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Detection of negative energy: 4-dimensional examples
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We study the response of switched particle detectors to static negative energy densities and
negative energy fluxes. It is demonstrated how the switching leads to excitation even in the vacuum
and how negative energy can lead to a suppression of this excitation. We obtain quantum inequalities
on the detection similar to those obtained for the energy density by Ford and co-workers and in an
‘operational’ context by Helfer. We revisit the question ‘Is there a quantum equivalence principle?’
in terms of our model. Finally, we briefly address the issue of negative energy and the second law
of thermodynamics.
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I. INTRODUCTION

While in classical physics the energy density of a field
is strictly positive, quantum field theory allows states
containing regions of negative energy density or negative
energy fluxes [1]. The Casimir vacuum between two con-
ducting plates and squeezed states provide two familiar
examples of such states, both of which have been stud-
ied experimentally. In these regions of negative energy
density the standard ‘local energy conditions’ assumed
in classical general relativity no longer hold. This gives
rise to the possibility of avoiding the theorems of classi-
cal general relativity such as the singularity theorems and
the Hawking black hole area increase theorem thus allow-
ing for black hole evaporation to occur. Recent interest
in these states has surrounded the apparent violation of
cherished beliefs that such states might entail, by appear-
ing to allow the existence of traversable wormholes and
‘time machines’ [2, 3] and violations of cosmic censor-
ship [4, 5] and the second law of thermodynamics [6, 7].

One powerful approach that has evolved to prove that
any such violations are limited to microscopic fluctua-
tions and cannot produce any macroscopic effect is that
of quantum inequalities constraining the magnitude and
duration of negative energy regions [6, 8, 9, 10, 11, 12,
13]. An example of such a result in four-dimensional
space-time is due to Ford and Roman [9] who showed
that for a free massless scalar field in Minkowski space-
time

∫ ∞

−∞

λ2(t)〈ρ̂(t)〉dt ≥ − 3

32π2T 4
(1.1)

where 〈ρ̂(t)〉 is the expectation value of the energy density
(in the frame of an arbitrary inertial observer whose time
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coordinate is t) in an arbitrary quantum state, and

λ2(t) =
T

π

1

t2 + T 2

is a ‘sampling function’ with characteristic width T . For
general λ(t), Fewster and Eveson [13] proved the stronger
and more general bound

∫ ∞

−∞

λ2(t)〈ρ̂(t)〉dt ≥ − 1

16π2

∫ ∞

−∞

(

λ′′(t)
)2
dt, (1.2)

which was extended to static space-times by Fewster and
Teo [14]. (Stronger, indeed optimal, results have been
proved in unbounded two-dimensional space-time [15]
but the physics of particle detection is very different in
this case and we choose to discuss it elsewhere.)
Central to the issue of negative energy and the second

law of thermodynamics is the question of how atoms re-
spond to negative energy fluxes. The issue is particularly
subtle since the quantum inequalities indicate some re-
striction on the length of time for which a significant neg-
ative energy flux can be sustained. As a result one finds
that in discussions of the detection of negative energy
fluxes one comes face to face with the infamous ∆E∆t
uncertainty principle: If one has an unswitched detector
then the effects of the negative energy flux are swamped
by the positive energy which must surround it. If one
tries to measure whether the detector is excited or not
while the flux is passing through then that measurement
must be made so fast that the switching itself necessarily
excites the detector. These issues were bravely tackled
by Grove [16], however, his results are clouded by the
complications of his analysis, and by the non-standard
coupling that he chooses. The issues were further ad-
dressed by Ford et al [17] who studied the response of an
array of quantum-mechanical spin- 12 particles to negative
energy fluxes. The role of the ∆E∆t uncertainty princi-
ple was again emphasied by Helfer [18] who formulated
an ‘operational’ energy condition on the basis of it: “the
energy of an isolated device constructed to measure or
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trap the energy in a region, plus the energy it measures
or traps, cannot be negative.”

In this paper we shall examine the response of ‘particle
detectors’ to negative energy fluxes. To be able to con-
centrate our measurements on periods of negative energy
flux we explicitly switch our detector on and off. This in-
troduces excitations even in the vacuum which we discuss
in some detail. To isolate the effects of the negative en-
ergy we then compare the response of a detector switched
on and off during a period of negative energy density (or
negative energy flux) and that switched on and off in
the vacuum. We show that, in line with Grove’s two-
dimensional results, the negative energy can lead to a
suppression of excitations that would have occurred for
the detector in the vacuum. However, we additionally
show that there exists a quantum inequality limiting the
size of this effect.

Our analysis also enables us to revisit the question of
the response of an inertial detector moving through the
Rindler vacuum. This situation was originally studied
by Candelas and Sciama [19]. These authors considered
a particular limit where the observation time went to
infinity while the final acceleration remained fixed and
found that, in this limit, the detector did not respond to
the negative energy density of the Rindler vacuum but
instead responded just as if it were in the Minkowski
vacuum. While our analysis confirms this result it also
shows that there are interesting effects of the Rindler
negative energy which are simply lost in this limit.

