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 THE JOURNAL OF PHILOSOPHY

 VOLUME LXX, NO. 2I, DECEMBER 6, I973

 _S~~~~~~~ - _- to s _ - _

 GEOMETRODYNAMICS AND ONTOLOGY *

 F OR nearly two decades before 1972, Professor John Wheeler

 pursued a research program in physics that was predicated

 on a monistic ontology which W. K. Clifford had envisioned
 in 1870 and which Wheeler 1 epitomized in the following words:

 "There is nothing in the world except empty curved space. Matter,

 charge, electromagnetism, and other fields are only manifestations
 of the bending of space. Physics is geometry" (225). In an address to

 a 1960 Philosophy Congress,2 he began with a qualitative synopsis
 of the protean role of curvature in endowing the one presumed
 ultimate substance, empty curved space, with a sufficient plurality

 of attributes to account for the observed diversity of the world.

 He said:

 ... Is space-time only an arena within which fields and particles move

 about as "physical" and "foreign" entities? Or is the four-dimen-

 sional continuum all there is? Is curved empty geometry a kind of
 magic building material out of which everything in the physical
 world is made: (1) slow curvature in one region of space describes a

 gravitational field; (2) a rippled geometry with a different type of

 * This essay grew out of an Introduction which I presented as chairman of the
 symposium on J. C. Graves's The Conceptual Foundations of Contemporary
 Relativity Theory, held in December, 1972, at the Boston meetings of the
 American Philosophical Association.

 I owe a very substantial debt to the physicist John Stachel, with whom I
 discussed the original, oral version of this paper in detail and who was also
 generous with his time in providing guidance on matters of content and litera-
 ture pertinent to the present published version. I also had the benefit of
 valuable reactions from my Pittsburgh colleagues Allen I. Janis and John R.
 Porter to mathematical questions relating to the geodesic method. Warm
 thanks are due to these three friends for their kind help and to the National
 Science Foundation for the support of research.

 1 Geometrodynamics (New York: Academic Press, 1962).

 2 "Curved Empty Space-Time as the Building Material of the Physical World,"
 in E. Nagel, P. Suppes and A. Tarski, eds., Logic, Methodology and Philosophy
 of Science (Stanford: University Press, 1962).
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 776 THE JOURNAL OF PHILOSOPHY

 curvature somewhere else describes an electromagnetic field; (3) a

 knotted-up region of high curvature describes a concentration of

 charge and mass-energy that moves like a particle? Are fields and

 particles foreign entities immersed in geometry, or are they nothing

 but geometry?

 It would be difficult to name any issue more central to the plan

 of physics than this: whether space-time is only an arena, or whether

 it is everything (361).

 For nineteen years, Wheeler and his co-workers, such as Charles

 Misner, developed some of the detailed physics of Clifford's ontol-

 ogy of curved empty space-time, as an outgrowth of general rela-

 tivity, under the name 'geometrodynamics' ('GMD'). In Wheeler's

 parlance, "a geometrodynamical universe" is "a world whose prop-

 erties are described by geometry, and a geometry whose curvature

 changes with time-a dynamical geometry" (loc. cit.). But in a

 lecture at a 1972 conference, Wheeler disavowed his erstwhile long

 quest for a reduction of all of physics to space-time geometry.3 In

 a brief notice of that conference the pertinent part of this lecture

 was summarized as follows: "He [Wheeler] also developed the

 theme that the structure of space-time could only be understood in

 terms of the structure of elementary particles rather than the con-

 verse statement which he has advocated for many years." 4

 To emphasize his new conception of the fundamental and in-
 dispensable ontological role played by entities or processes other

 than space-time, Wheeler repeatedly spoke of PRE-geometry. As I
 understood him, he sought to emphasize in this way that he now
 regards space-time not as the basic stuff of a monistic ontology but

 rather as an abstraction from the events in which quantum

 processes are implicated. That is to say, according to Wheeler's new

 conception of PRE-geometry, space-time is an abstraction from the

 constitution of physical events ONTOLOGICALLY n6 less than epistemo-
 logically! In Wheeler's erstwhile view of space-time as the only
 autonomous substance, space-time is absolute in the older familiar

 sense of being empty. In the perspective of Wheeler's new program

 3 Conference on Gravitation and Quantization, held in October and Novem-
 ber, 1972, at the Boston University Institute of Relativity Studies, directed by
 John Stachel. I am grateful to Professor Stachel for having given me the oppor-
 tunity to attend this conference.

 This disavowal can now be seen to have been heralded by Wheeler's January,
 1971, Foreword to J. C. Graves, The Conceptual Foundations of Contemporary
 Relativity Theory (Cambridge, Mass.: MIT Press, 1971), p. viii.

 4Nature, CCXL (Dec. 15, 1972): 382. Wheeler's own published repudiation of
 GMD has just become available in C. W. Misner, K. S. Thorne, and Wheeler,
 Gravitation (San Francisco: Freeman, 1972), ?44.4 pp. 1203-1208.
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 GEOMETRODYNAMICS AND ONTOLOGY 777

 of a PRE-geometric ontology, his earlier all-out geometric absolutism

 appears as a kind of ontological chauvinism. Wheeler now wishes to

 supplant that absolutism by a neo-Leibnizian view which is

 RELATIONAL in the sense that it considers that space-time structure

 is only one aspect of a quantum universe whose ontological furni-

 ture cannot be constituted out of space-time. I believe that one

 reason for Wheeler's explicit mention of Leibniz was to emphasize

 the relational character of his notion of PRE-geometry.

 In the minds of great scientists like Wheeler, there often is a

 subtle interplay between empirical and conceptual, or philosophi-

 cal, promptings for abandoning, no less than for espousing, a major

 theory with its research program. It seems to me that this state of

 affairs need not at all betoken a gratuitous and pernicious apri-

 orism: at least generally, there is no sharp divide between legitimate

 empirical and conceptual or philosophical reasons for the rejection

 (acceptance) of a major theory. Thus, I believe that predominantly

 philosophical considerations are likewise germane to the appraisal

 of certain facets of Wheeler's erstwhile purely geometrical ontology

 vis-'a-vis the rival ontology adumbrated in his more recent notion

 of PRE-geometry. Hereafter, when I speak of "geometrodynamics"

 or use its acronym 'GMD', I shall disregard Wheeler's basic change

 of view and use this term to refer to his earlier relativistic theory

 of empty space, rather than to the ontologically more noncommittal

 standard version of general relativity. Even though it was not, of

 course, relativistic, Clifford's so-called "space-theory of matter"

 shared the essential ontological assumptions of Wheeler's GMD.

 Hence I shall also occasionally denote Clifford's theory-sketch by

 'GMD'.

 Partly in response to a 1972 GMD Symposium 5 which focused

 on John C. Graves's The Conceptual Foundations of Contemporary

 Relativity Theory (op. cit.), the present essay aims to provide an

 analysis and appraisal of some of the major facets of the ontology

 of GMD as developed by Clifford and Wheeler.

 But we shall first be concerned in the next section with founda-

 tional aspects of the Riemannian metric of space-time that are cen-

 tral to Einstein's standard 1915/6 general relativity theory. This
 prior consideration of classical general relativity, which is important

 in its own right, will furnish a basis for the ontological articulation

 and assessment of the GMD thesis that the metric geometry of

 the space-time manifold in which we live is the physical world's only
 autonomous substance.

 5 This JOURNAL, LXIX, 19 (Oct. 26, 1972): 621-649.
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 778 THE JOURNAL OF PHILOSOPHY

 I. THE PHILOSOPHICAL STATUS OF THE METRIC OF SPACE-TIME

 IN THE GENERAL THEORY OF RELATIVITY

 Three major alternative methods for physically grounding and theo-
 retically circumscribing the metric of space-time up to a constant

 scale factor merit consideration, althouglh none of them is wholly
 unproblematic. We shall consider two of them rather briefly before
 giving our main attention to a third, which has been adduced as

 foundationally most germane to the ontological vision of GMD.
 Let us begin with the most traditional of the three alternative

 methods.

