMB and MPS. We describe its
construction, discuss its cosmology and show that it is
devoid of ghost instabilities. We discuss open questions and
possibilities toward its more fundamental grounding.
Phenomenological requirements.—RMOND theories

have always been constructed on phenomenological
grounds rather than based on fundamental principles.
Quite likely, the reason is that the MOND law is empirical,
and even the observation that it is scale invariant [78,79]
has not yet led to a definitive conclusion as to how this
invariance could lead to a MOND gravitational theory.
RMOND theories should obey the principle of general
covariance and the Einstein equivalence principle. These,
however, do not provide any guidance as to how RMOND
should look. Indeed, many theories obeying these have
nothing to do with MOND, and many RMOND theories
obeying these same principles are in conflict with obser-
vations. Principle-based MOND theories include [80–82],
however, these are nonrelativistic. Still, the phenomeno-
logical approach, that we also follow, can provide valuable
guidance toward a more fundamental theory.
What are the necessary phenomenological facts that any

successful MOND theory should lead to? It must (i) return
to GR (hence, Newtonian gravity) when ∇⃗Φ ≫ a0 in
quasistatic situations while (ii) reproducing the MOND
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law (1) when ∇⃗Φ ≪ a0. It should also (iii) be in harmony
with cosmological observations including the CMB and
MPS, (iv) reproduce the observed gravitational lensing of
isolated objects without DM halos, and (v) propagate tensor
mode gravitational waves (GWs) at the speed of light.
We consider each requirement in turn. Clearly, (i) means

that when j∇⃗Φj ≫ a0, the standard Poisson equation

∇⃗2Φ ¼ 4πGNρ holds while (ii) means that when j∇⃗Φj ≪
a0 the MOND equation (1) holds. While in many cases
[56,60,61], the transition between (i) and (ii) depends only

on j∇⃗Φj, in TeVeS it is facilitated by a scalar d.o.f. φ. We
follow the latter and assume that the physics encapsulated
by (i) and (ii) fits within the TeVeS framework.
A template nonrelativistic action then, is

S ¼
Z

d4x

�
1

8πĜ
½j∇⃗ Φ̂ j2 þ J ðYÞ� þΦρ

�
; ð2Þ

where Φ ¼ Φ̂þ φ is the potential that couples universally

to matter, Ĝ is a constant, and Y ¼ j∇⃗φj2. The field φ

obeys ∇⃗ · ½ðdJ =dYÞ∇⃗φ� ¼ 4πĜρ while Φ̂ obeys the

Poisson equation ∇⃗2Φ̂ ¼ 4πĜρ. Emergence of MOND is

then ensured if J → ½2λs=3ð1þ λsÞa0�Y3=2 as ∇⃗φ → 0. It
is in this limit that a0 appears.
For a point source of mass M, the MOND-to-Newton

transition occurs at rM ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðGNM=a0Þ

p
. A MOND force

∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNMa0

p
=r lends its way trivially to a Newtonian force

GNM=r2 as r ≪ rM, but in the inner Solar System, this is
not sufficient. Corrections to r−2 due to φwill compete with
the post-Newtonian force ∼ðGNMÞ2=r3, and these are
constrained at Mercury’s orbit to less than ∼10−4
[83,84]. Suppressing these may happen either through
screening or tracking. In the former, φ is screened at large

∇⃗φ so that Φ ≈ Φ̂ while in the latter φ → Φ̂=λs, so that
GN ¼ ð1þ 1=λsÞĜ. We model both with λs since screening
is equivalent to λs → ∞. In terms of J , tracking happens if
J → λsY, while screening occurs if J has terms Yp with
p ≥ 3=2 (this may be in conflict with Mercury’s orbit even
as p → ∞) or via higher-derivative terms absent from (2).
Consider requirement (iii), that is, successful cosmology.