In this paper we have concentrated purely on four-
dimensional examples, leaving the many interesting two-
dimensional examples to a separate publication. The
principal reason for this is that in two dimensions there
are mathematical and physical reasons for preferring a
coupling to ϕ̇ rather than ϕ (arising from the poor in-
frared behavior of the massless theory); as a coupling
to ϕ is more conventional in the four-dimensional litera-
ture we prefer to use it here. In addition, as mentioned
above, the quantum inequalities which have been proved
vary between two and four dimensions with much tighter
results available in two-dimensional space-time [15].

We set ~ = c = 1 and use the space-time conventions
of [20].

II. THE MODEL

We shall deal exclusively with a real scalar field, ϕ,
and since the effects of negative energy are most pro-
nounced for massless fields we shall restrict ourselves to
that case. Our model is a simple generalization of the
standard monopole detector in which we include an ex-
plicit switching factor. Thus we shall write our interac-
tion Lagrangian as

∫

dτ λ(τ)m(τ)ϕ(x(τ)) (2.1)

where τ denotes proper time along the world-line of the
detector, m(τ) denotes the monopole moment of the de-
tector and λ(τ) is an real switching factor which we have
introduced so that we can make measurements over re-
stricted time intervals. We assume that the evolution
of the monopole is determined by a time-independent
Hamiltonian, ĤD, and that the monopole has corre-
sponding energy eigenstates, which we may denote by
|E1〉 and |E2〉. Working in the interaction picture the
monopole moment then evolves in the standard fashion

m̂(τ) = eiĤDτ m̂(0)e−iĤDτ .

If the field is initially in the state |A〉 then by standard
first-order perturbation theory we obtain the probability
for a transition between the two states of the detector as

PA(E1 → E2) =
∣

∣〈E1|m̂(0)|E2〉
∣

∣

2
ΠA(E2 − E1) (2.2)

where

ΠA(E) ≡
∞
∫

−∞

dτ

∞
∫

−∞

dτ ′ e−iE(τ−τ ′)λ(τ)λ(τ ′)

×〈A|ϕ̂
(

x(τ)
)

ϕ̂
(

x(τ ′)
)

|A〉. (2.3)

The prefactor in Eq. (2.2) merely contains information
about the details of the detector, the real interest lies
in the function, ΠA(E), defined in Eq. (2.3). We shall
refer to ΠA(E) as the response function. We shall be
interested in both excitations E > 0 and de-excitations
E < 0.
It is convenient to introduce the Fourier transform of

the switching function, λ̃(ω), with conventions defined by
the equation

λ̃(ω) =

∫

dτ e−iωτλ(τ). (2.4)

From the reality of λ(τ) it follows that λ̃∗(ω) = λ̃(−ω),
an equality that we shall use freely in the following. It is
possible to isolate the dependence on the switching from
that on the state by writing Eq. (2.3) in the form

ΠA(E) =
1

4π2

∞
∫

−∞

dω λ̃(ω)

∞
∫

−∞

dω′ λ̃∗(ω′) πA(E;ω, ω′)

(2.5)

where

π(E;ω, ω′) ≡
∞
∫

−∞

dτ

∞
∫

−∞

dτ ′ e−i(E−ω)τ+i(E−ω′)τ ′

×〈A|ϕ̂
(

x(τ)
)

ϕ̂
(

x(τ ′)
)

|A〉 (2.6)

is independent of the switching function, λ(τ).
We shall study the response under a range of switch-

ings but we choose them all to be functions of a single
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dimensionless variable (τ − τ0)/T with the two param-
eters τ0 and T determining the time of the peak and a
measure of the duration of the switching, respectively.
We shall write

λ(τ ; τ0, T ) = Λ

(

τ − τ0
T

)

. (2.7)

As a consequence we can write

λ̃(ω; τ0, T ) = T e−iωτ0Λ̃(ωT ) (2.8)

For convenience we will also normalise our switching
functions so that their value at τ0 is 1, that is, λ(τ0) =
Λ(0) = 1. It follows that as we let T → ∞ we recover
the standard unswitched detector results, with λ(τ) = 1,

∀τ and λ̃(ω) = 2πδ(ω).
The simplest choice of switching is a sudden switch on

and off:

ΛS(s) =

{

1 |s| < 1

0 otherwise
(2.9a)

giving

Λ̃S(ω) = 2
sinω

ω
. (2.9b)

As we shall see, the suddenness of this switching leads to
additional infinities, so it is also worth considering two
smoother functions

ΛW (s) =

{

1− s2 |s| < 1

0 otherwise
(2.10a)

giving

Λ̃W (ω) = 4
(sinω − ω cosω)

ω3
, (2.10b)

and

ΛH(s) =

{

cos2
(

π
2 s

)

|s| < 1

0 otherwise
(2.11a)

giving

Λ̃H(ω) =
π2 sinω

ω(π2 − ω2)
. (2.11b)

