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If one admits that physical events take place in a 4-dimensional space-
time continuum (an idea abandoned in current quantum-mechanical the-
ory) there are three interesting possibilities: classical space and time;
flat or electromagnetic space-time; curved space-time. The appropriate
corresponding mathematical languages are, respectively, those of 3-vec-
tors, 4-vectors and 4-tensors.

In a certain sense the flat space-time, characteristic of the so-called special
theory of relativity, is just as absolute as classical space and time, since the
co6rdinates t, x, y, z require exactly 10 arbitrary constants for their com-
plete specification in both cases. But, in the framework of flat space-time,
the fundamental electromagnetic equations of Maxwell and Lorentz lose
the artificiality which they possess in classical space and time.
The initial attempts to incorporate gravitational phenomena in flat

space-time were not satisfactory. Einstein turned to the curved space-
time suggested by his principle of equivalence, and so constructed his gen-
eral theory of relativity. The initial predictions, based on this celebrated
theory of gravitation, were brilliantly confirmed. However, the theory has
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not led to any further applications and, because of its complicated mathe-
matical character, seems to be essentially unworkable. Thus curved space-
time has come to be regarded by many as an auxiliary construct (Larmor)
rather than as a physical reality.

In my opinion, the failure of the early attempts by Nordstr6m and
others to develop a theory of gravitation in flat space-time is to be at-
tributed to the fact that a fundamental theoretic requirement was over-
looked, namely, that the disturbance velocity in matter must be that of
light.
With this requirement in mind, I have recently been led to a very simple

theory of gravitation in flat space-time, concordant with all known gravi-
tational phenomena and free of arbitrary constants. This theory was pre-
sented first in very brief form in 1942 at Tonanzintla, Mexico, and has been
developed further in a Note in these PRocEEDINGs.1 Furthermore, atten-
tion is to be directed to a Note by A. Barajas,2 called forth by a review of
H. Weyl, and to an article by A. Barajas, C. Graef, M. Sandoval Vallarta
and myself, taking up the new theory from the physical point of view.3 A
very significant application of the theory to the two-body problem by Graef
will be published shortly.4

Unfortunately, the foundation of the theory has not so far been ade-
quately presented in its philosophic, postulational and mathematical as-
pects. My colleague, Professor Barajas, and I are planning to publish an
extensive article remedying this deficiency.
The aim of the present Note is to present briefly these foundational con-

siderations as I see them. It is especially necessary to do so in order to
avoid further misunderstanding of the new theory. For example, Weyl
says very recently,5 referring to my theory: "Their [i.e., 'the field equa-
tions'] most general static centrally symmetric solution involves 3 arbitrary
constants a, b, l.... From the present standpoint this is a serious disadvan-
tage of B." His assertion is wrong since the general exact solution for the
gravitational potentials hj is

m
he=6 r

where r stands for radial distance, 8ij is the familiar Kronecker 5,
and the mass m is the single arbitrary constant which enters. This
exact solution plays in my theory a r6le analogous to that of the
Schwarzschild solution in the theory of Einstein. Weyl has overlooked the
salient fact that the central body is composed of the basic "perfect fluid."
The proposed theory of gravitation in flat space-time may be character-

ized as follows in its fundamental features:
1. In the 4-dimensional framework of flat space-time, matter is regarded

as the occupant of certain tubular regions made up of the worldlines of
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identifiable points. Point-particles are abandoned once and for all, except
as a limiting possibility.
Thus there is a duality of matter and space-time in my theory, whereas

the monistic concept of space-time conditioned by matter prevails in Ein-
stein's theory. Whichever point of view is destined to figure in ultimate
physical theory, it seems the part of obvious common sense to explore both
possibilities fully.
The simplest available form of matter in flat space-time is that charac-

terized by a certain stream 4-vector vs of space type, i.e., with

p2 = (1)2- (V2)2 -(V8)2 (V4)2 > 0;

here p is the scalar length of the 4-vector vi. Or, alternatively, we may
think of matter of this kind as characterized by a density p and a velocity
4-vector ui, where vi = pui and