 (i) The Method of Rods-and-Clocks. Both in his 1917 Prussian

 Academy Lecture "Geometry and Experience," and in his "Auto-

 biographical Notes," 6 Einstein appealed to special rods and clocks
 in order to give a provisional explication of the physical significance
 of the space-time metric. He regarded this theoretical foundation

 for the metric as provisional ontologically, because he noted (59)
 that macroscopic rods and clocks are "objects consisting of moving
 atomic configurations" and in that sense not, as it were, "theo-
 retically self-sufficient entities." In this same vein, others have gone

 on to point out that there is the following kind of serious question
 of principle concerning the ability of solid rods to fulfill the role
 of a metric standard in the general theory of relativity (hereafter
 "GTR"): If such a rod is allowed to fall freely in a permanent
 gravitational field such as the earth's, its end-points will be driven
 either closer together or farther apart by that field. Thus, as judged
 by the space-time metric prescribed by the GTR, the length of the
 rod will change, although the amount of that change will depend

 on the constitution of the rod. Making relativistic corrections for
 such deviations from rigidity may not only be very difficult but
 also involve much of the whole GTR on pain of vicious logical
 circularity.

 But, as I have emphasized elsewhere,7 the ontology of the GTR-
 metric that I espouse in section II below allows fully that the follow-
 ing statement by Hilary Putnam 8 be true: "the metric is implicitly
 specified by the whole system of physical and geometrical laws and
 'correspondence rules'" (206).

 6 In P. A. Schilpp, ed., Albert Einstein, Philosopher-Scientist (New York:
 Tudor, 1949), pp. 59-60.

 7 Geometry and Chronometry in Philosophical Perspective (Minneapolis: Uni-
 versity of Minnesota Press, 1968), p. 367.

 8 "An Examination of Gruinbaum's Philosophy of Geometry," in B. Baumrin,
 ed., Philosophy of Science, The Delaware Seminar, ii (New York: Interscience,
 1963), pp. 205-255.
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 GEOMETRODYNAMICS AND ONTOLOGY 779

 Having seen some of the difficulties of reliance on solid rods even

 infinitesimally, one might follow J. L. Synge 9 and use another
 method which is chronometric.

 (ii) Synge's Chronometric Method. Synge writes (in The Special
 Theory):

 To measure time one must use a clock, a mechanism of some sort in
 which a certain process is repeated over and over again under the
 same conditions, as far as possible. The mechanism may be a pendu-
 lum, a balance wheel with a spring, an electric circuit, or some
 other oscillating system, and out of these one passes by idealisation
 to the concept of a standard clock....

 Let us however make the concept of a standard dock more definite
 by thinking of it as an atom of some specified element emitting a
 certain specified spectral line, the "ticks" of the dock corresponding
 to the emission of the crests of successive waves of radiation from
 the atom. By associating numbers 1, 2, 3, . . . with these ticks, we have
 a scale for assigning times to events occurring in the history of the
 atom, or (since that would give us a very small unit of time) we may
 more conveniently associate with the ticks the numbers a, 2a, 3a, .
 where a is some chosen small number, to be used universally for all
 clocks.

 To base the measurement of time, as above, on a standard atomic

 frequency is very like the plan of basing the measurement of length
 on a standard wave length. But in relativity the concept of length is
 not an easy one, and it seems best to start writh an atomic clock as the
 basic concept and introduce the idea of wave length at a later
 stage (14/5).

 Synge goes on to claim (15/6) that (a) For two neighboring events

 on the world line of a standard (atomic) clock whose coordinates

 are xi and xi + dxi, respectively, the invariant infinitesimal space-

 time separation ds is equal to the time interval between them as

 measured by that clock, and (b) The chronometrically ascertaiaed

 values ds for such pairs of events are equal to those of some func-
 tion f(x', dx') which is positive homogeneous of first degree in the
 coordinate differentials dx'. This means that if the differentials dxi

 are each multiplied by the same positive factor k, ds will be muiti-
 plied by that factor, so that

 f(xi k.dx)=k -f(x',Pdxi) for k> 0

 9 Relativity: The Special Theory (Amsterdam: North-Holland, 1956), ch. i,
 ?? 9, 13, 14; Relativity: The General Theory (Amsterdam: North-Holland, 1960).
 ch. II, ? 4.
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 780 THE JOURNAL OF PHILOSOPHY

 An invariant line element ds = f(xt, dxi) that has this mathematical
 property is said to be the metric of a Finsler space (19).

 Synge does not explain on what grounds it is assumed that the ds
 values that are ascertained chronometrically as specified are those of

 a Finslerian metric, but merely points out (19) that a Riemannian

 metric is only a special case of a Finslerian metric. For example, in a

 Finslerian space-time, the separation ds might have the non-

 Riemannian form ds =(g9nmr dxm dxn dxr dxs)1/4. Furthermore, the
 reason given by Synge (19) for now choosing the Riemannian

 species ds = Igm, dxm dxnll/2 of Finslerian line element is that this
 choice is dictated by the objective of formulating Einstein's theory.
 For the latter purpose, Synge selects in particular the kind of
 indefinite Riemannian metric that is of signature + 2.10

 Note that Synge renounced the foundational use of the solid rods
 of method (i) above, in his chronometric ontology of the GTR
 space-time metric. By so doing, Synge's method forfeited such justifi-

 cation as the presumably Pythagorean infinitesimal metric behavior
 of rigid rods can furnish for adopting the Riemannian species of
 space-time metric within the Finslerian genus. Also, despite the
 essential immunity of the rate of atomic clocks to outside perturba-
 tions, it is not entirely clear that the observational use of atomic
 clocks-say, by tuning the vibrations of caesium atoms to syn-
 chronism with an oscillating electric circuit-can altogether avoid
 being epistemically parasitic on nonrelativistic theory. Thus, it is
 not fully clear whether Synge's chronometric method is any more
 free from such possible parasitism than method (i) when the latter
 rods-and-clocks method attempts to correct solid rods for gravita-
 tional distortions.

 So far, Synge's prescriptions for the chronometric determination
 of ds were confined to event pairs whose separations were time-like.
 But for any given event P of a relativistic space-time, there will be
 other events Q whose separation from P is space-like, and still
 other events R which can belong to the career of a free photon
 whose world-line also crosses P. Therefore, Synge proceeds to point
 out very interestingly (23) that, if we are given the coordinate dif-
 ferences dxi between P and any other nearby event as needed, then
 his chronometric method permits the indirect determination of
 the ds values even for event pairs (P, Q) whose separation is space-
 like! For, given the values of dx1 corresponding to ten events that
 lie, respectively, on as many different world lines of atomic clocks

 10 For a definition of the "signature" of a quadratic differential form, see, for
 example, E. C. Weatherburn, Riemannian Geometry and the Tensor Calculus
 (New York: Cambridge, 1957), pp. 11 and 14.
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 GEOMETRODYNAMICS AND ONTOLOGY 78I

 that cross P, the chronometric determination of the ten respective

 separations of these events from P enables us to use ten correspond-

 ing equations ds2 = Ig., dxm dXnl to calculate the generally ten
 independent values g7ttn at P. Although these gmn values were ob-
 tained solely from determinations pertaining to the time-like world-

 lines of ten atomic clocks, they qualify as the metric coefficients at P

 for any kind of infinitesimal space-time interval of which P is an

 end-point. Hence their substitution in the equation for the Rieman-

 nian metric of space-time now permits us to calculate, in turn, the

 space-like separation of a nearby event Q from P for which the

 coordinate differentials dxt are known.

 In Synge's construction, it can then be postulated that, for the

 now known values of gmn at P, the equation for the Riemannian

 metric will yield the null value ds = 0 for the separation between
 P and nearby events R which can be linked to P by the world-lines

 of free photons and whose coordinate differences dxi from P are
 known (23). Given these results, Synge (ch. i, ?14) is able to

 furnish a second kind of ideal experiment for the measurement of a
 space-like separation, which is more direct than the first kind

 presented above and uses as apparatus only a standard clock and

 photons. In summary, he writes:

 . . . we shall physicise the geometrical element ds of separation be-
 tween two adjacent events, P and Q.

