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Abstract 

We describe an implementation of a virtual environment for visualizing the geometry of curved spacetime by 
the display of interactive geodesics. This technique displays the paths of particles under the influence of 
gravity as described by the general theory of relativity, and is useful in the investigation of solutions to the 
field equations of that theory. A boom-mounted six degree of freedom head position sensitive stereo CRT 
system is used for display. A hand position sensitive glove controller is used to control the initial positions and 
directions of geodesics in spacetime. A multiprocessor graphics workstation is used for computation and 
rendering. We describe and illustrate with examples several techniques for visualizing the geometry of 
spacetime using geodesics. Though this work is described exclusively in the context of physical four-
dimensional spacetimes, it extends to arbitrary geometries in arbitrary dimensions. While this work is intended 
for researchers, it is also useful for the teaching of general relativity. 

1: Introduction

According to the theory of general relativity, the motion of objects under the influence of gravity can be 
understood in terms of objects moving along the straightest paths in a curved four-dimensional spacetime [1]
[2][3]. The curvature is determined by the distribution of the mass and energy in spacetime. Given the 
curvature, this paper is concerned with the visualization of that curvature by studying the straightest lines, or 
geodesics, in that spacetime. These geodesics correspond to the actual paths of particles under the influence of 
gravity. Geodesics can exhibit complex three-dimensional structure, and can vary widely depending on their 
initial locations and directions. Virtual environments provide a natural three-dimensional display and control 
capability for the investigation of geodesics. The use of paths for the visualization of geometry and the 
interactive display and control paradigms described in this paper are inspired by earlier work on the virtual 
windtunnel [4]. 

Geodesics in curved spacetime can be defined in a variety of equivalent ways. We shall treat geodesics as 
solutions of a set of ordinary second-order differential equations which will be introduced in section 2.3. The 
initial conditions for these equations are an initial position and direction of a geodesic. The solution to these 
equations are paths that are equivalently: 1) the shortest (or longest) path between any two points on the path, 
or 2) the path of a particle in spacetime that is not under any acceleration. The geometry of a spacetime 
completely determines the geodesics. We can use geodesics to study both the curvature of spacetime and the 
physical motion of objects in that spacetime. Thus the visualization of spacetime via display of geodesics 
provides both geometric and physical insight. 

This paper describes an implementation of an interactive virtual environment [4] which is dedicated to the 
exploration of curved spacetimes through the interactive display of geodesics (figure 1). The spacetimes 
considered are solutions to Einstein's equations, which specify the curvature of spacetime for a given 
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distribution of matter and energy. The curved spacetime data provided can be closed form formulas or 
numerical data. Geodesics in spacetime are one-dimensional paths in four-dimensional space. The ability to 
rapidly move the geodesics around allows the researcher to get a sense of the overall curvature of spacetime. 
The interactive capability is provided by a VPL Dataglove, which measures the user's hand position, 
orientation and gesture. The three-dimensional structure of the geodesics is displayed via the Fake Space 
BOOM, a head-tracked wide field stereoscopic display system containing two monochromatic CRT monitors. 
The exploration capability requires the visualization software to compute and display the geodesics in 
response to the user inputs at a rate of about eight frames/second or better. To provide this performance, the 
geodesics are computed and rendered on a Silicon Graphics Iris 380GT/VGX workstation. Further details of 
this interface are discussed in section 4. 

In section 1.1 we provide a brief survey of the role of visualization in general relativity. In section 2, the 
relevant mathematical framework is introduced. Section 3 describes the control and display of geodesics. The 
virtual environment hardware is introduced in section 4. Section 5 discusses the implementation of virtual 
spacetime, including visualization tools based on geodesics and their use in an example curved spacetime. 
Section 6 presents future work. 

1.1 Visualization and General Relativity

Historically, visualization has played an important role in the development and presentation of general 
relativity. Many modern texts in general relativity (e. g. [1][3]) contain pictures which use visual arguments to 
motivate and argue significant technical points. This usefulness of visualization derives from the fact that 
general relativity is fundamentally a geometric theory. With the exception of Einstein's equations, which 
express the dependance of the curvature on the matter and energy distribution, the entire content of general 
relativity is to be found in the examination of curved space through the mathematics of differential geometry. 
Thus the visual display of the shapes of various aspects of spacetime geometry can provide real physical 
insight. 

The difficulty of visualization in general relativity is that a curved spacetime is a four dimensional object. The 
difficulties of visually displaying the geometry of four-dimensional spaces are considerable. The are several 
methods in common use in general relativity to surmount these difficulties. They fall into two broad 
categories: embedding diagrams and physical simulations. 