In (2) we have a new d.o.f. φðx⃗Þ, and we expect that the
same will appear in cosmology, albeit with a time depend-
ence, i.e., ϕ̄ðtÞ. Consider a flat FLRW metric so that g00 ¼
−N2 and gij ¼ a2γij where NðtÞ is the lapse function and
aðtÞ the scale factor. What should the expectation for a
cosmological evolution of ϕ̄ðtÞ be? The MOND law for
galaxies is silent regarding this matter. There is, however,
another empirical law which concerns cosmology: the
existence of sizable amounts of energy density scaling
precisely as a−3. Within the DM paradigm such a law is a
natural consequence of particles obeying the collisionless
Boltzmann equation. The validity of this law has been

tested [85,86] and, during the time between radiation-
matter equality and recombination, it is valid within an
accuracy of ∼10−3. Do scalar field models leading to
energy density scaling as ρ̄ ∼ a−3 exist?
The answer is yes: shift-symmetric k essence. It has been

shown [87] that a scalar field with Lagrangian ∼KðX̄Þ
where X̄ ¼ _̄ϕ

2
=N2, leads to dust (i.e., ρ̄ ∼ a−3) plus

cosmological constant (CC) solutions provided KðX̄Þ
has a minimum at X̄ ¼ X0 ≠ 0. Such a model is the
low energy limit of ghost condensation [88,89], although
the latter also contains higher derivative terms ∼ð□ϕÞ2 in
its action. The FLRW action is

S ¼ 1

8πG̃

Z
d4xNa3

�
−
3H2

N2
þKðQ̄Þ

�
þ Sm½g�; ð3Þ

where Q̄ ¼ _̄ϕ=N and H ¼ _a=a. Interestingly, (2) and (3)
are shift symmetric in φ and ϕ̄, respectively.
We propose that the MOND analog on FLRW is given by

(3) with

K ¼ −2ΛþK2ðQ̄ −Q0Þ2 þ…; ð4Þ

where Λ is the CC, K2 andQ0 parameters, and ð…Þ denote
higher powers in this expansion. Expanding in Q −Q0

rather thanX − X0 is the most general expansion leading to
dust solutions and includes the KðX̄Þ case. The CC in this
model remains a freely specifiable parameter, just as in
Λ-cold dark matter (ΛCDM) model. Following [88,89], we
call this the (gravitational) Higgs phase.
Requirement (iv), that is, correct gravitational lensing

without DM, requires a relativistic theory. A minimal
theory for RMOND is a scalar-tensor theory [23] with
the scalar providing for a conformal factor between two
metrics. However, since null geodesics are unaltered by
conformal transformations, such theories cannot produce
enough lensing from baryons in the MOND regime.
Sanders solved the lensing problem by changing the
conformal into a disformal transformation [53] using a
unit-timelike vector field, incorporated by Bekenstein [54]
into TeVeS. The unit-timelike vector has component
A0 ∼

ffiffiffiffiffiffiffiffiffiffi
−g00

p
, and this ensures that the two metric potentials

are equal (as in GR), so that solutions which mimic DM
also produce the correct light deflection.
Meanwhile, the anisotropic scaling of the MOND law

∼j∇⃗φj3 compared with a well-behaved cosmology imply-

ing terms like _̄ϕ
2
and _̄ϕ

4
, heuristically implies (gravita-

tional) Lorentz violation. A good way of introducing such
an ingredient is via a unit-timelike vector field Aμ, much
like the spirit of the Einstein-Æther theory [90,91], and
TeVeS [53,54].
The advanced Laser Interferometer Gravitational

Observatory (LIGO) and Virgo interferometers [92]
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observed GWs from a binary neutron star merger.
Combined with electromagnetic observations [93,94], this
strongly constrains the GW tensor mode speed to be
effectively equal to that of light. By analyzing the tensor
mode speed, TeVeS has been shown [95–98] to be
incompatible with the LIGO-Virgo observations for any
choice of parameters. The necessary d.o.f. ϕ and Aμ are also
ingredients of TeVeS, only there, a second metric was
introduced as a combination of gμν, ϕ, and Aμ. In [99], ϕ
and Aμ were combined into a timelike (but not unit) vector
Bμ, and it was shown that TeVeS may be equivalently
formulated with a single metric gμν minimally coupled to
matter, and Bμ with a noncanonical and rather complicated
kinetic term. A general class of theories based on the pair
fgμν; Bμg was uncovered [98] where the tensor mode speed
equals the speed of light in all situations, satisfying
requirement (v).
The new theory.—A subset of the general class [98]

depends on a scalar ϕ and unit-timelike vector Aμ such
that [100]