 First we find out by trial whether it is possible to make a material
 particle contain these two events in its history. If it is possible, then
 ds is measured by the difference in the readings at P and Q of a
 standard clock carried by the particle which includes them in its
 history.

 If it is impossible for a material particle to include both the events
 in its history, we know that PQ either lies on the null cone or is
 spacelike. We test whether it lies on the null cone by emitting photons
 from P in all the space-time directions permitted to photons. If one

 of these photons includes Q in its history, then PQ is null and we
 have ds= 0.

 Suppose now that neither material particle nor photon can include
 both P and Q in its history. Then the space-time displacemeint PQ is
 spacelike (24).

 But doubts have been raised concerning Synge's chronometric ap-

 proach in an illuminating paper on the foundations of the space-
 time metric in the GTR by Ehlers, Pirani, and Schild.11 These three

 11J. Ehlers, A. E. Pirani, and A. Schild, "The Geometry of Free Fall and
 Light Propagation," in L. O'Raifeartaigh, ed., General Relativity (New York:
 Oxford, 1972).
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 782 THE JOURNAL OF PHILOSOPHY

 authors offer an important alternative to Synge's chronometric ap-
 proach which will concern us below in the context of GMD. Hence

 it will be useful to quote in extenso from their paper. Speaking of

 Synge's method, they write:

 This procedure has two advantages. First, it uses as primitive a physi-

 cal quantity that can, in fact, be measured locally and with extreme

 precision, and, secondly, it introduces as the primary geometric struc-

 ture the metric, from which all the other structures can be obtained

 in a straightforward manner.

 If the aim is a deduction of the theory from a few axioms, the

 chronometric approach is indeed very economical. If, however, one

 wishes to give a constructive set of axioms for relativistic space-time

 geometries, which is to exhibit as clearly as possible the physical reasons

 for adopting a particular structure and which indicates alternatives,
 then the chronometric approach does not seem to be particularly suit-

 able, for the following three reasons. It seems difficult to derive from
 the behaviour of clocks alone, without the use of light signals, the

 Riemannian form for the separation,

 ds = lgijdx4dx 11'2 (1)
 rather than some other, first-degree homogeneous, functional form in
 the dx4 (as, for instance, the Newtonian form ds = gi dx4). Postulating
 this form axiomatically, one foregoes the possibility of understanding
 the reason for its validity. The second difficulty is that if the gt, are
 defined by means of the chronometric hypothesis, it seems not at all

 compelling-if we disregard our knowledge of the full theory and try
 to construct it from scratch-that these chronometric coefficients should
 determine the [geodesic] behaviour of freely falling particles and light

 rays, too. Thus the geodesic hypotheses, which are introduced as addi-
 tional axioms in the chronometric approach, are hardly intelligible;
 they fall from heaven like eqn (1). Finally, once the geodesic hy-
 potheses have been accepted, it is possible, in the theories of both
 special and general relativity, to construct clocks by means of freely
 falling particles and light rays, as shown by Marzke 12 and, differ-
 ently, by Kundt and Hoffman.13 Thus, these hypotheses alone already
 imply a physical interpretation of the metric in terms of time. The
 chronometric axiom then appears either as redundant or, if the
 term "clock" is interpreted as "atomic clock", as a link between
 macroscopic gravitation theory and atomic physics: it claims the
 equality of gravitational and atomic time. It may be better to test
 this equality experimentally or to derive it eventually from a theory

 12 R. F. Marzke, "The Theory of Measurement in General Relativity," A.B.
 senior thesis, Princeton University, 1959.

 13 W. Kundt and B. Hoffman, "Determination of Gravitational Standard
 Time," in Recent Developments in General Relativity (New York: Pergamon
 Press, 1962).
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 GEOMETRODYNAMICS AND ONTOLOGY 783

 that embraces both gravitational and atomic phenomena, rather than
 to postulate it as an axiom.

 For these reasons, we reject clocks as basic tools for setting up the

 space-time geometry 14 and propose to use light rays and freely falling

 particles instead. We wish to show how the full space-time geometry

 can be synthesized from a few assumptions about light propagation

 and free fall (64/5).

 Ehlers, Pirani, and Schild no more explain than Synge himself on

 what grounds it is assumed that the chronometrically ascertained

 ds values are those of a Finslerian metric. But they object that in

 Synge's account the speciation of a physically unproblematic Fins-

 lerian space-time metric into a uniquely Riemannian metric is
 gratuitous: Like manna, it "falls from heaven." I must refer the

 reader to chapter xxii of my Philosophical Problems of Space and
 Time 15 for a discussion of whether their own alternative ontology

 of the GTR space-time metric can avoid a counterpart to Synge's

 "manna" in its logical edifice. In any case, as I have already pointed

 out, by eschewing the solid rods of the more traditional rods-and-

 clocks method (i), Synge's chronometric method forfeits such justifi-

 cation as the presumably Pythagorean infinitesimal metric behavior
 of rigid rods can furnish for adopting the Riemannian species of

 space-time metric. But a corresponding justification is available to
 Synge, if it be granted that his clocks exhibit the special-relativistic

 clock retardation in local inertial frames.

 (iii) The Geodesic Method. As I have explained elsewhere,18 for
 surfaces in Euclidean 3-space, the prescription that a certain family

 of lines qualify as geodesics of the surface does not determine the

 metric of the surface up to a constant positive scale factor, or even
 the Gaussian curvature of the surface modulo such a factor. For
 example, I show there that, on an ordinary table top, the familiar
 straight lines qualify as geodesics with respect to various metrics
 which can differ other than by a scale factor and which generate
 not only different partitions into equivalence classes of congruent
 intervals, but also different partitions of the class of angles into
 metrical equivalence classes.17 More generally, consider the case of

 14 See also Marzke and Wheeler, "Gravitation as Geometry-I: The Geometry
 of Space-Time and the Geometrodynamical Standard Meter," in H. Y. Chiu and
 W. F. Hoffman, eds., Gravitation and Relativity (New York: W. A. Benjamin,
 1964).

 15 Second revised edition (Boston & Dordrecht: Reidel, 1973), hereafter "PPST,
 2d ed.", p. 745.

 16 Ibid., chapter iII, Section B.
 17 For further details, see T. J. Willmore, Differential Geometry (New York:

 Oxford, 1959), pp. 87/8.

This content downloaded from 128.195.73.37 on Thu, 09 Apr 2020 18:08:38 UTC
All use subject to https://about.jstor.org/terms



 784 THE JOURNAL OF PHILOSOPHY

 the positive definite Riemann metrics, familiarly encountered in the
 geometries of three-dimensional physical space. The mere specifica-
 tion of those curves in a given space which are to count as geodesics
 of such a Riemannian metric does not determine a partition of the
 angles into metrical equivalence classes and does not suffice to single

 out a metric up to a constant positive scale factor k. The reason is
 that a mere geodesic mapping of the space onto itself does not

 determine the metric tensor gik even up to a conformal transfor-
 mation, let alone up to a similarity transformation or modulo k. On
 the other hand, if we prescribe both the partition of angles into
 metrical equivalence classes-via a suitable conformal mapping

 of the surface onto itself-and what paths are to be geodesics, then

 the metric (tensor) is prescribed to within k. In short, the com-

 bination of the conformal and geodesic structures does circumscribe

 the metric (tensor) modulo k. The geodesic structure is often called

 "the projective structure," because the term 'projective differential
 geometry' denotes the study of those properties of the geodesic
 paths themselves which are independent of any and all arc lengths
 defined on them.

 The metrics of the space-times of the GTR are indefinite Rie-

 mannian metrics of Minkowskian signature. As we shall see

 shortly, in the context of the GTR's indefinite Riemannian space-

 time metric, Hermann Weyl 18 was able to impose two compatible
 requirements which generated conformal and geodesic ("projective")
 space-time structures, respectively. And in this way he effected a

 new theoretical circumscription of the GTR's space-time metric

 modulo k.