These choices are inspired by the theory of data window-
ing and are based on the Welch and Hanning windows
respectively [21].
We shall consider two further choices of switching

which are not of finite duration but which still allow us to
concentrate our measurement about one instant of time.
The first is Gaussian switching with

ΛG(s) = exp
(

− 1
2s

2
)

, (2.12a)

giving

Λ̃G(ω) =
√
2π exp

(

− 1
2ω

2
)

. (2.12b)

The second is Cauchy (or Lorentzian) switching, corre-
sponding to the sampling considered by Ford [8],

ΛC(s) =
1

1 + s2
, (2.13a)

with

Λ̃C(ω) = πe−|ω|. (2.13b)

We conclude this section by observing that one may
attempt to generalize the analysis of Davies, Liu and Ot-
tewill [22], to relate the response of a switched particle
detector to the energy density it moves through. As in
Ref. [22] we consider the difference in response between
two different states, |A〉 and |B〉, on the space-time to
avoid problems of renormalization. For a general motion
it is immediate from Eq. (2.3) that

∞
∫

−∞

dτ λ2(τ)
{

〈B|ϕ̂2 (x(τ)) |B〉 − 〈A|ϕ̂2 (x(τ)) |A〉
}

=

1

2π

∞
∫

−∞

dE
{

ΠB(E)−ΠA(E)
}

. (2.14)

Eq. (2.14) shows the close relationship between the detec-
tor response and the average value of 〈ϕ̂2〉. In particular,
as the left hand side can be negative even when |A〉 is the
vacuum state, so the right hand side must be. In other
words, if : denotes normal ordering with respect to the
vacuum, then on average the response of the detector in
regions where 〈B| : ϕ̂2 : |B〉 is negative will be less that it
would be in the vacuum. This is a clear four-dimensional
analogue of Grove’s conclusion for two-dimensional mo-
tion, appropriate for our more conventional choice of cou-
pling.
The relation to the energy density is rather more ten-

uous. If we restrict ourselves to an inertial detector
in Minkowski space-time then following the methods of
Ref. [22] one can show that

∞
∫

−∞

dt λ2(t)
{

〈B|ρ̂ξ(t; ~x )|B〉 − 〈A|ρ̂ξ(t; ~x )|A〉
}

=

1

2π

∞
∫

−∞

dE
(

E2 − (ξ − 1
4 )∇

2
){

ΠB(E; ~x )−ΠA(E; ~x )
}

+
1

2

∞
∫

−∞

dt
(

λλ̈− λ̇2
){

〈B|ϕ̂2(t; ~x )|B〉 − 〈A|ϕ̂2(t; ~x )|A〉
}

,

(2.15)

where ρ̂ξ = −T̂ t
t is the energy density operator, ξ de-

notes the coupling to the scalar curvature and the over-
dot represents differentiation with respect to t. It is clear
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here that the relationship between the energy density and
the detector response depends (not surprisingly) on the
rate at which the switching is turned on and off. This
statement and that relating to 〈ϕ̂2〉 above are, of course,
strongly dependent on the particular choice of coupling
we have made. To conclude we simply note that in the
case of Gaussian switching one does obtain a somewhat
closer relationship:

∞
∫

−∞

dt λ2(t)
{

〈B|ρ̂ξ(~x )|B〉 − 〈A|ρ̂ξ(~x )|A〉
}

=

1

2π

∞
∫

−∞

dE
(

E2 − (ξ − 1
4 )∇

2 − 1
2T

−2
)

×

{

ΠB(E; ~x )−ΠA(E; ~x )
}

. (2.16)

III. PURE VACUUM EFFECTS

A crucial difference between leaving a detector
switched on for all time and introducing some form of
switching is that switching itself will induce transitions.
In particular, a switched static detector moving through
a static space-time in its natural vacuum state will be-
come excited. This is the effect we wish to study in this
section.
In a static space-time we may introduce a complete

normalised set of mode functions of the form e−iΩtf~k(~x )

where Ω = Ω(~k) is positive. This set may be used to
define a natural vacuum state |0〉. The corresponding
vacuum Wightman function at equal spatial points is

〈0|ϕ̂(t, ~x )ϕ̂(t′, ~x )|0〉 =
∑

~k

e−iΩ(t−t′)
∣

∣f~k(~x )
∣

∣

2
. (3.1)

Inserting this form into Eq. (2.5), we find that for a static
detector at ~x

Π0(E; ~x ) =
∑

~k

∣

∣

∣
λ̃
(

(−gtt)
− 1

2Ω + E
)

∣

∣

∣

2
∣

∣f~k(~x )
∣

∣

2
. (3.2)

For the Minkowski vacuum Eq. (3.2) takes the form

Π0(E) =
1

4π2

∞
∫

0

kdk
∣

∣λ̃(k + E)
∣

∣

2

=
1

4π2

∞
∫

0

wdw
∣

∣Λ̃(w + ET )
∣

∣

2
. (3.3)

In the case of sudden switching we have

Π0(E) =
1

π2

∞
∫

0

wdw
sin2(w + ET )