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

16πG̃

�
R −

KB

2
FμνFμν þ 2ð2 − KBÞJμ∇μϕ

− ð2 − KBÞY − F ðY;QÞ − λðAμAμ þ 1Þ
�
þ Sm½g�;

ð5Þ

where Fμν ¼ 2∇½μAν�, Jμ ¼ Aα∇αAμ, and the Lagrange
multiplier λ imposes the unit-timelike constraint on Aμ. In
addition, F ðY;QÞ is a free function of Q ¼ Aμ∇μϕ and
Y ¼ qμν∇μϕ∇νϕ where qμν ¼ gμν þ AμAν is the three-
metric orthogonal to Aμ. Notice that (5) is shift symmetric
under ϕ → ϕþ ϕ0.
On FLRW, ϕ ¼ ϕ̄ðtÞ while A0 ¼ −N and Ai ¼ 0, hence,

Y ¼ 0 andQ ¼ Q̄. We define KðQ̄Þ ¼ − 1
2
F ð0; Q̄Þ so that

(5) turns precisely into (3), which we have argued that it
satisfies requirement (iii).
In the weak-field quasistatic limit, we set g00 ¼ −1 − 2Ψ

and gij ¼ ð1 − 2ΦÞγij and assume that Aμ aligns with the
time direction so that A0 ¼ 1 −Ψ and Ai ¼ 0. The scalar is

expanded as ϕ ¼ ϕ̄þ φwith _φ ≪ j∇⃗φj and _̄ϕmay be set to
its (late Universe) FLRW minimum Q0. Hence,
Q ¼ ð1 −ΨÞQ0. Then (5) leads to Ψ ¼ Φ which can be
subbed back to get

S ¼ −
Z

d4x

�
2 − KB

16πG̃
½j∇⃗Φj2 − 2∇⃗Φ∇⃗φ

þ j∇⃗φj2 − μ2Φ2 þ J ðYÞ� þΦρ

�
; ð6Þ

where J ¼ F ðY;Q0Þ=ð2 − KBÞ. Compared with (2), a
new term appears which looks like a “mass term” for Φ,

with μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K2=ð2 − KBÞ

p
Q0. The solution for Φ will

be as obtained from (2) only for r≲ rC where
rC ∼ ðrMμ−2Þ1=3, and oscillatory for r≳ rC. We require
μ−1 ≳ 1 Mpc so that MOND behavior, according to (2),
may still be attained in galaxies. Thus, the quasistatic limit
has at least three parameters: λs, a0, and μ.
While matter couples only to Φ, gravity comes with two

potentials, Φ and φ, whose action is not diagonal but

contains the mixing term Jμ∇μϕ → ∇⃗Ψ · ∇⃗φ. Without the
latter, φ decouples, and no modification of gravity arises in
this situation, apart from μ2Φ which is akin to ghost
condensation [88,89]. Diagonalizing by setting Φ¼Φ̂þφ
and identifying G̃ ¼ ½1 − ðKB=2Þ�Ĝ turns (6) into (2) (plus
the μ2Φ2 term). Since, Ψ ¼ Φ, (6) leads to the right lensing
whenever the solution for Φ mimics DM. This satisfies
requirements (i), (ii), and (iv).
Cosmological observables.—The theory just presented

was constructed to lead to a FLRW universe resembling
ΛCDM. Given a general KðQÞ, we define the energy
density as 8πG̃ ρ̄ ¼ QdK=dQ −K and pressure as
8πG̃ P̄ ¼ K so that the usual FLRWequations are satisfied.
The field equation for ϕ̄ may be integrated once to give
ðdK=dQÞ ¼ ðI0=a3Þ for initial condition I0. WhenK obeys
the expansion (4), then Q ¼ Q0 þ I0=a3 þ � � �, so that
ρ̄ ¼ ρ̄0=a3 þ…, where 8πG̃ρ̄0 ¼ Q0I0. The pressure is
P̄ ¼ w0ρ̄0=a6 þ…, where w0 ¼ ð8πG̃ρ̄0=4Q2