 We saw in our quotation above from Ehlers, Pirani, and Schild

 that these authors are concerned to provide a rationale for the

 Minkowskian kind of indefinite space-time Riemann metric used

 in the GTR, by deriving it from assumptions and requirements
 which they regard to be more basic, as it were. By contrast, Weyl as-
 sumes at the outset, without any more rudimentary motivation,
 that in any GTR universe, the space-time metric (hereafter "ST-
 metric") has this particular character.19 In essence, Weyl then goes
 on to obtain a compatible trio of assumptions by imposing the

 18 Space-Time-Matter (New York: Dutton, 1922; Dover, 1950), hereafter
 "STM," pp. 179, 228/9, 313/4; Raum-Zeit-Materie (Berlin: Springer, 1923),
 5th ed., hereafter "RZM," pp. 228/9; Mathematische Analyse des Raumproblems
 (Berlin: Springer, 1923), hereafter "MAR," pp. 18/9; Philosophy of Mathe-
 matics and Natural Science (Princeton: University Press, 1949), hereafter
 "PMNS," p. 103.

 19 For a more detailed statement by Ehlers, Pirani, and Schild of the
 divergences of their construction from Weyl's, see op. cit., p. 68 and fn.
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 GEOMETRODYNAMICS AND ONTOLOGY 785

 following two further conditions as to how the ST-metric is to
 be chosen: First, at each world point, light rays and only light
 rays are to be metrically null space-time trajectories, and second,
 the physical space-time trajectories of any and all freely falling
 mass particles are to count geometrically as geodesics lying inside
 the light cone at each point. The compatibility of these two further
 conditions rests on the GTR assumption that the totality of all
 free-fall mass particle trajectories passing through an event deter-

 mines the light cone as its space-time boundary, since a free particle
 of positive rest mass, though always slower than light, can pursue

 a light signal arbitrarily closely. Let us see what contribution is
 made by each of these two compatible requirements to singling out,

 for any GTR world of given mass-energy distribution, a ST-metric
 that is unique modulo k and whose metric tensor has a non-zero

 determinant.

 1. The Requirement of the Metrical Nullity of Light Trajectories

 in Space-Time ("ST"). Let us formulate more precisely Weyl's GTR
 requirement (STM 228, RZM 228) that the ST trajectories of light

 pulses be coextensive with metrically null ST lines. At any given
 world-point P, consider the class D of ST directions of any and all

 infinitesimally neighboring distinct events Q, whose respective
 relative coordinates are given by a set dxi in each case. Then Weyl

 first requires the metric tensor gk to be so chosen that within the
 class D of directions dxi at any given world-point, all and only those

 ST directions which are physically permitted to light signals (either
 "incoming" or "outgoing") satisfy an equation of the form

 ds2 = gik dx dXk = 0.

 Letting the term 'photon' function interchangeably with the pre-
 quantum-theoretic term 'light ray' in this context, let us designate

 this metrical nullity requirement for photons by the abbrevia-

 tion 'photon-ds = O'.

 Thus, Weyl first requires gik to be so chosen that the particular
 directions singled out by infinitesimal light propagation at any

 given point P all be metrically null vectors. Since the infinitesimal

 light rays at P combine into a "double" conical hypersurface in
 space-time, the latter's two lobes are thus null hypercones. By

 coupling the stated nullity stipulation as to the permissible kind of
 metric tensor with the GTR assumption concerning the behavior
 of photons at any one world-point, Weyl assures that infinitesimal

 light propagation determines an infinitesimal "double" null cone
 at each point. Since photons have a vanishing rest mass, we shall
 also speak of massless (test) particles as generators of null cones.
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 To what extent does Weyl's first requirement photon-ds = 0 re-
 strict the allowable metric tensor of the ST-metric? Let us elaborate
 on Weyl's own quite cryptic statement of the reasoning that issues
 in his well-known answer to this question. At any given ST point
 P, the equation gik dxl dxk = O generally contains ten independent
 values gik; i.e., there are at most ten such independent values. And
 at any point P, the nine sets of relative coordinates dxi for nine
 nearby events, respectively, located on as many different photon
 trajectories through P furnish nine independent equations

 g dxl dxk = 0

 which together suffice to determine the nine independent ratios
 of the ten independent values gik- It will be noted that the nine
 null directions of as many photons determine only the ratios of
 the gik values at P, because ds = 0 for each of these directions.
 Furthermore, the ST directions dx1 allowed to photons at P are re-
 stricted to a double conical hypersurface. Hence it turns out that
 taking additional null directions would yield equations which are
 merely redundant with those corresponding to the initial nine
 null directions and would not restrict the gik values any further
 than their nine independent ratios do. Thus Weyl's first require-
 ment photon-ds = 0 determines only the nine independent ratios
 of the gik at any given ST point P. In particular, the fixation of
 these ratios does not suffice to determine the ten independent values
 gik at P up to a positive factor k of proportionality which is the
 same constant from point to point. Contrast this with the feasibility
 of the determination of the ten individual values g, at P, at least up
 to a positive scale factor k which is the same constant from point
 to point, in Synge's aforementioned case of ten positive values ds
 for ten known time-like directions dxi.

 Since Weyl's first requirement photon-ds = 0 determines only
 the ratios of the gik at any given point, this requirement allows, in
 any one coordinate system, alternative functions gik as follows:
 These differ other than by a positive constant scale factor k that is
 the same from point to point. Hence, instead of determining the
 metric tensor or the metric ds up to a positive constant scale factor
 k, Weyl's first requirement determines the metric ds only up to
 conformal transformations of the metric tensor gik. The invariance
 of ds = 0 for photon trajectories under conformal transformations
 of the metric tensor and only under such transformations means the
 following: If gab is a metric tensor that assures the metrical nullity
 ds = 0 of photon ST trajectories, then this same nullity will be
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 assured by just those non-zero metric tensors gab* which are related

 to gab by a positive multiplying function f(x) of the coordinates.
 And clearly the case in which the conformal factor f(xl) is a positive
 constant k is only a very special case. Thus, Weyl's requirement

 photon-ds = 0 defines a conformal structure for space-time and

 thereby allows an infinite class of nontrivially different metric

 tensors. Therefore, if, in this context, the allowed metric tensors are

 to be further restricted up to a positive constant scale factor k, one
 must demand more than the coextensiveness of the ST trajectories
 of light pulses with metrically null world-lines. And, of course, the
 further restriction to be imposed must be compatible with Weyl's
 first requirement. In the statement of this restriction, let it be under-

 stood that a ST-trajectory lying inside the null cone at each of its

 points will be called "timelike."

 2. The Requirement that the Physical ST Trajectories of Freely
 Falling Mass Particles Qualify Geometrically as Timelike Geo-
 desics of the Indefinite Riemannian ST Metric. Let it be granted
 for now that all freely falling (test) particles of positive rest mass,

 i.e., "massive" (test) particles, have determinate ST trajectories, and

 that there are at least two such world-lines through every event.20

 Then Weyl compatibly supplements the conformal structure with
 a so-called "projective" structure on space-time by imposing the

 following further requirement (MAR 18/9; PMNS 103): The metric

 tensor gtk of the indefinite Riemannian ST metric ds of Min-
 kowskian signature is to be so chosen that all ST trajectories of

 freely falling massive (test) particles are turned into timelike

 GEODESICS. In other words, Weyl also stipulates that the metric ds

 be so chosen as to enable the ST trajectories of massive particles to

 qualify or count as timelike geodesics via the equation 8fds = 0.
 Having also imposed this important geodesicity requirement,

 Weyl is able to show that the class of conformally related metric
 tensors singled out by the prior requirement photon-ds = 0 is re-

 stricted further to a particular proper subclass whose members are

 pairwise related by any constant positive factor k. The factor k is

 constant in the sense of being the same from point to point rather

 than varying with the coordinates. One often speaks of any

 particular choice of this scale factor k as a trivial matter, on the

 20 Weyl, "Zur Infinitesimalgeometrie: Einordnung der projektiven und kon-

 formen Auffassung," Nachrichten der Kdniglichen Gesellschaf t der Wissen-
 schaf ten zu Gottingen (1921): 99-112; reprinted in K. Chandrasekharan, ed.,
 Gesammelte Abhandlungen, II (New York: Springer, 1968), p. 196 (page reference
 is to the reprint). See also Space-Time-Matter, Appendix i, p. 314.
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 presumed ground that the laws of nature are invariant under all

 choices of a metrical unit of "length." But Weyl (PMNS 83) re-

 marks that in a quantum world the laws of atomism restrict the

 allowable values of k to some extent. Regardless of whether k is
 thus restricted, however, Weyl's construction-hereafter "Weyl's

 geodesic method"-circumscribes the metric (tensor) modulo k. And
 since all the other geometric structures can be obtained from the
 metric (tensor) in a straightforward manner, Weyl's geodesic
 method generates a unique metric geometry for the space-time of
 any GTR world of given mass-energy distribution.