Embedding diagrams [1] are curved two-dimensional surfaces in flat three-dimensional space whose geometry 
corresponds with that of a two-dimensional slice through the curved four-dimensional spacetime. While 
embedding diagrams are a visually striking method of displaying curvature, they provide only indirect 
physical insight and only exist for simply curved spacetimes. 

Physical simulations are typically based on the computation of geodesics. This is often done via direct 
computation of the paths in closed form [1][5]. This is a powerful method of studying the physical significance
of a curved spacetime. Closed form computations are possible only in cases of simple curvatures. Numerical 
computation of geodesics can be done for general spacetimes, including the results of numerical spacetime 
calculations [6][7]. The technique discussed in this paper uses computational geodesics and provides a real-
time three-dimensional interface for both display and control of geodesics. 

An important class of geodesics corresponds to light rays, called lightlike or null geodesics. These geodesics 
are usually displayed by replacing one space direction (usually the z axis) with the time direction. These 
geodesics are important because causal influences in spacetime travel at speeds slower than or equal to light. 
Displaying the paths of light rays give information about the causal structure of the spacetime. A light cone is 
the display of the initial directions of lightlike geodesics emanating from a point. In highly curved spacetimes, 
there can be causally disconnected regions of spacetime separated by an event horizon. Black holes are the 
most famous example of this phenomena. The mapping of event horizons in dynamic, numerical spacetimes is 

Page 2 of 16Virtual Spacetime



of great interest to physicists. The interactive visualization of lightlike geodesics described in this paper is well 
suited to this problem. 

2: Spacetime, Geometry Data, and Geodesics

This section outlines the mathematics and concepts necessary to compute geodesics in spacetime given the 
geometry data for that spacetime. The necessary concepts will be given without motivation, proof, or complete 
context. Only information required to implement our visualization environment is given. For more detail, the 
reader should refer to the standard texts [1][2][3]. 

2.1 Spacetime and World Lines

Physics takes place in a four-dimensional space, called spacetime [8], which is the direct union of the three-
dimensional space of our experience with time taken as a direction. From this point of view, objects which are 
bounded in space are, due to their persistence in time, extended objects in spacetime. Their extent in the time 
direction (in appropriate units) is much greater than their extent in the space direction. This gives the 
appearance of forming a line in spacetime oriented in the time direction called the object's world line. All 
objects in three-dimensional space form world lines in spacetime, so the study of the physics of objects in 
spacetime is the study of the behavior of the world lines of those objects. When these objects are not subject to 
any physical forces other than gravity, their world lines will be geodesics in curved spacetime. 

Some simple examples will bring out important aspects of world lines. Consider a stationary object relative to 
some reference frame in three-dimensional space. In spacetime, that object is moving in the time direction. We 
can represent this motion in time by drawing a spacetime diagram, a two-dimensional diagram with the 
horizontal direction representing position in space and the vertical direction representing the position in time 
(figure 2). In this diagram, our motionless object has a world line that is vertical and parallel to the time axis. 

An object moving from left to right will have a tilted world line. The slope of the moving object's world line 
will be 1/(speed of object). The velocity of an object in three-dimensional space corresponds to a tilt of that 
object's world line in spacetime, so specifying a velocity in three-dimensional space is the same as specifying 
a direction in spacetime. We will use this fact to control the initial direction of geodesics in curved spacetime. 
An object under some varying acceleration will have a curved world line (figure 2). 

Figure 2. Example spacetime diagram showing world lines in a flat spacetime. 

The spacetime diagram discussed above assumes a flat spacetime. If the spacetime is curved, the straight 
world lines would become curved geodesics. If these geodesics were observed without knowledge of the 
curvature of the spacetime, one would say that the objects corresponding to those curved world lines were 
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accelerated by a force. In fact, they are not accelerated by a force but are following the curvature of spacetime. 
This is why gravity looks like a force when it is in fact due to the curvature of spacetime. 