0K2Þ is the
equation of state at a ¼ 1, that is, w ¼ ðw0=a3Þ þ � � �, so
that P̄ ¼ wρ̄. A time-varying w implies an adiabatic sound
speed c2ad ¼ dP̄=dρ̄ ¼ ðdK=dQÞ=ðQd2K=dQ2Þ, and if K
obeys (4), then c2ad ¼ 2w0=a3 þ � � �. Clearly, w ≥ 0 and
c2ad ≥ 0, where the zero point is reached as a → ∞. As the
solution depends on the initial condition I0, the density ρ̄ is
not (classically) predicted.
For a proper cosmological matter era in the Higgs

phase, we need w0 to be sufficiently small. Observations
[85,86] give w≲ 0.02 at a ∼ 10−4, hence, w0 ≲ 2 × 10−14.
Meanwhile, μ−1 ≳Mpc in order not to spoil the
MOND behavior, leading to w0 > ½3H2

0Mpc2Ω0=
2ð2 − KBÞ�≳ 10−8. Unless the effect of the μ term in (6)
is alleviated in some future theory, the Higgs phase cannot
be extended too long in the past, and higher terms in (4)
must be taken into consideration. Within the present setup,
one can arrange this with a function KðQÞ which sup-
presses w and c2ad during most of the cosmic evolution.
Examples are K ¼ 2K2Z2

0½coshðZÞ − 1� (“Cosh function”)
and K ¼ 2K2Z2

0½eZ
2 − 1� (“Exp function”) where

Z ¼ ðQ −Q0Þ=Z0.
The tight coupling of baryons to photons in the early

Universe leads to Silk damping and wipes out all small-
scale structure in baryons, preventing the formation of
galaxies in the late Universe. Within GR, cold DM sustains
the gravitational potentials during the tight-coupling
period, driving the formation of galaxies and affecting
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the relative peak heights of the CMB as further corrobo-
rated by, e.g., the Planck satellite [101]. Checking whether
this theory fits the CMB andMPS spectra requires studying
linear fluctuations on FLRW.
We consider scalar modes in the Newtonian gauge so

that g00 ¼ −ð1þ 2ΨÞ, g0i ¼ 0, and gij ¼ a2ð1 − 2ΦÞγij
and perturb the scalar as ϕ ¼ ϕ̄þ φ and the vector as

Aμ ¼ f−1 −Ψ; ∇⃗iαg. The perturbed Einstein, vector, and
scalar equations then depend on the new scalar modes φ
and α and their derivatives. The shear equation remains as
in GR, as do the usual perturbed Boltzmann equations for
baryon, photons, and neutrinos, since they couple only
to gμν.
Setting χ ≡ φþ _̄ϕα, γ ≡ _φ − _̄ϕΨ, E≡ _αþ Ψ, and defin-

ing the density contrast δ and momentum divergence θ via

δ≡ 1þ w
_̄ϕc2ad

γ þ 1

8πG̃a2ρ̄
∇⃗2½KBEþ ð2 − KBÞχ�; ð7Þ

θ≡ φ
_̄ϕ
; ð8Þ

the Einstein equations take the same form as in GR, i.e.,

δG0
0 ¼ 8πG

P
I ρ̄IδI and δG0

j ¼ −8πG
P

Iðρ̄I þ P̄IÞ∇⃗jθI ,
where the index I runs over all matter species including the
new variables δ and θ. These obey standard fluid equations

