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On the Hoyle-Narlikar theory of gravitation 

BY S. W. HAWKING 

Department of Applied Mathematics and Theoretical Physics, Cambridge 

(Communicated by H. Bondi, F.R.S.-Received 8 October 1964- 
Revised 11 February 1965) 

It is shown that the direct-particle action-principle from which Hoyle & Narlikar derive 
their new theory of gravitation not only yields the Einstein field-equations in the 'smooth- 
fluid' approximation, but also implies that the 'm '-field be given by the sum of half the 
retarded field and half the advanced field calculated from the world-lines of the particles. 
This is in effect a boundary condition for the Einstein equations, and it appears that it is 
incompatible with an expanding universe since the advanced field would be infinite. A possible 
way of overcoming this difficulty would be to allow the existence of negative mass. 

1. INTRODUCTION 

The success of Maxwell's equations has led to electrodynamics being normally 
formulated in terms of fields that have degrees of freedom independent of the 
particles in them. However, Gauss suggested that an action-at-a-distance theory 
in which the action travelled at a finite velocity might be possible. This idea was 
developed by Wheeler & Feynman (I945, I949) who derived their theory from an 
action-principle that involved only direct interactions between pairs of particles. 
A feature of this theory was that the 'pseudo '-fields introduced are the half- 
retarded plus half-advanced fields calculated from the world-lines of the particles. 
However, Wheeler & Feynman, and in a different way Hogarth (i962), were able 
to show that, provided certain cosmological conditions were satisfied, these fields 
could combine to give the observed field. Hoyle & Narlikar (i964 a) extended the 
theory to general space-times and obtained similar theories for their 'C'-field 

(i964b) and for the gravitational field (i964c). It is with these theories that the 
present paper is concerned. It will be shown that in an expanding universe the 
advanced fields are infinite, and the retarded fields finite. This is because, unlike 
electric charges, all masses have the same sign. 

2. NOTATION 

Space-time is represented by a four-dimensional Riemannian space with metric 
tensor qij of signature -2. Covariant differentiation in this space is indicated by 
a semi-colon. Particles are labelled a, b, ..., and da, db, ... represent the differential 
of proper time along the world-lines of a, b, ... respectively. When there is doubt as 
to which point a covariant derivative is to be taken at, a suffix will be added to the 
appropriate indices. The suffix a will indicate covariant differentiation at a point 
on the world-line of particle a, and so on. 

84(X, X') = 8(X1-X1) &(X2-X2) &(X3-X3) &(X4 -X), 
[ 313 ] 
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where XL, X2, X3, X4 are the coordinates of the point X, and d(Y) is the Dirac 
delta-function. The operator - is defined by 

FL-f = gijff ij for any furctior- f. 

3. THE BOUNDARY CONDITION 

Hoyle & Narlikar derive their theory from the action 

A =SE G(a, b) da db, 
a+b 

where the integration is over the world-lines of particles a, b, .... In this expression, 
( is a Green function that satisfies the wave equation: 

G(X, X'); ijg i + IR G(X, X') = (XX X) 

where q is the determinant of gij. Since the double sum in the action A is symmetrical 
between all pairs of particles a, b, only that part of G(a, b) that is symmetrical 
between a and b will contribute to the action A, i.e. the action can be written 

A = E E Jf*(a,b)da,db, 
a~b 

where G*(a, b) G(a, b) + 1G(b, a). Thus G* must be the time-symmetric Green 
function, and can be written: * = ,ret. + 2Gadv. where Gret. and Gadv are the 
retarded and advanced Green functions. By requiring that the action be stationary 
under variations of the g9i, Hoyle & Narlikar obtain the field-equations: 

[E 
I 
m(a)(X) m(b)(X)] (Bik- i 1) 

a=b 

- 
+ I [M(a m(Mbr)r - M(.) ) + 2(m(,') mk) - mar)) 

ag=b 

where m(a)(x) = fG*(x, a) da. However, as a consequence of the particular choice of 
Green function, the contraction of the field-equations is satisfied identically. There 
are thus only 9 equations for the 10 components of gij, and the system is indeter- 
minate. 

Hoyle & Narlikar therefore impose Zm(a) = ,no = constant, as the tenth 
equation. By then making the 'smooth-fluid' approximation, that is by putting 

S m(a)m(b) m2, they obtain the Einstein field-equations: 
a=b 

I 
2(R '-Rgik) =-_Ti 

There is an important difference, however, between these field-equations in the 
direct-particle interaction theory and in the usual general theory of relativity. 
In the general theory of relativity, any metric that satisfies the field-equations is 
admissible, but in the direct-particle interaction theory only those solutions of the 
field-equations are admissible that satisfy the additional requirement: 

mO(x) = Zm(a)(x) -Z fG*(x, a) da 

= IfGret. (x, a) da + 2 Gadv (x, a) da. 
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This requirement is highly restrictive; it will be shown that it is not satisfied for the 
cosmological solutions of the Einstein field-equations, and it appears that it cannot 
be satisfied for any models of the universe that either contain an infinite amount of 
matter or undergo infinite expansion. 