While space and time are directions in the geometric sense, the geometry in the time direction is different from 
that in the space directions. This is true for both flat and curved spacetime. For the moment, let us discuss the 
flat spacetime case. We can express the geometry of a space in terms of the formula for the distance between 
two points. In three-dimensional space, the distance between two points is given by the familiar Pythagorean 
theorem: 

d[2] = ([[Delta]]x)[2] + ([[Delta]]y)[2 ]+ ([[Delta]]z )[2]

where x, y, and z are the usual Cartesian coordinates and d is the distance. In spacetime the distance formula is 
given by: 

s[2] = c[2]([[Delta]]t)[2] - ([[Delta]]x)[2] - ([[Delta]]y)[2] - ([[Delta]]z )[2]

where t is the time coordinate, s is the distance in spacetime and c is the speed of light. In this convention we 
have chosen the 'timelike' convention, so that s[2 ]is positive for physical world lines which satisfy c[2]
([[Delta]]t)[2] > ([[Delta]]x)[2] + ([[Delta]]y)[2] + ([[Delta]]z )[2] for any two points on that world line (called 
a timelike world line). A spacelike world line satisfies the inequality c[2]([[Delta]]t)[2] < ([[Delta]]x)[2] + 
([[Delta]]y)[2] + ([[Delta]]z )[2] and corresponds to the path of a particle that moves faster than the speed of 
light. One could just as easily have chosen the 'spacelike' convention, reversing the signs in the distance 
formula. We shall adopt the timelike convention throughout this paper. 

The spacetime distance formula has the remarkable property that s can have the value zero for physically 
separate points. A world line of a light ray has the property s = 0 for any two points along that world line, and 
are called lightlike or null geodesics. Null geodesics play an important role in spacetime visualization. 

2.2 Geometry Data: Metrics

The mathematical description of curved spacetime in general relativity is based on pseudo-Riemannian 
geometry, a part of differential geometry that describes the curvature of a space via distance relations between 
points of that space. For a general curved space of any dimension, these distance relations are expressed in a 
generalization of the Pythagorean theorem. 

Let dx[u ]denotes an infinitesimal distance in the x[u] direction in some coordinate system, where greek 
indices range from 0 to 3 with 0 labeling the time coordinate. The distance formula in spacetime is given by: 

ds[2] = Isu(L(u,[[nu]]=0),3, gu[[nu]](x)dx[u]dx[[[nu]]) ]

where each gu[[nu]](x) is an entry in a 4x4 matrix g(x) of functions of a point x in spacetime called the 
metric. In the case of flat spacetime described in section 2.1 above, the metric is given by 

g(x) = Bbc((Aalhs5co4(c[2],0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1)) 

In a general curved spacetime, any of the entries in the metric may be a non-constant function. On the other 
hand, the example of the distance formula in flat two dimensional space in polar coordinates, d[2] = ([[Delta]]
r)[2] + r[2]([[Delta]][[theta]])[2],[ ]shows that non-constant functions in the metric do not imply curvature. 
The Riemann curvature tensor is a function of the first and second derivatives of the metric which vanishes if 
and only if the space described by that metric is flat. This curvature tensor appears linearly as part of Einstein's 
field equations of general relativity, so Einstein's equations are second-order non-linear partial differential 
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equations for the metric. Solutions to these equations for a particular distribution of matter are physical metrics 
that describe physical spacetime. 

Metrics are computed in particular coordinate systems suited to different physical aspects of the spacetime. 
The same physical spacetime is often described in different coordinates, implying different formulas for the 
metric. Since the metric is used to compute the geodesics of a spacetime, we will take as the basic geometry 
data for a spacetime a coordinate system and metric in those coordinates. These data can be in the form of 
exact closed form formulas, or as data on a computational grid. 

2.3 Computing Geodesics

Given a metric g(x), the geodesic starting at the point x[ ]= (x[0], x[1], x[2], x[3]) with initial spacetime 
direction dx/ds= (dx[0]/ds, dx[1]/ds, dx[2]/ds, dx[3]/ds), where s is a parameter often taken to be arc length, 
may be obtained by iteratively solving the geodesic equations [1][2][3]: 

F(d[2]x[u],ds[2]) = Isu(L([[nu]],[[lambda]]=0),3, [[Gamma]][u][[nu]][[lambda]](x) F(dx[[[nu]]],ds) F(dx
[[[lambda]]],ds)). 