_δ ¼ 3Hðwδ − ΠÞ þ ð1þ wÞ
�
3 _Φ −

k2

a2
θ

�
; ð9Þ

_θ ¼ 3c2adHθ þ Π
1þ w

þ Ψ; ð10Þ

but with nonstandard pressure contrast

Π ¼ c2adδ −
c2ad

8πG̃a2ρ̄
∇⃗2½KBEþ ð2 − KBÞχ�: ð11Þ

Hence, the resulting system is not equivalent to a dark fluid:
the nonstandard pressure, thus defined, does not close
under the fluid variables but, rather, depends on the vector
field perturbations α and E. The latter evolves with

KBð _EþHEÞ ¼ dK
dQ

χ − ð2 − KBÞ
� _̄ϕ

1þ w
Π

þ ðH þ _̄ϕÞχ − 3c2adH
_̄ϕα

�
: ð12Þ

Cosmologically, the necessary additional free parameters
to ΛCDM are λs (influencing the effective cosmological
gravitational strength), KB, K2 (or equivalently w0)
and Q0. These fix μ appearing in the quasistatic regime.
More elaborate functions KðQÞ introduce further

parameters, e.g., Z0 in the case of the Cosh or Exp
functions above. Note that a0 does not appear in the linear
cosmological regime but will play a role once nonlinear
terms from F ðY;QÞ kick in.
In Figs. 1 and 2, we show the CMB and MPS in the

case of a Cosh, an Exp, and a Higgs-like function
KðQÞ ¼ ðK2=4Q2

0ÞðQ2 −Q2
0Þ2, computed numerically

by evolving the FLRW background and linearized equa-
tions using our own Boltzmann code [102], which is in
excellent agreement with other codes, see [103] for a
comparison. We have used adiabatic initial conditions
[104] and a standard initial power spectrum P0 ¼ Askns
with amplitude As and spectral index ns. The MPS has an
additional bias parameter b. We used RECFAST version 1.5
for modeling recombination and have boosted k sampling,
time sampling, and l sampling accuracy for ensuring
robust results. The detailed cosmology and the dependence
of the spectra on the parameters will be investigated

FIG. 1. The CMB temperature (T) CTT
l and E-mode polariza-

tion CEE
l angular power spectra for ΛCDM and this theory for a

collection of functions and parameter values. The ΛCDM
parameters are angular acoustic scale 100θs ¼ 1.04171, DM
density Ωch2 ¼ 0.1202, baryon density Ωbh2 ¼ 0.02235, reio-
nization optical depth τ ¼ 0.049, helium fraction YHe ¼ 0.242,
primordial scalar amplitude 109As ¼ 2.078, and spectral index
ns ¼ 0.963, while the MOND curves deviate from these within
∼f0.07; 0.33; 3.98; 14.29; 1.57; 0.58; 2.60g%. MOND models
have λs ¼ ∞, and their other parameters are shown in the CTT

l
panel, with Q0 and Z0 in Mpc−1. The “Higgs-like” function
parameters are incompatible with a MOND limit.
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elsewhere [104]. For a wide range of parameters, this
relativistic MOND theory is consistent with the CMB
measurements from Planck. This happens because c2ad
and w are small enough so that Π → 0, and we get dustlike
evolution as _δ ¼ 3 _Φ − ðk2=a2Þθ and _θ ¼ Ψ, while the
vector field decouples.

Stability and waves.—Now, we consider the stability of
the theory on Minkowski spacetime. We expand

gμν ¼ ημν − hμν, split Aμ ¼ ð−1þ 1
2
h00; AiÞ and let ∇μϕ ¼

ðQ0 þ _φ; ∇⃗φÞ with hμν, Ai, and φ being small perturba-
tions. Expanding (5) to second order gives