The difficulty is similar to that occurring in Newtonian theory when it is recog- 
nized that the universe might be infinite. 

The Newtonian potential 0 obeys the equation: 

V0$=-Kp (p>O), 
where p is the density. 

In an infinite static universe, 0 would be infinite, since the source always has the 
same sign. The difficulty was resolved when it was realized that the universe was 
expanding, since in an expanding universe the retarded solution of the above 
equation is finite by a sort of 'red shift' effect. The advanced solution will be infinite 
by a 'blue shift' effect. This is unimportant in Newtonian theory, since one is free 
to choose the solution of the equation and so may ignore the infinite advanced 
solution and take simply the finite retarded solution. 

Similarly in the direct-particle interaction theory the r-field satisfies the equation: 

Llm+V m=N (N>O), 

where N is the density of world-lines of particles. As in the Newtonian case, one may 
expect that the effect of the expansion of the universe will be to make the retarded 
solution finite and the advanced solution infinite. However, one is now not free to 
choose the finite retarded solution. For the equation is derived from a direct- 
particle interaction action-principle symmetric between pairs of particles, and one 
must choose for m half the sum of the retarded and advanced solutions. We would 
expect this to be infinite, and this is shown to be so in the next section. 

4. THE COSMOLOGICAL SOLUTIONS 

The Robertson-Walker cosmological metrics have the form 

ds2 = dt2 - R2(t) [I -Kr + r2(d02 + sin2 0 d02)]. 

Since they are conformally flat, one can choose coordinates in which they become 

ds2 = Q2[dT2 - dp2 + p2 dO2 + p2 sin2 0 d92], 
= Q2 qb dxa dxb 

where Yab is the flat-space metric tensor and 

= 7Qr p) = B(t) 
Q = QTX P)= f{[ + 1K(Tr + p)2] [I + IK(T _ 

p)2]1 

(cf. Infeld & Schild I945). 
For example, for the Einstein-de Sitter universe 

K 0, R(t) = (t/T) (0 < t < coo), 

Q=R = (r/T)2 (O<T<oc), 

r= p (T= T2 t 1). 
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For the steady-state (de Sitter) universe 

K=O, R(t)=et/T (-oo<t<co), 
Q = R -TIr (-oO<T<O), 

r=p (T=-Te-t/T). 

The Green function G*(a, b) obeys the equation 

WG*(a, b) + VRG*(a, b)= 84(a, b)/-g. 

From this it follows that 

Q4 Ca (Q 2iaba G ) +-a ( rab Q) Q-3G* Q-4&84(a, b). 

If we let G* = Q-1S, then 

OXa ( aXb ) 

This is simply the flat-space Green function equation, and hence 

GT* (7T1O;72,P) =-1(T) [&(p-72 +-T1)+8 &(P+T2-T1)) (V*(7,?; 2P) = 
87T 

L 
Q(72) P Q Or2) P 

The 'm '-field is given by 

M(T7 ) =fG*NV - dx4 = (mret. + M}adv.) 

For universes without creation (e.g. the Einstein-de Sitter universe), N =R-3n, 
n = const. For universes with creation (steady state) N = n, n = const., 

madv.(Ti) = Q-?(Tl)J 
I 

(2) 47Tr2 dr, 

where the integration is over the future light cone. This will normally be infinite in 
an expanding universe, e.g. in the Einstein-de Sitter universe 

-2 Roo 
madv. (T1) = ( ) f (T2i 71) dT2 

= 00. 
In the steady-state universe 

madv. (T1) = (T) -n ((T2-T1 ) dT2. 

_ 00. 

By contrast, on the other hand, we have 

Mret. (T) = Q-l(Tl) 4 4Tr 

where the integration is over the past light cone. This will normally be finite, e.g. 
in the Einstein-de Sitter universe 

rnret (T1) ( -)2j' -(T2-T,) dT= 2 - 
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while in the steady-state universe 

nnret(-) -(q,) J (T) (T2-T,) dT- InT2. 

Thus it can be seen that the solution m =const. of the equation 

:lm? + *Rmn = N 

is not, in a cosmological metric, the half-advanced plus half-retarded solution since 
this would be infinite. In fact, in the case of the Einstein-de Sitter and steady-state 
metrics, it is the pure retarded solution. 

5. CONCLUSION 

It is one of the weaknesses of the Einstein theory of relativity that although it 
furnishes field-equations it does not provide boundary conditions for them. Thus 
it does not give a unique model for the universe but allows a whole series of models. 
Clearly a theory that provided boundary conditions and thus restricted the possible 
solutions would be very attractive. The Hoyle-Narlikar theory does just that (the 
requirement that m = Emret + -2nadv. is equivalent to a boundary condition). 
Unfortunately, as we have seen above, this condition excludes those models that 
seem to correspond to the actual universe, namely the Robertson-Walker models. 