The [[Gamma]][u][[nu]][[lambda]](x) are functions of g(x), and are given by 

[[Gamma]][u][[nu]][[lambda]](x) = Isu(L([[alpha]]=0),3, F(1,2) g[u[[alpha]]](x)Bbc((F(dg[[alpha]][[nu]]
(i>x),dx[[[lambda]]]) + F(dg[[alpha]][[lambda]](x),dx[[[nu]]])[ ]- F(dg[[nu]][[lambda]](x),dx
[[[alpha]]]))) 

These [[Gamma]][u][[nu]][[lambda]](x) are called connection coefficients or Christoffel symbols, and g[u
[[nu]]](x) are the entries of the matrix g[-1](x). Connection coefficients measure how tangent vectors in curved
spacetime are turned by the curvature as they are translated in spacetime. Thus the geodesic equations are the 
equations for the "least turning" path in a curved spacetime, or equivalently they are the equation "acceleration 
relative to curved spacetime = 0". The connection coefficients are symmetric in two indices and so have 40 
independent components. The connection coefficients can be numerically computed from metric data, but this 
induces numerical error and is time consuming. We have found it advantageous to include the connection 
coefficients as part of the geometry data. When the metric is available as exact formulas, the formulas for the 
connection coefficients are derived and included in the geometry data. For computational spacetimes, the 
metric and connection coefficients are directly available as data on a computational grid. 

A numerical solution to the geodesic equations is obtained by selecting a [[Delta]]s and integrating once to 
obtain, for each value of u, a new dx[u]/ds, which is again integrated to find a new x[u]. This process is 
repeated, producing a path x(s) = (x[0](s), x[1](s), x[2](s), x[3](s)), which can then be displayed for 
visualization. When [[Delta]]s is sufficiently small, Euler integration is sufficient. At the nth step, s = n
[[Delta]]s, so using Euler integration the solution to the geodesic equations at the nth step is given by 

F(dx[u](n[[Delta]]s),ds) = [[Delta]]s Isu(L([[nu]],[[lambda]]=0),3, Bbc(([[Gamma]][u][[nu]][[lambda]](x
((n-1)[[Delta]]i>s)) F(dx[[[nu]]]((n-1)[[Delta]]s),ds) F(dx[[[lambda]]]((n-1)[[Delta]]s),ds))), 

x[u](n[[Delta]]s) = [[Delta]]s F(dx[u](n[[Delta]]s),ds). 

It is not always possible to choose a small [[Delta]]s however, since one desires a sufficiently long path to 
display the geometry of spacetime over long distances. With a small [[Delta]]s, many iterations would be 
required to produce a path of sufficient length. We also require, however, that the geodesics be computed and 
displayed sufficiently quickly that one can move the geodesics around in real time, and display them from a 
moving point of view. This puts a constraint on the number of points that can be computed for a path. Thus 
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larger values of [[Delta]]s can become necessary, in which case a more accurate numerical integration method 
than Euler integration may be required. We have found the Adams-Bashforth predictor-corrector integration 
[9] fast enough to be useful. 

3: Control and Display of Geodesics 

3.1 Mapping User Inputs to Geodesic Initial Conditions

Giving the user real-time control of geodesics amounts to giving the user control over the initial position x[ ]= 
(x[0], x[1], x[2], x[3]) and the initial direction vector dx/ds= (dx[0]/ds, dx[1]/ds, dx[2]/ds, dx[3]/ds). As 
pointed out in section 2.1, the initial direction in four-dimensional spacetime can be thought of as a velocity 
vector in three-dimensional space. Using the VPL Dataglove, which provides the position and orientation of 
the user's hand, the user's hand position can be used to control the initial three-dimensional position of the 
geodesic. The initial time can be chosen as the current timestep in the case of dynamic spacetimes. The 
orientation of the user's hand in combination with a preset velocity magnitude can be used to control the initial 
direction vector. The precise mapping from the velocity vector to the initial spacetime direction will be 
described in sections 3.2. 

We control the preset velocity magnitude "off-line" using mouse controls. In this design the user is interacting 
with the geodesic path of a particle with a fixed velocity and interactively controlled initial direction. This 
choice is motivated by ease of implementation and the direct physical intuition it provides. Other choices of 
control would be interesting to explore. These could include using the degree of bend of a finger or some other 
interactive control. 

Typically, the graphics coordinate system will not be the same as the coordinate system in the geometry data. 
The initial position and orientation vector input by the user must be converted to the coordinate system in the 
geometry data. The form of the coordinate part of the geometry data should include the transformation to some 
standard coordinate system such as euclidean coordinates and the jacobian of that coordinate transformation 
for the conversion of the direction vector. 

3.2 Computation of Initial Spacetime Direction

When possible, we will be parametrizing our geodesics by arc length in spacetime. This is not possible for null 
geodesics, however, as they have spacetime arc length = 0. When converting the velocity vector to an initial 
spacetime direction vector, the timelike geodesics and null geodesics must be handled differently. We do not 
consider spacelike geodesics, which are currently believed to be unphysical. The kind of geodesic being 
generated is determined by the length of the initial velocity vector, which is computed by using the spacetime 
metric. 