 As Weyl has been concerned to stress, if his geodesic method is

 not circular logically or epistemically--about which more below-

 then it determines the ST-metric modulo k both logically and

 epistemically, at least in principle, "without reliance on clocks and

 rigid rods" (MAR 19). By thus dispensing with the atomic clocks

 of Synge's method and with the rigid rods of Einstein's, Weyl has
 offered an important alternative foundation for the ST-metric of
 the GTR.

 As we have seen, the construction of the GTR ST-metric by

 Ehlers, Pirani, and Schild-hereafter "E&P&S"-differs from Weyl's
 at least as follows: The former three authors set themselves the task

 of deriving or providing a rationale for the Minkowskian kind of
 indefinite Riemann ST-metric, rather than merely circumscribing

 it to within k after it first "fell from heaven," as they put it. But

 in carrying out their task, E&P&S define compatible conformal and

 projective structures on space-time by appealing, just as Weyl does,
 to the behavior of both massless and massive test particles, as postu-

 lated by the GTR.2' And after having defined the latter compatible
 structures, E&P&S specify additional necessary and sufficient condi-

 tions which then yield a Riemannian metric that is unique modulo

 k. In this way, they aim to improve on Weyl's version of the

 geodesic method by showing that the existence of a unique Rie-
 mannian metric structure need not be postulated beforehand in
 order to generate it by means of the joint behavior of massless

 and massive test particles.

 Despite the stated divergences of the E&P&S method from

 Weyl's method, the E&P&S method is a geodesic method in essen-
 tially the same sense as Weyl's. Furthermore, Weyl, like Ehlers,

 Pirani, and Schild, denies rigid rods any role in the physical foun-

 21 The otherwise admirable presentation by E&P&S expositorily glosses over
 points that make it less perspicuous than it should be if its similarities and
 differences from Weyl's version of the geodesic method are to be readily dis-
 cernible. For details, see the discussion on pp. 774/5 of PPST, 2d ed.

This content downloaded from 128.195.73.37 on Thu, 09 Apr 2020 18:08:38 UTC
All use subject to https://about.jstor.org/terms



 GEOMETRODYNAMICS AND ONTOLOGY 789

 dations of the GTR ST-metric. Hence they all forfeit, no less than
 Synge does, such justification as the presumably Pythagorean
 infinitesimal metric behavior of rigid rods can furnish for adopting
 the Riemannian species of ST-metric.

 We must now devote some attention to the logical and epistemic
 status of the concept of a free massive particle in the geodesic
 method as such.

 In his 1921 paper, Weyl appeals to Einstein's principle of
 equivalence of inertial and gravitational mass as the basis for the
 physical assumption of his geodesic method that a freely falling
 massive particle has a determinate inertial motion in the sense of
 a determinate time-like ST-trajectory, regardless of its other char-
 acteristics such as mass and (chemical) composition. He writes: "In
 the theory of relativity, the projective and conformal structure have
 an immediately palpable significance. The former, the inertial
 tendency of the ST-direction of a moving material particle which
 imparts to it a determinate 'natural' motion upon its release in a
 given ST-direction, is that unity of inertia and gravitation by
 which Einstein replaced both, but which has so far lacked a
 suggestive name" (1968 reprint, 196; translation is mine). Since
 Weyl first introduced his geodesic method, it has become known
 that upon its release in a given ST-direction, the ST-trajectory of
 a freely falling gravitationally multipole particle will not be the
 same as that of a gravitationally monopole particle which is falling
 freely under otherwise relevantly identical conditions. And if the
 geodesic method is to yield the results demanded by the full-blown
 GTR, the time-like ST-trajectories of free massive particles having
 a gravitational multipole structure cannot count as time-like geo-
 desics, whereas the world-lines of the monopole particles should
 so count.

 But John Stachel has pointed out that this complication threatens
 the construction of the ST-metric by the geodesic method with
 logical circularity, and derivatively with epistemological circular-
 ity, as we shall now see. Let us assume, for argument's sake, that one
 has succeeded in assuring that the massive particles are free to the
 extent that they are effectively insulated from any and all KNOWN

 influences which, according to the GTR, would alter their ST-tra-
 jectory and render the geodesic method inoperative. This is ex-

 plicitly assumed to be feasible by Graves (op. cit., p. 171). And it is
 recognized as a practical problem by Kundt and Hoffman, who
 speak of the emission of "geodesic test particles" by an observer and
 remark: "This will pose practical problems since the effects of spin
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 motion and of the electromagnetic field must be made negligible"

 (op. cit., p. 305). Furthermore, let us assume that even if there are
 as yet unknown perturbing influences in our GTR universe, our

 massive particles are effectively free of them as well by some good

 fortune. Even then the multipolarity of spinning particles poses

 more than just practical problems.

 Specifically, the geodesic method is faced by the following prob-
 lem: It must be able to avail itself, in a logically noncircular way,

 of the distinction between gravitationally monopole and multi-

 pole free massive test particles. For it must exclude the ST-

 trajectories of the latter when stipulating that only the world-lines

 of the former are to be coextensive with the time-like geodesics of

 the desired Riemannian metric. And, of course, the latter metric

 is first going to be made available logically in the geodesic method

 by combining this geodesicity stipulation with the conformal struc-

 ture of light rays. Hence no part of the GTR that is predicated

 on the resulting metric may be presupposed, on pain of vicious

 logical circularity, in order to distinguish at the outset between the

 two species of free test particles when imposing the geodesicity re-

 quirement on only one of them. Yet, as Stachel has explained, it

 would appear that precisely such a presupposition is needed, much

 as for method (i) above.

 This logical circularity seems to beset the E&P&S version of the
 geodesic method no less than Weyl's. Consequent upon this logical
 circularity, there is also the epistemological one of knowing how to
 identify without (tacit) appeal to the resulting metrical theory, the
 gravitationally right kind of free particle, when first trying to

 ascertain the metric by the geodesic method. The geodesic method

 would become vitiated by patent epistemic circularity, if it were
 to seek to identify gravitationally monopole free particles by first

 attempting to ascertain whether their ST-trajectories are, in fact,
 geodesics! That Weyl was quite generally sensitive to the risk of
 possible epistemic circularity is attested by the fact that he wrote as
 follows: "Thus, if in the real world it is possible for us to discern
 the propagation of effects, and of light propagation in particular,
 and if moreover we are able to recognize as such the motion of free

 mass points which obey the metrical field, and to observe that

 motion, then we are able to read off the metric field from this

 alone, without reliance on clocks and rigid rods" (MAR 19, transla-
 tion is mine).