(w + ET )2
(3.4)

-4 -2 2 4
ET

5

10

15

20

25

W

H

G

C

FIG. 1: Vacuum response curves for switched detectors. The
letters G, C, W and H denote Gaussian switching, Cauchy
switching, Welch switching and Hanning switching, respec-
tively.

which diverges (logarithmically) at the upper limit. For
the other switchings introduced in Sec. II the vacuum re-
sponses are finite; they are illustrated as functions of ET
in Fig. 1. The region ET > 0 corresponds to excitation
of the detector from its ground state while the region
ET < 0 corresponds to de-excitation.
Having explicitly illustrated the effects of excitation

due to switching, from now on we shall consider the dif-
ference between the response in some given state |A〉 con-
taining negative energy density or a negative energy flux
and the vacuum |0〉:

∆ΠA(E; ~x ) = ΠA(E; ~x )−Π0(E; ~x ). (3.5)

∆ΠA will be finite even for sudden switching as the high
frequency divergence is independent of state.

z / T0

-0.1

-0.2

0.5 1

G

H

S

FIG. 2: Response curves for energy ET = 1 for a range of
switched detectors a distance z above a single Casimir plate.
The letters G, S and H denote Gaussian switching, Sharp
switching and Hanning switching, respectively.

To conclude this section we study a case of a static
negative energy density before turning to negative energy
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fluxes in the next section. The simplest configuration to
study is the field in its vacuum state |Cas〉 outside a single
Casimir plate z = 0 on which the field is taken to vanish.
For this configuration

〈Cas|ϕ̂2(z)|Cas〉 − 〈0|ϕ̂2(z)|0〉 = − 1

16π2z2
, (3.6)

which diverges to −∞ as the plate is approached, and

〈Cas|ρ̂ξ(z)|Cas〉 − 〈0|ρ̂ξ(z)|0〉 = − 1

16π2z4
(1− 6ξ).

(3.7)

In these equations |0〉 denotes the standard Minkowski
vacuum. A calculation from Eq. (3.2) gives

∆ΠCas(E; z) = − 1

4π2

∞
∫

0

kdk
∣

∣λ̃(k + E)
∣

∣

2 sin(2kz)

2kz

= − 1

4π2

∞
∫

0

wdw
∣

∣Λ̃(w + ET )
∣

∣

2 sin (2w(z/T ))

2w(z/T )
. (3.8)

The response function ∆ΠCas(E, ~x ) is plotted for our
range of switching functions in Fig. 2. It is clear from
this that stimulated emission and absorption are reduced
by the presence of the plate. This is a well known and
experimentally observed effect. Note that as z/T → 0,
∆ΠCas(E; z) → −Π0(E) since in this case the detector
cannot become excited as can also be seen from Eq. (3.2)
on noting that in this case |f~k(z=0)| = 0.
As a check on our calculations we may consider the

response of an eternal detector by taking Λ(τ) = 1 ∀τ ,
so Λ̃(ω) = 2πδ(ω). In that case we find

∆ΠCas(E; z) =







0 E > 0,

2πδ(0)
1

4π

sin(2Ez)

z
E < 0,

(3.9)

in agreement with the results of Ref. [22] for the response
per unit time on identifying 2πδ(0) as the total time of
the measurement. As expected, in this case energy con-
servation prohibits excitation while de-excitation is af-
fected by the presence of the mirror.

IV. GENERAL STATE WITH ONE MODE

EXCITED

A state of sufficient generality to illustrate the reponse
of our switched detectors to negative energy fluxes is that
of the most general state in which just a single mode of

momentum ~k is excited. This may be written as

|Ψ〉 =
∞
∑

n=0

cn|n〉, (4.1)

where |n〉 denotes the nth excited state of the particular

chosen mode and

∞
∑

n=0

|cn|2 = 1. For simplicity we shall

use a box normalization with box volume V . Without
loss of generality we choose ~k = kx̂, then it is straight-
forward to calculate that

〈Ψ|ϕ̂(t, x)ϕ̂(t′, x′)|Ψ〉 − 〈0|ϕ̂(t, x)ϕ̂(t′, x′)|0〉 =
1

kV

{

cos k
(

(t− t′)− (x − x′)
)

∞
∑

n=0

n|cn|2 +

ℜe
[

e−ik((t+t′)−(x+x′))
∞
∑

n=2

√

n(n− 1)c ∗
n−2cn

]

}

, (4.2)

where ℜe denotes the real part. It follows that

∆〈ϕ̂2〉 = 1

kV

{ ∞
∑

n=0

n|cn|2

+ ℜe
[

e−i2k(t−x)
∞
∑

n=2

√

n(n− 1)c ∗
n−2cn

]

}

, (4.3)

and

∆〈ρ̂ξ〉 = ∆〈F̂ξ〉 =
k

V

{ ∞
∑

n=0

n|cn|2

+ (4ξ − 1)ℜe
[

e−i2k(t−x)
∞
∑

n=2

√

n(n− 1)c ∗
n−2cn

]

}

.