In this section the indices i and j refer to the three-dimensional space coordinates in the four-dimensional 
spacetime, and range from 1 to 3 and we denote the time coordinate by t. From the definition of the metric in 
section 2.2, 

ds[2] = g00(x)dtdt + 2 Isu(L(i=1),3, gi0(x)dx[i]dt)[ ]+Isu(L(i,j=1),3, gij(x)dx[i]dx[j)]

dividing by dt[2], 

Bbc((F(ds,dt))[2] = g00(x) + 2 Isu(L(i=1),3, gi0(x) v[i) ]+Isu(L(i,j=1),3, gij(x) v[i] v[j)], []

where v = dx/dt is just the three-space velocity (dx[i]/dt = v[i ]). In the case of timelike lines, this will be 
greater than zero and we can solve for F(dt,ds) : 
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F(dt,ds) = Bbc((g00(x) + 2 Isu(L(i=1),3, gi0(x) v[i) ]+Isu(L(i,j=1),3, gij(x) v[i] v[j)])Sup12(- F(1,2)).[]

This gives one component of the initial spacetime direction. The other components are found via the chain 
rule: 

F(dx[i],ds) = F(dx[i],dt) F(dt,ds) = v[i ]F(dt,ds).. 

For null lines, the above expression for Bbc((F(ds,dt))[2] vanishes and we cannot simply solve for F(dt,ds) . In 
this case the magnitude of the velocity is set to the speed of light and we can use an arbitrary parameterization 
of the geodesic. This allows us to set the F(dt,ds) component of the initial spacetime direction to an arbitrary 
value. Note that because the speed of light is, by definition, the velocity for which the spacetime distance 
vanishes, which is in turn dependent on the local geometry through the metric, the value of the speed of light 
in a fixed coordinate system will vary from point to point in space. Given a spacetime velocity vector, the 
magnitude of that vector may be greater than the speed of light in some regions of spacetime. We shall always 
consider such cases to be initial directions for null geodesics. Thus given a velocity vector v at some position x
in space, when the magnitude of v is greater than the speed of light at x, we must scale v so that its magnitude 
is exactly the speed of light at x. Let a denote this scale factor, so v -> av. Substituting av into the expression 
for Bbc((F(ds,dt))[2] gives: 

0 = g00(x) + 2a Isu(L(i=1),3, gi0(x) v[i) ]+a[2 ]Isu(L(i,j=1),3, gij(x) v[i] v[j)]. 

This is a quadratic equation for a. Setting A = Isu(L(i,j=1),3, gij(x) v[i] v[j) ]and B = 2 Isu(L(i=1),3, gi0(x) v
[i) ], we find 

a = Blc{(Aalhs5co1( F(Sup6(-B + R(B[2] - 4g00(x) A)),2A[)] A!=0, F(-g00(x),B) A=0)) 

The three space components of the initial spacetime direction are found in the same way as in the timelike 
case: 

F(dx[i],ds) = F(dx[i],dt) F(dt,ds) = av[i ]F(dt,ds).. 

3.2 The Display of Geodesics

The geodesics that result from the calculations described above are paths x(s) = (x[0](s), x[1](s), x[2](s), x[3]
(s)) in four dimensions. This path must be converted into the appropriate coordinates for display using the 
coordinate part of the geometry data. Since each point on the path has four components and our virtual 
environment renders these paths in a virtual three-dimensional space, there is some freedom as to how these 
paths are mapped to the display. There are standard possibilities. 

The first possibility is to map the spatial part of the paths (x[1](s), x[2](s), x[3](s)) to the three dimensional 
graphics space directly. This choice will be called a spatial display. The paths in this display are the paths in 
space followed by pointlike objects of infinitesimal mass under the influence of the gravity generated by the 
curvature of that spacetime. 

The second possibility is to map the coordinates x(s) = (x[0](s), x[1](s), x[2](s), x[3](s)) to the three-
dimensional point (x[1](s), x[2](s), x[0](s)) replacing the third spatial coordinate by the time coordinate, along 
with any necessary coordinate transformations. This choice will be called a spacetime display. The paths in 
this display are the world lines of pointlike objects as in the previous paragraph. 