 As we noted, Graves (170) was likewise aware of the risk of

 epistemological circularity in the geodesic method, But he over-
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 looked the problem of logical and epistemic circularity posed by
 gravitational multipolarity of free particles. And he took no cogni-

 zance of the role of the conformal structure in the geodesic method,
 but assumed without argument that this method can achieve its ob-

 jective by means of the projective structure alone, writing: "The
 choice of geometry, and the geodesic hypothesis, is derived from the

 central empirical conclusion from the equivalence principle: a class

 of space-time paths is observationally singled out as the trajectories

 of all freely falling bodies. The geometry is selected so that these

 are its geodesics, not because of some procedure with special rods

 and clocks." 22 Having thus greatly oversimplified the ontological

 and epistemic merits of the geodesic method vis-'a-vis both the

 method of rods-and-clocks and Synge's chronometric method, Graves

 felt entitled to write:

 ... Reichenbach, Griinbaum, and their disciples are correct in argu-
 ing against the conventionalists that once a standard has been chosen,

 the geometry is determined. . . However, they completely miss the
 point by speaking as if the standard were some particular kind of rods
 and docks. The crucial fact is rather that any body will do. Further-
 more, it is not any assumed metrical properties of the standard (such

 as invariance under transport) that are relevant, but simply its path

 in free fall. Once we can trace all these paths we have all the informa-

 tion we need to determine the geometry. We have not yet measured

 the intervals and curvatures, to be sure; but measurement is a separate

 operation. In measurement we discover the metrical features of the

 already determined geometry; whereas on Reichenbach's theory, we

 invent a geometry as an attempt to make the results of our various

 measurements consistent (Conceptual Foundations, p. 172).

 But, in view of multipolarity, it is not the case, as Graves would have
 it, that "any [free] body will do." And as against Graves's over-

 simplified verdict as to the relative merits of the geodesic method
 (152-164, 170-172), it seems that our analysis sustains a different
 conclusion: Each of the three methods (i), (ii), and (iii) above has
 its own logical and epistemological "dirty linen," as it were. And

 this conclusion points up anew the likely moral that I stated by

 means of a quotation from Hilary Putnam 'apropos the difficulties
 besetting method (i).

 In this latter vein, John Stachel has commented on the EP8cS

 version of the geodesic method, writing:

 22 "Reply to Stein and Earman," this JOURNAL, LXIX, 19 (Oct. 26, 1972): 647-
 649, p. 648. This published paper is the truncated form of a longer unpublished
 reply to Stein and Earman, which Graves presented orally at the December
 27, 1972, Boston meeting of the Eastern Division, APA.
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 Since this metlod of test particles has recently come into favor, it is
 very satisfying to see it fully developed. Of course, each of the three
 methods currently proposed for explicating the significance of the
 metric structure of space-time (rods and clocks, paths of massive
 particles and clocks, and paths of massless and massive particles) has
 advantages and drawbacks. Thus, it is perhaps better to regard them
 as alternative ways of looking at the implications of a metrical struc-

 ture for space-time than to claim absolute superiority for one.23

 Coupled with Graves's neglect of the geodesic method's specified
 "dirty philosophical linen" is his blithe assumption that onto-
 logically this method must be preeminently foundational not only
 for standard 1915 GTR, but especially for the Riemannian metric
 of Wheeler's empty curved space-time. To assess this assumption, I

 shall now disregard the aforementioned "dirty linen" when I ask:
 In an empty GMD universe, what is the ontic status of the massive
 free test particles of the geodesic method? Clearly, in the GMD
 ontology, these geodesic material particles are not primitive enti-

 ties, any more than are the much maligned rods-and-clocks of
 method (i) or Weyl's photons or Synge's atomic clocks. Instead, in

 the empty world of GMD, the geodesic material particles are them-
 selves held to be literally constituted out of empty, curved, metric
 space-time to begin with, no less than any and all other tradi-
 tionally used physical metric devices! It is a consequence of GMD's
 all-out geometrical reductionism and absolutism that the metric of
 empty space-time can no more first be induced in the ST-manifold
 (in part or whole) by geodesic particles than by rigid rods. In other
 words, the GMD ST-metric cannot consistently first be grounded
 ontologically even partly on the inertial behavior of geodesic parti-
 cles, although that behavior can physically realize or single out
 ST-trajectories which qualify as (time-like) geodesics with respect
 to the GMD ST-metric. For in GMD no entities other than the
 structure of empty space-time itself are ontologically necessary for
 endowing space-time with metric ratios or with such curvature
 properties as are determined by these ratios. Hence, according to
 GMD, any and all particles or radiation that serve to specify the
 Riemannian metric of the empty GMD space-time can do so at best

 only epistemically as a means of our discovering that metric.
 Surely it cannot legitimately be assumed tacitly without any

 further ado that in the context of GMD the highly derived or non-

 23 "Space-Time Problems," a review of the Synge Festschrift entitled General
 Relativity in which the Ehlers, Pirani, and Schild paper cited above appears,
 Science, CLXXX (Apr. 20, 1973): 292-293, p. 292.
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 primitive ontological status of the geodesic particles can be ren-
 dered innocuous or mitigated in this context by simply appealing
 to their smallness qua so-called "test" particles. Why then should we
 accept Graves's undaunted declaration that vis-'a-vis both the rods-
 and-clocks of method (i) and the atomic clocks of method (ii), the
 freely falling material geodesic particles of Weyl's method (iii) play
 a preeminently foundational role ontologically, not only in standard
 1915 GTR but in GMD??

 So far, we have only partially articulated the ontic status of the
 metric in GMD as distinct from the ontologically more non-com-
 mittal standard 1915 GTR. We must now turn to the ramifications
 of that articulation.

 II. THE ONTOLOGY OF EMPTY CURVED METRIC SPACE IN THE GMD

 OF CLIFFORD AND WHEELER

 The empty space(-time) of the Clifford-Wheeler GMD is both metric
 and curved. Here we shall deal only with the first of these two
 fundamental entities. I have explained why I cannot share Graves's
 somewhat dogmatic belief that the geodesic method enjoys founda-
 tional ontic preeminence both in standard 1915 GTR and in GMD.
 I shall nonetheless find it vely useful to employ Weyl's geodesic
 method as a framework for treating the issues that will now concern
 us. Wheeler's GMD assumes a Riemannian kind of ST-metric at
 the outset no less than Weyl's version of the geodesic method does.
 Hence the latter is fully as germane to our ontological analysis of
 GMD as the E&P&S version of that method. Furthermore, I believe
 that, mutatis mutandis, the conclusions we shall reach by refer-
 ence to Weyl's geodesic method are obtained not only via the
 E&P&S version of the geodesic method but also via either the
 rods-and-clocks method or Synge's chronometric method. These
 forthcoming ontological conclusions fully allow but do not require
 that there is concordance of the metric results furnished by the
 three major metrical methods (i), (ii), and (iii). As Kundt and
 Hoffman have noted, it is, of course, a matter of experimental fact
 whether there is such concordance, i.e., whether these three methods
 are actually alternative specifications or physical realizations of one
 and the same ST-metric modulo k.

 We shall see that two quite different verdicts will be reached as
 to the ontic status of the GMD ST-metric according as one rejects
 or accepts one of the cardinal tenets of Riemann's own conception
 of the foundations of the metric of continuous n-dimensional physi-
 cal space. Indeed, the latter tenet will be seen to be incompatible
 with the ontological commitments of GMD. In view of the im-
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 portant ramifications of this incompatibility, it behooves us now to

 recall this explicit and fundamental idea of Riemann's, which

 pertains to the basis for the metric equality or "congruence" of

 intervals in a continuous n-dimensional spatial or temporal mani-

 fold. Weyl (STM 97/8) discussed this idea and then expressed it

 very concisely as follows: "according to Riemann, the conception

 'congruence' leads to no metrical system at all, not even to the gen-

 eral metrical system of Riemann, which is governed by a quadratic

 differential form" (101).