S ¼
Z

d4x

�
−
1

2
∇̄μh∇̄νhμν þ

1

4
∇̄ρh∇̄ρhþ 1

2
∇̄μhμρ∇̄νhνρ −

1

4
∇̄ρhμν∇̄ρhμνKBj _A⃗ −

1

2
∇⃗h00j2 − 2KB∇⃗½iAj�∇⃗½iAj�

þð2 − KBÞ
�
2

�
_A⃗ −

1

2
∇⃗h00

�
· ð∇⃗φþQ0A⃗Þ − ð1þ λsÞj∇⃗φþQ0A⃗j2

�
þ 2K2

				 _φþ 1

2
Q0h00

				
2

þ 1

M̃2
p
Tμνhμν

�
; ð13Þ

where we have used the desired late Universe limit for
which ∂2F̄=∂Q2 → −2d2K=dQ2 ¼ −4K2 and ∂F=∂Q ¼
F̄ ¼ 0. We set ∂F=∂Y ¼ ð2 − KBÞλs as a free parameter
which is zero in the MOND limit but nonzero in the GR
limit when reached by tracking. Inspecting (13), the tensor
mode action is as in GR as expected.
For vector modes, we choose the gauge h00 ¼ 0,

h0i ¼ Wi, and hij ¼ 0 while Ai ¼ βi and φ ¼ 0 where

Wi and βi are transverse. Setting all modes∝ eið−ωtþk⃗·x⃗Þ, the
dispersion relation for βi is ω2 ¼ k2 þM2 where their
mass is M2 ¼ ð2 − KBÞð1þ λsÞQ2

0=KB, hence, they are
healthy if 0 < KB < 2 and λs > −1. They decouple from
Tμν and are not expected to be generated to leading order by
compact objects.
Considering scalar modes in the Newtonian gauge,

we set h00 ¼ −2Ψ, h0i ¼ 0, and hij ¼ −2Φγij while

Ai ¼ ∇⃗iα and find the dispersion relations ω2 ¼ 0 and
ω2 ¼ ½ð2 − KBÞ=K2KB�ð1þ 1

2
KBλsÞk2 þM2. Thus, we

require that K2 > 0 in addition to the vector stability

conditions. Only two normal modes exist implying the
presence of constraints. These are revealed through a
Hamiltonian analysis which also shows that these con-
ditions lead to a positive Hamiltonian [106,107] for the
ω ≠ 0 modes. The ω ¼ 0 case leads to a constant mode
with zero Hamiltonian but, also, to a mode varying linearly
with t. The Hamiltonian for the latter is positive for
momenta larger than ∼μ and otherwise negative, also
requiring that λs > 0. Such instabilities are likely akin to
Jeans-type instabilities and do not cause quantum vacuum
instability at low momenta [108].
Discussion.—MOND has enjoyed success in fitting

galactic rotation curves [24,25,27,29,44] and reproducing
the baryonic Tully-Fisher relation [31,33,45]. The radial
acceleration relation (RAR) [41] finds a comfortable
interpretationwithinMOND.Studies ofMONDwith galaxy
clusters [30,38,109–112] report that either a0 is larger in
clusters and/or an additional dark component is necessary
even when the MOND prescription is used. These studies,
however, use the classic modified-inertia MOND while the
theory presented here has additional features warranting its
separate testing with clusters. We note that a RAR for
clusters was reported [112], similar to the galaxy one albeit
with a0 a factor of 10 higher. MOND has been tested with
dwarf spheroidal galaxieswhere discrepancies for some [26]
were later dismissed with improved data [28,113–116].
There, good agreement was reported, except for Draco and
Carina where the fits are quite poor [26,114,116,117]. It is
argued [113] that those two might be systems not in
equilibrium. The global stability of M33 has been tested
[118] with positive results whilewide-binary data do not yet
yield a decisive test [119].
We have shown how the cosmological regime of this

theory reproduces the CMB and MPS power spectra on
linear scales and that MOND-like behavior emerges in the
quasistatic approximation. The latter is expected to hold for
virialized objects, however, how such objects emerge from
the underlying density field, i.e., how the two regimes
connect, is an open problem. This will happen at a scale
which is expected to depend on a0, μ, and Q0, and quite
likely, the nonlinear ∼∇ð∇ϕÞ2=a0 term coming from F