The exploration of other display options are of great interest. It would be interesting to explore the freedom 
that a virtual environment provides by developing mixed spatial and spacetime displays. 
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4: The Virtual Environment Interface

The virtual environment interface provides a natural three-dimensional environment for both display and 
control of geodesics. This interface allows intuitive exploration of rich, complex geometries. It is very similar 
to the interface used in the virtual windtunnel [4]. The basic components of the environment are: a high-
performance graphics workstation for computation and rendering, a BOOM for display, and a VPL Dataglove 
for control (fig. 3). 

Fig 3: The hardware configuration of the virtual windtunnel system. 

The display for our virtual environment is the BOOM, manufactured by Fake Space Labs of Menlo Park CA., 
and fashioned after the prototype developed earlier by Sterling Software, Inc. at the VIEW lab at NASA Ames 
Research Center [11] (figure 4). 

The boom is a CRT based alternative to the popular head-mounted LCD display systems that were pioneered 
at the VIEW lab [12] and are now widely used. The boom provides much better brightness, contrast, and 
resolution than standard liquid crystal displays. Two monochromatic RS170 CRTs are provided, one for each 
eye, so that the computer generated scene may be viewed in stereo. The CRTs are viewed through wide field 
optics provided by LEEP Optics, so the computer generated image fills the user's field of view. The weight of 
the CRTs are borne by a counterweighted yoke assembly with six joints, which allow easy movement of the 
head with six degrees of freedom within a limited range. Optical encoders on the joints of the yoke assembly 
are continuously read by the host computer providing the six angles of the joints of the yoke. These angles are 
converted into a 4x4 matrix containing the position and orientation of the BOOM head by six successive 
translations and rotations. By inverting this position and orientation matrix and concatenating it with the 
graphics transformation matrix stack, the computer generated scene is rendered from the user's point of view. 
As the user moves, that point of view changes in real-time, providing a strong illusion that the user is viewing 
an actual three-dimensional environment. 

For user control in our virtual environment the user's hand position, orientation, and finger joint angles are 
sensed using a VPL dataglove(TM) model II, which incorporates a Polhemus 3Space(TM) tracker. The 
Polhemus tracker gives the absolute position and orientation of the glove relative to a source by sensing 
multiplexed orthogonal electromagnetic fields. The degree of bend of knuckle and middle joints of the fingers 
and thumb of the user's hand are measured by the VPL Dataglove(TM) model II using specially treated optical 
fibers. These finger joint angles are interpreted as gestures. 

The computation and rendering for our virtual environment is provided by a Silicon Graphics Iris 380 VGX 
system. This is a multiprocessor system with eight 33 MHz RISC processors (MIPS R3000 CPUs with R3010 
floating point chips). The performance of the machine is rated at approximately 200 MIPS and 37 linpack 
megaflops. Our system has 256 MBytes of memory. The rated graphics performance of our system is about 

Page 8 of 16Virtual Spacetime



800,000 small triangles per second. 

Stereo display on the boom is handled by rendering the left eye image using only shades of pure red (of which 
256 are available) and the right eye image using only shades of pure blue. The 1024x1280 pixel RGB video 
output of the VGX is converted into RS170 component video in real time using a scan converter. The red 
component is fed into the left eye of the boom, and the blue component into the right eye. The sync is fed to 
both eyes. Since the boom CRTs are monochrome, we see correctly matched stereo images. 

5: The Implementation of Virtual Spacetime

The implementation of the concepts described in section 3 with the interface described in section 4 will be 
discussed using a simple example spacetime, that of a non-rotating perfectly spherical mass of infinitesimal 
radius. The solution of Einstein's equations in this case is known in terms of closed functions and is known as 
the Schwarzschild solution. We will explicitly give the geometry data and discuss various tools and display 
options for visualization.

5.1 The Schwarzschild Solution

The Schwarzschild solution [1][2][3] is a solution to Einstein's equations corresponding to the exterior of a 
perfectly spherical, non-rotating body of mass m. This solution gives a good description of the spacetime 
around a planet or star and geodesics correspond to the paths of objects under the mass's gravitational 
influence. We shall choose time and mass units, called natural units, so that the speed of light c and Newton's 
gravitational constant G both have the values c = G = 1. In these units both time and mass have units of length. 
We shall work in Schwarzschild coordinates (t, r, [[theta]], [[phi]]), which correspond to spherical 
coordinates at infinity and have a simple physical meaning. These coordinates are related to Cartesian 
coordinates (t, x, y, z) by 

x = rsin[[theta]]cos[[phi]]

y = rsin[[theta]]sin[[phi]],

z = rcos[[theta]].

t = t

In these coordinates, the metric is 

g(t, r, [[theta]], [[phi]]) = Bbc((Aalhs5co4( 1-F(2m,r), 0, 0, 0, 0,-Bbc((1-F(2m,r))[-1], 0, 0, 0, 0, -r[2], 0, 0, 0, 
0, -r[2]sin[2][[theta]])). 