(4.4)

where ρ̂ξ = −T̂ t
t and F̂ξ = T̂ x

t, are the energy density
and right-moving energy flux respectively. All of these
expressions correspond to the standard normal-ordered
expectation values. The cross-terms here enable these
quantities (which would classically be positive definite)
to take either sign. The frequency of these cross terms
is double that of the fundamental mode highlighting the
interference nature of negative energy fluxes.
We now turn to our detector response. A straightfor-

ward calculation reveals

∆ΠΨ(E;x) =

1

2kV

{

(

∣

∣Λ̃(kT + ET )
∣

∣

2
+
∣

∣Λ̃(kT − ET )
∣

∣

2
)

∞
∑

n=0

n|cn|2

+ 2ℜe
[

Λ̃(kT + ET )Λ̃(kT − ET )ei2kx

×
∞
∑

n=2

√

n(n− 1)c ∗
n−2cn

]

}

. (4.5)

There are a number of observations to make about
Eq. (4.5):
(a) ∆ΠΨ(E, ~x ) is symmetric under E → −E as fol-

lows mathematically from the reality of the difference of
the two Wightman functions and physically from the re-
lationship between stimulated emission and absorption.
In particular, although Grove’s discussion is expressed
purely in terms of absorption, the approach here is en-
tirely consistent with his results.
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(b) It is easy to check that Eq. (2.14) holds for ∆〈ϕ̂2〉
of Eq. (4.3) and ∆ΠΨ of Eq. (4.5) by virtue of Parseval’s
theorem.
(c) For the special case of an n particle state (cn = 1,

all others zero) we have

∆Π|n〉(E;x) =
n

2kV

{

∣

∣Λ̃(ET + kT )
∣

∣

2
+
∣

∣Λ̃(ET − kT )
∣

∣

2
}

.

(4.6)

That the response is proportional to n reassures us that in
this simple case at least our switched monopole is acting
as a particle detector.
(d) Using the identity [8]

(

|α|2 + |β|2
)

∞
∑

n=0

n|cn|2

+2ℜe
[

αβ

∞
∑

n=2

√

n(n− 1)c ∗
n−2cn

]

≥ −|β|2, (4.7)

valid for arbitrary complex numbers α, β and cn such

that

∞
∑

n=0

|cn|2 = 1 we see that

∆〈ϕ̂2〉 ≥ − 1

kV
(4.8)

and

∆ΠΨ ≥ − 1

2kV
min

(

∣

∣Λ̃(kT + ET )
∣

∣

2
,
∣

∣Λ̃(kT − ET )
∣

∣

2
)

.

(4.9)

Thus while either ∆〈ϕ̂2〉 or ∆ΠΨ may be negative there
is a limit as to how negative they can be. Eq. (4.8) is
the direct analogue for 〈ϕ̂2〉 of the results obtained by
Ford [8] for components of 〈ρ̂〉. An interesting insight
into Eq (4.9) is given by noting that

∆Π|1〉(E;x) =
1

2kV

{

∣

∣Λ̃(ET + kT )
∣

∣

2
+
∣

∣Λ̃(ET − kT )
∣

∣

2
}

≥ 2
1

2kV
min

(

∣

∣Λ̃(kT + ET )
∣

∣

2
,
∣

∣Λ̃(kT − ET )
∣

∣

2
)

.

(4.10)

so that

∆ΠΨ ≥ −1

2
∆Π|1〉(E;x). (4.11)

This equation admits the following natural semi-classical
interpretation. The detector may be thought to respond
to the zero-point energy we have subtracted in forming
∆ΠΨ exactly as an n-particle state with n = 1

2 . If we
allow for the vacuum fluctuations in this way the total
response will always be positive:

∆ΠΨ +∆Π|− 1

2
〉(E;x) ≥ 0. (4.12)

where ∆Π|− 1

2
〉(E;x) is understood to be formally defined

by Eq. (4.6) with n = − 1
2 .

k τ0

 

0.5

 

1

 

1.5

π 2π

r = 1 / 4

r = 1 / 2

r = 3 / 4

FIG. 3: Response curves for squeezed states with squeezing
factor r = 1

4
, r = 1

2
and r = 3

4
for a detector with χ = 1.

A case of particular interest is that of (single mode)
squeezed states defined for any complex number ζ by

|ζ〉 = exp
[

1
2ζ

∗â2 − 1
2ζ(â

†)2
]

|0〉. (4.13)

This state may be written in the present form with cn = 0
for n odd and

c2n = (cosh r)−1/2

[

(2n)!
]1/2

n!