FIG. 2. The linear MPS PðkÞ for the models of Fig. 1showing
excellent fits to the Sloan Digital Sky Survey (SDSS) data release
7 (DR7) luminous red galaxies (LRG) [105]. We also include a
bias parameter b. Note that the (derived) Hubble constant for each
model is different.
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will play a role. It is reasonable to expect that, on
mildly nonlinear scales, the quasistatic regime is not yet
reached.
We remark that Aμ also contains a pure vector mode

perturbation which is expected to behave similarly, as in the
Einstein-Æther theory [90,91]. This may lead to imprints
on the B-mode CMB polarization signal [120].
Setting M̃2

p ¼ 1=ð8πG̃Þ and canonically normalizing as
ϕ̃ ¼ ffiffiffiffiffiffiffiffi

2K2

p
M̃pϕ in (4), the FLRW action (3) becomes

S ¼
Z

d4xNa3
�
−3M̃2

p
H2

N2
þ 1

2

� _̃ϕ

N
− Λ2

c

�2

þ…

�
; ð14Þ

where Λ2
c ¼ M̃p

ffiffiffiffiffiffiffiffi
2K2

p
Q0. Considering the MOND

limit in (5) gives M̃2
pF=2 → j∇⃗ ϕ̃ j3=Λ2

0 where
Λ2
0 ¼ 12½K2ð1þ 1=λsÞ=ð2 − KBÞ�3=2Mpa0. This scale is

indicative of the energy scale above which quantum
corrections may be important, and below which we can
trust the classical theory. Since a0 ∼H0=6, then
Λ0 ≳meV ∼ ð0.1 mmÞ−1. Newton’s r−2 law has been
tested down to ∼52 μm [121] and the curves in Figs. 1
and 2 have Λ−1

0 ≲ 100 nm.
Absence of ghosts to quadratic order signifies a healthy

theory that could arise as a limit of a more fundamental
theory. We do not have such a theory at present, but we
discuss a case that may bring us closer. The vector in (5)
does not seem to obey gauge invariance, but in the
quadratic action (13), it does so through mixing with
diffeomorphisms of hμν. This is not an accident. Let us
normalize via Âμ ¼ MGGCAμ for some scale MGGC and
insert the term − 1

4
ðM̃4

p=M4
GGCÞλ2. Varying with λ and

using the constraint to eliminate λ from the action, perform
a Stückelberg transformation Âμ → Âμ þ∇μξ=MGGC and
define the covariant derivative acting on “angular field” ξ as
Dμξ ¼ ∇μξ=MGGC þ Âμ. The action turns to S ¼ SEH þR
d4x

ffiffiffiffiffiffi−gp f−ð1=4g2GGCÞF̂μνF̂
μν þ 1

4
ðDμξDμξ þ M2

GGCÞ2g
plus ϕ-dependent terms, where F̂μν ¼ ∇μÂν −∇νÂμ,
g2GGC ¼ ðM2

GGC=KBM̃2
pÞ. The resulting action is that of

the gauged ghost condensate (GGC) [122] or bumblebee
field [123,124] which has been proposed as a healthy
gauge-invariant theory of spontaneous Lorentz violation.
The Einstein-Æther theory, part of (5), is the (healthy)
decoupling limit of GGC by taking MGGC → ∞ if 0 <
KB < 2 (in our notation) [122]. It is argued [122] that
MGGC can be as high as 1012 GeV.
Given that ϕ is shift symmetric, it is natural to

charge it under this symmetry similar to ξ letting
Dμϕ ¼ ∇μϕ=MGGC þ Âμ. Interestingly, we may identify
Q −Q0 → DμξDμϕwhile the term Jμ∇μϕ → F̂μνDμξDνϕ,
both multiplied by appropriate constants. The terms
involving Y may be constructed using ðgμν þDμξDνξ=
M4

GGCÞDμϕDνϕ. Although extending our work as such

does not explain the MOND term Y3=2, it may provide
promising directions for further improvements.
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