The non-vanishing connection coefficients are: 

[[Gamma]][t]rt = [[Gamma]][t]tr = F(m,r(r-2m)) 

[[Gamma]][r]rr = - F(m,r(r-2m)), [[Gamma]][r][[theta]][[theta]] = - (r-2m), [[Gamma]][r][[phi]][[phi]] = -
sin[2][[theta]](r-2m), [[Gamma]][r]tt = F(m,r[2])Bbc((1-F(2m,r)), 

[[Gamma]][[[theta]]][[theta]]r = [[Gamma]][[[theta]]]r [[theta]] = F(1,r) , [[Gamma]][[[theta]]][[phi]][[phi]]
= - sin[[theta]]cos[[theta]]

[[Gamma]][[[phi]]][[phi]]r = [[Gamma]][[[phi]]]r [[phi]] = F(1,r) , [[Gamma]][[[phi]]][[phi]][[theta]] = 
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[[Gamma]][[[phi]]][[theta]][[phi]] = cot[[theta]]

It is apparent that there are two singularities in this metric, at r=0 and r=2m. The singularity at r=0 is a true 
singularity of the geometry in the sense that the curvature diverges there. The singularity at r=2m is the 
famous Schwarzschild radius and is an artefact of the coordinates which does not occur in other coordinate 
systems. This singularity is associated with an event horizon, however, since the region r<2m cannot send 
causal influences to the region r>2m. This is called a black hole, as anything that falls into the r<2m region 
can never come out again. 

Using single geodesics, various features of the Schwarzschild solution may be discovered with the system 
described in this paper. Geodesics with initial direction perpendicular to the radius vector describe orbits of the 
spacetime. When these orbits are not circular, they show a characteristic rosette pattern that corresponds to the 
phenomena of precession of perihelia in planetary orbits around the sun [1][2] (figure 5). Null geodesics, 
which correspond to the paths of light rays, are seen to be bent and exhibit circular orbits when their initial 
directions are perpendicular to the radius vector at r=3m [1][2] (figure 5). In the spacetime display format, a 
geodesic with zero initial velocity magnitude, which corresponds to a freely falling object, is observed to 
asymptotically approach the Schwarzschild radius (figure 5). This shows the interesting phenomenon of an 
object taking forever to fall into a black hole when viewed from coordinates defined far away, despite the 
object the object falling into the black hole in a (short) finite time in its local coordinates [1][2]. Using 
geometry data for the Schwarzschild spacetime with another choice of coordinates called Eddington-
Finkelstein coordinates [1][3], the geodesic of a freely falling object is seen to fall all the way to r = 0 (figure 
5). 

The spacetime for a rotating body, called the Kerr solution [3], has also been implemented, and the geodesics 
corresponding to free-falling objects show a distinct falling 'pull' in the direction of the massive body's rotation 
(figure 5). This is known as the dragging of inertial frames [1][2][3]. 

5.2 Visualization tools

Visualization tools in virtual spacetime are single geodesics or groups of geodesics analogous to rakes in the 
visualization of simulated fluid flow [4]. The number of geodesics in a tool are constrained by performance 
requirements. We currently use at most eight geodesics in a tool distributed across the eight processors in the 
workstation. The position and orientation of the tools are manipulated with the VPL Dataglove. Tools that 
have been implemented besides single geodesics are sprays, rakes and tubes.

Sprays are groups of geodesics all of which have the same initial positions and velocity magnitudes but 
different initial directions (figure 6). Currently these directions all lay in the same plane which is oriented via 
the Dataglove. Sprays are useful for exploring the general geometry of a curved spacetime. 

Rakes are lines of initial positions of geodesics all of which have the same initial velocity vectors. The 
geodesics are initially parallel and diverge or converge due to the curvature of spacetime (figure 6). This 
divergence and convergence correspond to tidal forces and are a direct visualization of the components of the 
Riemann curvature tensor [1]. 

Tubes are analogous to rakes, with the initial positions distributed in a circle perpendicular to the initial 
velocities (figure 6). This allow the twisting tidal forces to be observed, along with other components of the 
curvature tensor. 