(

− 1
2e

iθ tanh r
)n

, (4.14)

where ζ = reiθ . Correspondingly, we have

∆〈ϕ̂2〉 = 1

kV

{

sinh2 r − sinh r cosh r cos
[

2k(x− t) + θ
]

}

,

(4.15)

and

∆〈ρ̂ξ〉 = ∆〈F̂ξ〉 =
k

V

{

sinh2 r −

−(4ξ − 1) sinh r cosh r cos
[

2k(x− t) + θ
]

}

. (4.16)

Thus for a fraction cos−1(tanh r)/π of each cycle, ∆〈ϕ̂2〉
is negative; this is always less than half, tending to one
half as r tends to infinity. The average value of ∆〈ϕ̂2〉
over a cycle is sinh2 r/(kV ) which is, of course, positive.
For minimal coupling the energy density will be negative
for an equal time but will be out of phase with ∆〈ϕ̂2〉.
For other physical choices of couplings (0 < ξ ≤ 1/6), the
energy density may or may not be negative depending on
the degree of squeezing (magnitude of r). Whenever it is,
it will always be out of phase with ∆〈ϕ̂2〉. The minimum
value of ∆〈ϕ̂2〉 is

∆〈ϕ̂2〉min = − 1

kV
{1− e−2r}, (4.17)

which is, of course, consistent with the bound (4.8).



7

The detector response to a squeezed state is given by

∆Πζ(E;x) =

1

2kV

{

(

∣

∣Λ̃(kT + ET )
∣

∣

2
+
∣

∣Λ̃(kT − ET )
∣

∣

2
)

sinh2 r

− 2 sinh r cosh r ℜe
[

Λ̃(kT + ET )Λ̃(kT − ET )ei(2kx+θ)
]

}

,

(4.18)

or, equivalently,

∆Πζ(E;x) =
1

2kV

(

∣

∣Λ̃(kT + ET )
∣

∣

2
+
∣

∣Λ̃(kT − ET )
∣

∣

2
)

×

sinh r cosh r
{

tanh r − tanhχ cos (2kx+ θ + φ)
}

,

(4.19)

where

tanhχ(kT,ET ) ≡ 2
∣

∣Λ̃(kT + ET )
∣

∣

∣

∣Λ̃(kT − ET )
∣

∣

∣

∣Λ̃(kT + ET )
∣

∣

2
+
∣

∣Λ̃(kT − ET )
∣

∣

2

(4.20)

and φ ≡ Arg
[

Λ̃(kT +ET )Λ̃(kT −ET )
]

. For the switch-
ings of Sec. II, which are all symmetric about τ = τ0, we
have φ = −2kτ0.
It is clear from Eq.(4.19) that for fixed kT and ET

there is a critical degree of squeezing, given by 0 < |ζ| =
r < χ required for the squeezed state to produce a sup-
pression of vacuum excitation. For fixed kT and ET the
minimum value attained by ∆Πζ occurs for r = 1

2χ, and
in this case, one finds that for suitably chosen x (or τ0)
the lower bound (4.11) is achieved. Fig. 3 illustrates the
response for χ = 1 as kτ0 is varied for r = 1

4 , r = 1
2 and

r = 3
4 .

For sharp, Hanning and Welch switching the behaviour
of tanhχ(kT,ET ) as a function of kT and ET is quite
complicated; for illustration, tanhχS(1, ET ) for sharp
switching is plotted as a function of kE in Fig. 4. For
Gaussian and Cauchy switching, tanhχ is a monotonic
decreasing function of kT and ET . In the latter cases the
explicit forms are sufficiently simple to be worth noting,
we have

tanhχG = sech(2kET 2), (4.21)

and

tanhχC =

{

sech(2ET ) ET < kT,

sech(2kT ) ET ≥ kT.
(4.22)

Another simple case in which there is a period of nega-
tive energy flux, which has been of historical importance,
is that of the vacuum mixed with a two-particle state. In
this case we have

|Ψ〉 = 1√
(1 + ǫ2)

(

|0〉+ ǫ|2〉
)

, (4.23)

1 2 3 4 5 6

k E

0.2

0.4

0.6

0.8

1

FIG. 4: tanhχS(kT,ET ) for sharp switching plotted as a
function of kE for kT = 1.

where without loss of generality we have taken ǫ to be
real. Corresponding to Eqs.(4.3) and (4.4) we have

∆〈ϕ̂2〉 = 1

kV

1

1 + ǫ2
{

2ǫ2 +
√
2ǫ cos 2k(t− x)

}

(4.24)

and

∆〈ρ̂ξ〉 = 〈F̂ξ〉 =

=
k

V

1

1 + ǫ2
{

2ǫ2 +
√
2(4ξ − 1)ǫ cos 2k(t− x)

}

. (4.25)

Clearly for small ǫ both ∆〈ϕ̂2〉 and ∆〈ρ̂ξ〉 can be nega-
tive for approximately half the time, and, as before, for
physical choices of couplings (0 ≤ ξ ≤ 1/6) these times
are out of phase. Corresponding to Eq.(4.5) we have

∆ΠΨ(E;x) =

1

2πk(1 + ǫ2)

{

ǫ2
(

∣

∣Λ̃(E + k)
∣

∣

2
+
∣

∣Λ̃(E − k)
∣

∣

2
)

+ ℜe
[√

2ǫΛ̃(kT + ET )Λ̃(kT − ET )ei2kx
]

}

=
1

2πk(1 + ǫ2)

(

∣

∣Λ̃(E + k)
∣

∣

2
+
∣

∣Λ̃(E − k)
∣

∣

2
)

×
{

ǫ2 +
ǫ√
2
tanhχ cos(2kx+ φ)

}

. (4.26)

It is clear that for
√
2|ǫ| < tanhχ we will, as before, have

periods when the excitation is less that in the vacuum.
We should add that the similarity of this case to that

of squeezed states is not accidental: if we work only to
order ǫ2 then the vacuum plus two particle state coincides
with a squeezed state with ζ = −

√
2ǫ.