 Here Weyl is alluding to the fact that, in Riemann's 1854

 inaugural dissertation, an important distinction is drawn between

 two kinds of metrics: a (nontrivial) metric which is "implicit" in,

 or intrinsic to, the space on which it is defined, on the one hand, and

 a metric which is correspondingly nonimplicit or extrinsic. This

 distinction of Riemann's emphatically must NOT be confused with

 the very different Gaussian contrast that is unfortunately also ex-
 pressed by means of the terms 'intrinsic' and 'extrinsic'. Since
 Riemann set forth his distinction only illustratively and intuitively,
 I have attempted in an earlier article 24 to give a relatively much

 more precise explication of it.

 On the basis of this explication, I gave a more precise formula-

 tion (547) of the following thesis of Riemann's, which I dubbed
 "Riemann's Metrical Hypothesis" (RMH) and whose attribution
 to Riemann I documented there in detail: In a continuous n-
 dimensional physical space, there is no kind of intrinsic basis at all
 for any nontrivial metric that would qualify as implicit in that
 space to within a constant positive scale factor k. Hereafter I shall
 refer to this latter hypothesis by the abbreviation 'RMH'.

 Let us pause briefly to illustrate the intellectual ubiquity of the
 intuition underlying Riemann's claim that the presumedly dif-
 ferentiable manifold of physical space is devoid of any nontrivial
 "implicit" or intrinsic metric. Thus, the mathematician Morris
 Kline spoke of the metric as imposed on the continuous spatial
 manifold when he wrote: "Strictly speaking, Riemann's curvature,
 like Gauss's, is a property of the metric imposed on the manifold
 rather than of the manifold itself." 25 Note here the contrast between
 "a property . . . of the manifold itself," i.e., a property intrinsic to

 the manifold, on the one hand, and, on the other hand, "a property

 24 "Space, Time, and Falsifiability, Part i," Philosophy of Science, xxxvii (1970):
 469-588, part A, ? 2.

 25 Mathematical Thought from Ancient to Modern Times (New York: Oxford,
 1972), p. 892.
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 of the metric imposed on the manifold," i.e., a property extrinsic to
 the manifold because it is first bestowed upon it by an imposed and
 hence extrinsic metric.

 It is a corollary of RMH, as extended to continuous four-dimen-
 sional physical space-times, that entities extrinsic to these differ-
 entiable manifolds are needed ontologically to generate, in a GTR
 universe of given mass-energy distribution, the GTR's particular
 metric ratios of ST-intervals, ratios by which the metric geometry
 is determined to be what it is in the given case. By contrast, accord-
 ing to GMD, the space-time in which we live is both empty and
 netric (Riemannian), so that no entities other than four-dimen-
 sional empty space-time itself are ontologically necessary for en-
 dowing that physical manifold with a particular set of Riemannian
 metric ratios! Thus, in virtue of the emptiness of the ST-manifold,
 its Riemannian metric must be "implicit" in it or intrinsic to it
 modulo k in the sense of at least not being imposed on it, but of
 being grounded solely in the very structure of that four-dimensional
 physical manifold itself.

 Furthermore, as we saw at the end of section I, according to
 GMD's all-out geometrical reductionism and absolutism, it cannot
 be held that the ST-metric is FIRST induced in its four-dimensional
 manifold by the behavior of such entities as (atomic) clocks, rods,
 light rays, geodesic particles, or the like. For though in GMD
 these agencies are claimed not to be "foreign entities immersed" in
 space-time-to use Wheeler's parlance-they are asserted to be re-
 ducible to the ontologically and logically prior metric geometry of
 space-time. Yet Riemann deemed the behavior of at least some
 devices of this kind to be ontologically necessary for first conferring
 a metric structure upon continuous physical space or time. Since,
 contrariwise, GMD holds all such devices to be themselves onto-
 logically reducible to curved empty metric space-time, in that
 theory the ST-metric cannot be ontologically grounded on their
 behavior. Instead, in GMD such devices can at best physically realize
 the intrinsic metric equalities with which GMD claims empty
 space-time to be endowed. In this way, such devices can function
 epistemologically in measurement.

 We see that if GMD's program of reducing all of physics to metric
 ST-geometry were to be successful empirically-a possibility which
 Wheeler himself has now discounted as unlikely-then this putative
 explanatory success could redound to the empirical discredit of
 RMH. Conversely, in the absence of such massive empirical success
 or pending such success, the assumption of RMH may be warranted
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 and has the consequence of impugning the ontology of GMD.

 In my 1970 paper (521-524), I pointed out this logical consequence

 after having following Weyl (STM ? 12) in calling attention to the
 prior scientific fruitfulness of RMH for standard 1915 GTR.

 Thus I stated (470) that I question the Clifford-Wheeler state-

 ments of GMD in regard to "the compatibility of the theory [GMD]

 with the Riemannian metrical philosophy apparently espoused by
 its proponents." 26 But I trust that the logical incompatibility be-

 tween the GMD ontology of the metric and RMH is now suffi-

 ciently clear. Hence I do not see that my earlier claim of such in-

 compatibility deserves the following assessment made by John

 Earman: "Some philosophers are not content with mere empirical

 objections and can be satisfied only by a-prioristic refutations. In

 this vein, Adolf Grunbaum argued that GMD is incoherent." 27

 According to Earman, my argument for incompatibility is "a prime

 example" (647, fn 13) of what he had described as "the tendency

 (all too prevalent in current philosophy) to view relativity theory

 as only a source for grist for some philosophical mill" (634). And

 Earman deplored the latter pernicious tendency at the end of the

 very same sentence which he began by extolling Graves's book in

 the following way: "I will not dwell here on . . . how loudly I ap-

 plaud his [Graves's] attempt to describe relativity theory from the

 point of view of scientific realism" (634). Presumably, on Earman's

 view the espousal of scientific realism is free from the fetters of

 philosophical apriorism because a scientific realist interpretation
 of the GTR is vouchsafed in a straightforward way, much as one
 can read off the names from a telephone directory. I shall not enter

 here into objections to such uncritical ontological literalism for

 physical theory. Suffice it to invite the reader to note how much

 analysis it took in chapter xix of PPST, second edition, to try to

 show that the coarse-grained entropy of classical statistical mechan-
 ics may be construed in scientific realist fashion instead of being

 a mere anthropomorphism.

 Just as the presumed truth of RMH can serve to impugn the
 GMD ontology of the metric, so also it can provide a basis for

 dealing with the comment made by Clark Glymour28 on my ques-

 tion "what serves to individuate the metrically homogeneous punc-

 tal event elements of the space-time manifold?" in GMD. If the

 26 The exegetical aspects of this expression of incompatibility are discussed in
 ch. xxii, ? 3(b), pp. 783-788, PPST, 2d ed.

 27 "Some Aspects of General Relativity and Geometrodynamics," this JOURNAL,
 LXIX, 19 (Oct. 26, 1972): 634-647, p. 646.

 28 "Physics by Convention," Philosophy of Science, xxxrx (1972): 322-340.
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 aforementioned fruitfulness of RMH for classical 1915 GTR is
 taken to warrant the adoption of RMH as a working assumption,
 then it provides precisely the grounds for which Glymour asked

 when he said: "If metric relations are specifically excluded from the
 class of individuating relations then . . . we must ask for the
 grounds of this exclusion" (338). For, according to RMH, no in-

 trinsic nontrivial metric relations are available, and surely the

 individuality of the fundamental world-point entities of the mani-
 fold cannot be made to rest on extrinsic metrical relations.

 Glymour asked for the grounds for excluding metric relations
 from the class of individuating relations after having made the
 following statement by reference to a certain version of Leibniz's
 principle of the identity of indiscernibles: "we may then regard
 the entities of the manifold as individuated by their metric rela-

 tons" (ibid.). To this I say the following. If the empirical success of
 GMD's program of reduction were sufficient to sustain its dictum

 "Physics is geometry," then RMH could no longer serve as a viable
 basis for impugning the GMD ontology of the metric. And if,
 moreover, the intrinsic metric relations postulated by GMD could

 be demonstrated to individuate the world-points of its ST-manifold,
 then I would agree with Glymour that the doubts I raised about
 GMD in regard to individuation are unwarranted. Indeed, Glymour
 overlooked that I had said as much in my 1970 paper (524) a propos
 the so-called "intrinsic coordinate systems" which obtain under con-
 ditions sufficiently heterogeneous to yield four scalar fields that
 can individuate each world point.