A lightsphere is a set of short null geodesics with the same initial position whose initial directions are 
equidistributed over a sphere (figure 7). Lightspheres are useful for the detection of places of large curvature. 
By using very short geodesics, a full sphere in three-dimensional space may be displayed. 
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A lightcone is a spacetime display of the initial spacetime directions of a spray of null geodesics (figure 7). 
Lightcones are a standard visualization technique in general relativity, and are useful for probing the local 
causal structure of spacetime [1][2][3]. 

5.3 Performance

The real-time computation of geodesics requires fairly high computational power. The system described in this 
paper is capable of controlling, computing and displaying one to eight geodesics with lengths of about 300 
points at about eight frames/second. This is sufficient for many purposes. A less expensive system capable of 
this performance with single geodesics is the Iris Indigo, which has a single MIPS R3000 processor. The 
computation of geodesics has also been implemented for a three-dimensional spacetime (time plus two space 
dimensions) on a Macintosh IIci, which takes less than two seconds to compute a geodesic with 200 points. 
While this is not sufficient for virtual environment interaction, it is sufficient for pedagogical purposes. 

5: Further Work

The system described in this paper has demonstrated the feasibility of real-time interactive virtual environment 
techniques for the visualization of curved spacetimes using geodesics. Currently the system has been 
implemented only for spacetimes whose geometry data are available in closed form formulas and for 
spacetimes whose data are on simple static computational grids. 

There are interesting spacetimes whose metrics are available as exact formulas. Incorporation into virtual 
spacetime should be straightforward. Examples include the classical Godel solution [3], Bianchi type IX 
cosmological solutions [12], and a metric describing collapsing dust or photons [13]. 

A more difficult problem is including the results of computational spacetime simulations such as those 
describing colliding black holes, collapsing stars, and gravitational waves [14]. There has been considerable 
interest expressed by the computational spacetime group at the National Center for Supercomputing 
Applications (NCSA) in Urbana, Illinois in using virtual spacetime to view the results of their computations. 
We are currently developing a collaboration for this purpose with Ed Seidel and Larry Smarr. Problems 
addressed by this collaboration include: the meaning of the coordinates used for the numerical simulation and 
how these coordinates should be mapped into the virtual space, developing an interpolation scheme to 
compute geometry data from the computational grid that is fast enough to allow real-time computation of 
geodesics; and managing the very large amounts of data that are the products of these unsteady spacetime 
computations. The data and speed problems are similar to those that arise in the virtual windtunnel [4]. 
Distributing the computation to a supercomputer over a high-speed network [15] may be necessary. 
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Figure 1: An illustration of virtual spacetime in use. The user is manipulating a spray of geodesics in a curved 
spacetime with an instrumented glove while observing the results in a head-tracked, wide field of view stereo 
display. 

Figure 4: The virtual interface hardware, showing the Fake Space Labs BOOM and the VPL Dataglove Model 
II. 

Figure 5: Visualizing the spacetime around a spherical object of mass m, such as a star. The center of the star 
is indicated by the yellow cross. 

Top left: Geodesics forming almost circular orbits. The orbits do not close, but form a rosette pattern. This is 
called the precession of perihelia. 

Top center: Orbits of light rays, including the circular orbit at r = F(3Gm,c[2]) . 

Top right: The orbits of light rays in a spacetime display where the vertical direction represents time. 

Bottom left: Spacetime display of a particle falling from rest in Schwarzschild coordinates. The geodesic 
asymptotically approaches the distance r = F(2Gm,c[2]) in these coordinates. 
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Bottom center: Spacetime display of the same particle in the same spacetime in Eddington-Finkelstein 
coordinates. In these coordinates the particle falls to r = 0. 

Bottom right: Spatial view of the geodesic of an object falling from rest in the spacetime around a counter-
clockwise rotating star (Kerr spacetime). The curvature due to the rotation bends the geodesic to the right. 

Spatial display of a tube of timelike geodesics. Note the focussing effect along the vertical direction. 
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Spatial display of lightspheres at varying distances from the center of the object. Far from the center (right), 
the lightsphere is approximately spherical. Near the center of the object (left) the shape of the lightsphere is 
severely distorted. 
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Spacetime display of light cones at varying distances from the center of the object. Far from the center (right), 
the lightcone is as wide as it is tall, indicating that the light is travelling out in space as well as forward in time. 
Near the object the light is moving further in time than in space. At r = F(2Gm,c[2]) (leftmost case) the light 
moves only forward in time. This implies that no signal can get from r <= F(2Gm,c[2]) to r = infinity, so the 
region r < F(2Gm,c[2]) is causally disconnected from the rest of the universe. 
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