The calculations given above have considered the universe as being filled with a 
uniform distribution of matter. This is legitimate if we are able to make the 'smooth- 
fluid' approximation to obtain the Einstein equations. Alternatively if this approxi- 
mation is invalid, it cannot be said that the theory yields the Einstein equations. 

It might possibly be that local irregularities could make madv. finite, but this has 
certainly not been demonstrated and seems unlikely in view of the fact that, in the 
Hoyle-Narlikar direct-particle interaction theory of their 'C '-field, which is derived 
from a very similar action-principle, it can be shown without assuming a smooth 
distribution that the advanced 'C' field will be infinite in an expanding universe 
with creation (see Appendix). 

The reason that it is possible to formulate a direct-particle interaction theory of 
electrodynamics that does not encounter this difficulty of having the advanced 
solution infinite is that in electrodynamics there are equal numbers of sources of 
positive and negative sign. Their fields can cancel each other out and the total 
field can be zero apart from local irregularities. This suggests that a possible way 
to save the Hoyle-Narlikar theory would be to allow masses of both positive and 
negative sign. The action would be 

A = E2q qb f GI (a, b) da db (qTqb= ? 1), 
a~b 

where qa, qb are gravitational charges analogous to electric charges. Particles of 
positive q in a positive 'm '-field and particles of negative q in a negative 'm '-field 
would have the normal gravitational properties, that is, they would have positive 
gravitational and inertial masses. A particle of negative q in a positive 'm '-field 
would still follow a geodesic. Therefore it would be attracted by a particle of 

21 Vo1. 286. A. 
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positive q. Its own gravitational effect however would be to repel all other particles. 
Thus it would have the properties of the negative mass described by Bondi (I 957); 
that is, negative gravitational mass and negative inertial mass. 

Since there does not seem to be any matter having these properties in our region 
of space (where m const. > 0), there must clearly be separation on a very large 
scale. It would not be possible to identify particles of negative q with antimatter, 
since it is known that antimatter has positive inertial mass. However, the intro- 
duction of negative masses would probably raise more difficulties than it would 
solve. 

The authorwould like to thankProfessorF. Hoyle, F.R.S. andDrJ. V. Narlikar for 
making available the manuscripts of their papers and for discussions on them, and 
also to thank Dr D. W. Sciama for his help in preparing this paper. 

APPENDIX. THE 'C '-FIELD 

Hoyle & Narlikar derive their direct-particle interaction theory of the 'C'-field 
from the action 

A=EE f (G(a, b) ;iakb dam dbk, 

where the suffixes a, b refer to differentiation of G(a, b) on the world-lines of a, b 
respectively. G is a Green function obeying the equation 

(70(X, X') = 84(X, XT- 
We define the 'C '-field by 

C(x) = Z < (x, a);,, da, 

and the matter-current Jk by 

Jk(y) = ' 4(y, b) dbk. 

Thenl C(x) = G(x, y)Jk(y) ;k i1-q dx4, 

DlC = Jk;k. 

We thus see that the sources of the 'C '-field are the places where matter is created, 
or destroyed. 

As in the case of the 'm '-field, the Green function G must be time-symmetric, 
that is G(a, b) = 1Gret. (a, b) + IGadv.(a: b) 

Hoyle & Narlikar claim that if the action of the 'C '-field is included along with 
the action of the 'm'-field, a universe will be obtained that approximates to the 
steady-state universe on a large scale although there may be local irregularities. In 
this universe, the value of C will be finite and its gradient time-like and of unit 
magnitude. 

Given this universe, we may check it for consistency by calculating the advanced 
and retarded ' C'-fields and finding if their sum is finite. We shall not do this directly 
but will show that the advanced field is infinite while the retarded field is finite. 
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Consider a region in space-time bounded by a three-dimensional space-like 
hypersurface D at the present time, and the past light cone Z of some point P to 
the future of D. 

By Gauss's theorem 

| OCV,-gfdx - dS = N/ -,q d 
iV 3 +Dagdx 

Let the advanced field produced by sources within V be C'. Then C' and WC'/ln will 
be zero on X, and hence 

f kJu dx=f - dS. 

But Jkk is the rate of creation of matter = n (const.) in the steady-state universe, 
and hence _C_ 

JDan 
d V 

As the point P is taken further into the future, the volume of the region V tends to 
infinity. However, the area of the hypersurface D tends to a finite limit owing to 
horizon effects. Therefore the gradient WC'/On must be infinite. A similar calculation 
shows the gradient of the retarded field to be finite. Their sums cannot therefore 
give the field of unit gradient required by the Hoyle-Narlikar theory. 

It is worth noting that this result was obtained without assumptions of a smooth 
distribution of matter or of conformal flatness. 
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