V. RINDLER SPACE

Following Candelas and Sciama [19] and Grove [16],
we will now study the response of an inertial detector
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moving through the Rindler vacuum, |R〉, defined in the
wedge x > |t| as illustrated in Fig. 5. The Rindler vac-
uum may be thought of as the natural vacuum state in
the gravitational field of an infinite flat earth [25] and
is analogous to the Boulware vacuum of Schwarzschild
space-time while the Minkowski vacuum is analogous to
Hartle-Hawking vacuum. This scenario is thus related to
the question posed by the title of Candelas and Sciama’s
paper [19]: ‘Is there a quantum equivalence principle?’ in
which the authors addressed teh question of whether a
detector falling freely in Schwarzschild space-time could
distinguish if it was moving through the Hartle-Hawking
vacuum or the Boulware vacuum.

An inertial detector moving through the Rindler vac-
uum must make a finite time measurement as the detec-
tor will reach the boundary of Rindler space in a finite
proper time. This boundary plays the role of a mirror
in that the field vanishes there; indeed the Rindler vac-
uum may be realised as the natural vacuum above a uni-
formly accelerating mirror in the limit that the accelera-
tion tends to infinity.

x 

t 

X 

X 

1 

2 

FIG. 5: The measurement time of an inertial detector in
Rindler space x > |t| is limited by the presence of the bound-
ary of Rindler space (mirror) at x = t. Candelas and Sciama
chose to consider the limit (X,T ) → ∞ in such a way that

the final acceleration A = (X2 − T 2)−1/2 remained constant
as for the two trajectories marked X1 and X2 here.

Without loss of generality we may take the detector to
be at fixed x, x = X say. Then expressing the Rindler

Wightman function in Minkowski coordinates we have

〈R|ϕ̂(t,X, y, z)ϕ̂(t′, X, y, z)|R〉

=
1

2π2(η2 − η′2)

ln

(

η

η′

)

[

ln2
(

η

η′

)

− (τ − τ ′)2
]

=
1

4π2(t2 − t′2)









1

ln

(

X − t′

X − t

) +
1

ln

(

X + t′

X + t

)









,

(5.1)

where, as usual, t = η sinh τ and x = η cosh τ . In
Eq. (5.1) t− t′ is understood to occur in the combination
t− t′ − iǫ appropriate to its character as a distribution.
For simplicity, we consider a detector switched on sud-

denly at t = 0 and off suddenly at t = T < X . We have
calculated the corresponding response ∆ΠR numerically.
The result taking X fixed and independent of T is plot-
ted in Fig. 6. That the response for fixed E tends to −∞
as T → X is to be expected on the basis of Eq. (2.14)
since we have

∆〈ϕ̂2(t)〉 = − 1

48π2η2
= − 1

48π2(X2 − t2)
(5.2)

and so

T
∫

0

dt∆〈ϕ̂2(t)〉 = − 1

96π2X
ln

(

X + T

X − T

)

, (5.3)

which diverges logarithmically to −∞ as T → X .

T0

-1

-2

-3

0.25 0.5 0.75 10

FIG. 6: Detector response at energy E = 1 for fixed X = 1
as T varies. T = 1 corresponds to reaching the boundary of
Rindler space.

Rather than consider the limit illustrated in Fig. 6,
Candelas and Sciama chose to consider the limit
(X,T ) → ∞ in such a way that the final acceleration
A = (X2 − T 2)−1/2 remained constant. The numerically
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T0

-1

-2

-3

1 2 3 4 5

FIG. 7: Detector response at energy E = 1 as T varies with
X varying so that the final acceleration A = (X2 − T 2)−1/2

is held fixed at 7·09 (so X = 1 when T = 0·99).

calculated detector response, ∆ΠR, corresponding to this
configuration is plotted in Fig. 7. The fact that this re-
sponse tends to zero as T → ∞ is the essence of the result
obtained by Candelas and Sciama.
Both Figs. 6 and 7 bear out the conclusion of Grove

that as a detector approaches the mirror the reduction
in vacuum fluctuations near the mirror lead to a sharp
reduction in the level of excitation of the detector. This
interesting effect is lost in the limit taken by Candelas
and Sciama.
In fact, as Candelas and Sciama did not subtract the

infinite vacuum excitation introduced by their switch-
ing they were forced to consider the time derivative
d

dT
ΠR(E). This provides a notion of the difference in

response between one ensemble of detectors switched on
at time 0 and off at time T and a different ensemble
switched on at time 0 and off at time T + dT . Grove

considered
d

dT

(

ΠR(E)−Π0(E)
)

but incorrectly asserted

that
d

dT
Π0(E) = 0 whereas in reality

d

dT
Π0(E) =

1

2π2

[

cosET

T
+ E si(ET )

]

, (5.4)

where si(x) is the sine integral defined by [24]

si(x) ≡
x
∫

∞

dt
sin t

t
.