 In any case, if such philosophical appraisal of GMD as inquiring
 into the adequacy of its principle of individuation is to be con-
 demned with Earman as either invidiously aprioristic or "frivolous"
 (647), then one wonders what role, if any, Earman envisions for
 philosophical analysis and criticism of a scientific theory, as distinct
 from purely empirico-mathematical or technical appraisal of it. In
 the same paper, Earman (637) seeks to impugn a statistico-thermo-
 dynamic account of the "arrow of time" on the basis of the time
 orientation of an assumedly time-orientable relativistic space-time.
 But I have argued that the incompatibility alleged by Earman does

 not obtain, and that the time-orientation of space-time no more il-

 luminates the past-future attributes than does the oppositeness of

 two senses on the time-axis of Newton's particle mechanics (PPST,

 2d ed., 788-800).

 Returning to the upshot of our discussion of the GMD ontology
 of the metric so far, we can say the following:
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 (a) If we accept the GMD claim that modulo k the four-dimcin-

 sional ST-manifold is intrinsically and Riemannianly metric, thei
 we must reject Riemann's own RMH.

 (b) GMD postulates that there is an intrinsic basis for the metrical

 nullity of photon lines in space-time and for a particular set of

 metrical ratios among non-null ST-intervals. GMD then asserts that

 free massive particle trajectories qualify-via 8/ds = 0-as time-like
 geodesics with respect to any metric ds that generates both these in-

 trinsic metric ratios and the stated metrical nullity for photons.

 Thus, in GMD the metrical time-like geodesicity of massive particle

 world-lines and the metrical nullity of light rays obtain as a matter

 of intrinsic fact. Having this presumed intrinsic foundation, the
 geometrical status of these two sets of world lines in GMD is not

 a matter of convention, stipulation, or human decree.
 (c) Since GMD asserts massive free particles and photons to be

 geometrically reducible entities, the geodesic method of Weyl and

 of E&P&S does not provide an ontological foundation of the GMD
 ST-metric but only a specification or circumscription of that metric

 modulo k.

 Being mindful of this item (c), let us recall from our discussion

 of the rods-and-clocks method under (i) in section i above, Einstein's

 reservations about the foundational invocation of rigid rods as a

 (partial) physical basis for the GTR ST-metric. Then it becomes
 clear from item (c) that qua ontological foundation of the ST-

 metric, the geodesic method should probably be deemed even less

 satisfactory for GMD than rigid rods (and clocks) are for classical

 1915 GTR.

 I have stressed the logical incompatibility of the GMD ontology
 of the ST-metric with RMH. But I have yet to articulate the rami-

 fications for the appraisal of that GMD ontology, if one assumes
 RMH and founds the ST-metric of classical (standard) 1915 GTR
 on the geodesic method.

 Assuming RMH and the philosophical import of RMH as I have

 developed it, our earlier scientific statement of Weyl's geodesic
 method in section i (iii) of the present paper now requires philo-
 sophical supplementation in the form of a series of statements as

 follows:

 1. Given the assumption of RMH, there is no intrinsic basis and
 hence no initial GEOMETRICAL warrant for singling out any particu-
 lar classes of ST-trajectories as being, respectively, distinguished in
 regard to time-like metrical geodesicity and metrical nullity. Nor
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 is such an initial geometrical warrant created by the mere PRE-
 geometrical fact that the physical behavior of photons and of
 relativistically free massive particles-pace the gravitationally multi-

 polar ones-does, respectively, single out two classes Up and Ut,, of
 ST-trajectories and thereby determines the membership of their
 union U. For, given RMH, the objective physical determinateness
 of the membership of U does not detract one iota from the fact
 that humans selected U without intrinsic geometrical warrant, as
 against other classes of ST-trajectories on the foundation of which
 a differently curved or even flat ST-structure would arise.

 2. The physically determinate membership of U assures the com-
 patibility of the following stipulations laid down by the geodesic
 method: An indefinite Riemann metric (tensor) is to be SO CHOSEN
 that, with respect to one and the same such metric ds,

 (a) The photon trajectories at any given world point are to BE-
 COME metrically null.

 (b) The ST-trajectories belonging to the proper subclass Ur of U
 are to be TURNEDINTO time-like GEODESICS via the intratheoretic
 defining equation Sfds = 0.

 Graves, who confines his attention to the subclass Ur in this con-
 text, distinguishes with commendable clarity between the physical
 determinateness of the membership of Ur, on the one hand, and the
 geometrical status of that membership as metrical geodesics on the
 other, when he says: "These paths are real and observable, quite
 independent of any geometry in which they may be represented"
 (Conceptual Foundations, 171). Indeed, the crucial logical transi-
 tion from the mere physical ST-trajectorihood of the members of

 U., which is PRE-geometric, to their geometrical status becomes
 evident when Graves says of the free massive particle trajectories:
 "The geometry [i.e., the ST-metric modulo k] is selected so that
 these are its geodesics" ("Reply," 648).

 Given the assumption of RMH, the members of U. are a kind of
 metrical geodesics by human convention: the metrical ratios of

 non-null intervals with respect to which the members of U,,, so
 qualify are devoid-in Riemann's sense of RMH-of any "implicit"
 or intrinsic foundation. Similarly for the metrical nullity of the
 photon trajectories that constitute the subclass Up, of U. Thus, if
 RMH is true, all the physical trajectories belonging to U acquire
 their specific geometrical status in Weyl's method extrinsically by
 human convention.
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 3. It follows that, if RMH is true, the metrical structure of space-
 time-and thereby the very constitution of the only autonomous

 substance in the GMD monistic ontology-depends crucially for
 being what it is not only on the physically determinate membership

 of U, but also on the intrinsically UNFOUNDED, humanly stipulated

 ascriptions of metrical geodesicity and nullity to the appropriate

 members of U! As I have argued in great detail in my Geometry
 and Chronometry, and as Gerald Massey 29 also argues, the inevit-

 able metrical conventionality consequent upon RMH is not at all of

 the merely trivial semantical kind which holds alike for any and

 all as yet semantically uncommitted vocabulary, including the as yet

 unpreempted WORDS or noises 'geodesic', 'metric ds', etc. For the

 latter trivial semantical kind of conventionality obtains regardless

 of whether the ascriptions of metrical geodesicity and nullity made

 by Weyl's geodesic method do have an intrinsic foundation, as

 GMD maintains, or fail to have such a foundation, as RMH

 claims! By contrast, if the GTR ST-metric does have the intrinsic

 kind of foundation claimed by the GMD ontology, then the stated

 nontrivial metrical conventionality does not inevitably obtain.

 GMD asserts that all of physics, even if not psychology, is re-

 ducible to the metric geometry of space-time. I submit that, what-

 ever one's views on the mind-body problem, attributes depending
 fundamentally, even if only partly, on particular human stipula-

 tions are not at all the kind of item that can reasonably be taken to

 be essential ontological elements in the very constitution of the

 only autonomous substance in the physical world. Yet, as we have

 seen, if RMH is true, precisely this is the case in the monistic geo-

 metrical GMD ontology: granted RMH, human stipulations enter

 ontologically-not just verbally!-into making the metric geometry
 of space-time be what it is, and thereby these stipulations para-

 doxically generate the character of the only autonomous "physical"

 substance recognized by GMD. For, on the assumption of RMH,
 human conventions are indispensable to the GMD metric geometry
 in the sense of entering essentially into the generation of those

 metrical properties of ST-intervals by which the GMD geometry
 is made to be uniquely what it is modulo k in our actual world.

 ADOLF GRUNBAUM

 University of Pittsburgh

 29 "Is 'Congruence' a Peculiar Predicate?" in R. S. Cohen and R. C. Buck, eds.,
 Boston Studies in the Philosophy of Science, vol. viii (Dordrecht: Reidel, 1971),
 pp. 606-615.
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