Eq. (5.4) may be derived either from differentiating
Eq. (3.4) or directly by deforming the contour of inte-
gration to that used by Candelas and Sciama. Note that

d

dT
Π0(E) → − E

2π
θ(−E) as T → ∞ (5.5)

as required. Grove’s oversight does not in any case effect

the analysis of the divergence in
d

dT
ΠR(E) as T → X ,

since although
d

dT
Π0(E) is non-vanishing it is manifestly

regular in this limit. We shall work with
d

dT

(

ΠR(E) −

Π0(E)
)

=
d

dT
∆ΠR(E) as this is more natural within our

formalism.
Taking account of the foregoing comments, Candelas

and Sciama prove that

d

dT
∆ΠR(E) ∼ − 1

8π2

ln
∣

∣2A2T/E
∣

∣

T

as
∣

∣A2T/E
∣

∣ → ∞. (5.6)

From Eq. (2.14) we immediately obtain

〈R| : ϕ̂2(T ) : |R〉 = 1

2π

∞
∫

−∞

dE
d

dT
∆ΠR(E). (5.7)

We may follow Grove and use the asymptotic expression

(5.6) of
d

dT
∆ΠR(E) for

∣

∣E/(2A2T )
∣

∣ ≤ O(1) and approx-

imate it as zero for
∣

∣E/(2A2T )
∣

∣ > O(1). Then

1

2π

∞
∫

−∞

dE
d

dT
∆ΠR(E)

∼ − 1

16π3T

O
(

2A2T
)

∫

−O
(

2A2T
)

dE ln
∣

∣E/(2A2T )|

= − A2

4π3

O(1)
∫

0

dx lnx = − A2

4π3
O(1). (5.8)

Given the crudeness of the calculation the agreement
with the exact result

〈R| : ϕ̂2(T ) : |R〉 ∼ − A2

48π2
(5.9)

is remarkable.

VI. CONCLUSION

With our particular choice of linear coupling we have
seen the very close link between detector response and
reduced vacuum noise. The absence of vacuum fluctua-
tions leads to a reduction in the level of excitations of a
switched detector over that which would have occurred in
the vacuum as a result of the switching. We may trans-
late this into thermodynamic terms. We consider a hot
ensemble of two level atoms which is initially at inverse
temperature β and is then allowed to interact for a finite
time with a state |Ψ〉. The ensemble will, of course, cool
(lose entropy) if it is placed just in the vacuum so we
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consider the change in entropy relative to the change in
the vacuum which is given by

∆S =
βE

1 + e−βE

[

∆ΠΨ(E)− e−βE∆ΠΨ(−E)
]

. (6.1)

Considering for simplicity states for which ∆ΠΨ(E) =
∆ΠΨ(−E) (for example, squeezed states) we have

∆S = βE
1− e−βE

1 + e−βE
∆ΠΨ(E). (6.2)

Here the prefactor is manifestly positive so the ensem-
ble which interacted with that state |Ψ〉 will have cooled
more than an identical ensemble in the vacuum if and
only if ∆ΠΨ(E) < 0.
The foregoing results serve to clarify the response of

matter to pulses of negative energy flux of limited dura-
tion. They are broadly in accordance with one’s intuition
that negative energy should have the effect of enhancing
de-excitation, i.e. to induce ‘cooling’. However, our re-
sults are necessarily somewhat model dependent and for
our standard monopole model we find that there is not
always a simple relationship between the strength of the
negative energy flux and the behaviour of matter.

Considerable interest attaches to the thermodynam-
ics of negative energy. If a sustained negative energy
flux could be directed at a hot body (or a black hole)
in such a way as to reduce its temperature, hence en-
tropy, by a macroscopic amount there would appear to
be a clear violation of the second law of thermodynamics.
There is a considerable literature on this topic already.
The results of this paper are a first step to investigating
the thermodynamics of negative energy. However, the
‘cooling’ effects we have discussed cannot be immediately
used to draw thermodynamic conclusions, because they
have been restricted to first order in perturbation the-
ory and, as shown by Grove [23], a proper investigation
of the thermodynamic implications necessitates a calcu-
lation to second order in perturbation theory. (At first
order alone, it is not possible to determine whether the
de-excitation effects are merely due to the (small) vio-
lation of energy conservation expected in any process in
which a general quantum state collapses to an energy
eigenstate, or whether they pressage a systematic reduc-
tion in the energy of the matter which would have serious
thermodynamic implications.) We shall report on this
further investigation in a separate paper.
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