(U-)2- (U2)2 - (U3)2 - (U = 1

The principle of local causation is taken to hold for an isolated portion
of this kind of matter, as embodied in the differential equations:

,' = FV11 . . . V4) .

where t = X1, X = X2, y = X3, z = x4, and where F' are taken to be rational
and integral in the partial derivatives involved. These four differential
equations assert that the time rates of change of the components of the
stream vector are functions of these components and their space rates of
change, being rational and integral in the latter.
The requirements of the underlying language of 4-vectors, based on the

Lorentz group, then indicate as the only available possibility, when referred
to instantaneous rest coordinates (v1 = p, V2 = V3 = V4 = 0):

aa = F(P)(aa + a + aV)
~,vi .6vlaatt = G(p)a8U (i = 2, 3, 4).

These equations involve a pair of arbitrary functions F(p), G(p).
By appropriate normalization of the scalar p (that is by multiplicative

modification of the 4-vector vt) the preceding equations may be expressed
in the normal form

dX = 0 (Ti = -Viv p(p)g)

where g = _g22 = -g33 =-g44 = 1,g 0 for i *j. Here there ap-
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- pears only one arbitrary function p(p). This normalized density p is de-
termined up to a uhit of magnitude, while the scalar p(p) is determined
up to an additive constant.

2. It is granted that free equilibrium is possible for a certain equilibrium
density, p0>0, i.e., that a possible state is v' = vo' provided only that we
have

(Vo1)2 - (Vo2)2 - (Vo3)2 - (Vo4) 2 = po2.
Because of the thoroughgoing analogy of the equations obtained with those
of a homogeneous adiabatic fluid in classical physics, it is natural to assume
that along a free boundary we have always p = p0, and furthermore that at
collision p takes on the same value on both sides of the common boundary
until separation occurs for p = po subsequently.
At this stage the behavior of a collection of freely moving portions of this

"fluid" has been completely specified, whether or not collisions occur. The
equations involved present a more familiar aspect if the velocities ui are
introduced, with

T-= pui -p(p)gt}
This type of equations has always been taken to be appropriate for a gen-
eral homogeneous adiabatic fluid in flat space-time. The symmetric tensor
TI' has been called the energy tensor; p, the density; and p(p), the pres-
sure.

3. Such a fluid has the property that a certain divergence vanishes:

.k(6fJdP/P va) = 0

This ensures that the 3-dimensional integral
a fpe- fdP/PdV
over the rest-volume is invariable.6

Keeping in mind the hydrodynamic analogy, it appears to be absolutely
essential to suppose that this divergence vanishes under all conditions.
Otherwise the fluid might undergo a full cyclic return to a set of initial
velocities without a cyclic return of densities, such as is always observed
to occur with ordinary matter. This requirement means that we have al-
ways

a0.
4. There is, however, a fundamental theoretic difficulty in the theoretic

employment of the general adiabatic fluid. In fact if two portions of the
fluid collide with oppositely directed velocities nearly equal to that of light
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(1)7 the equations of motion will break down if the disturbance velocity of
the fluid is less than that of light. Since it is physically inadmissible that
this velocity v (relative to rest coordinates) exceed that of light, we are led
to require that this velocity, namely,

v= Vdp/(dp - dp)

equals that of light, so that at all densities dp/dp = '/2.
Thus we obtain by integration the only physically allowable constitu-

tive equation p = p/2. The corresponding special form of the general adi-
abatic fluid is called the perfect fluid.
As far as this determination of TIJ is concerned, we might have written

more generally p = '/2P + c, and so have obtained an additional term of
the form -cgiJ in Ti'. This modification would not affect the equations of
motion, however. Reason will be given later on for the special choice made
of c = 0 in fixing completely the energy tensor T1J.
For the perfect fluid the invariable integral reduces to the simple form

f\X/pdv

where dv is the 3-dimensional rest volume.
The perfect fluid may be looked upon as the counterpart in flat space-

time of the homogeneous adiabatic incompressible fluid in classical space
and time, which has infinite disturbance velocity. Physically speaking, the
perfect fluid is very nearly incompressible and thus possesses very nearly
invariable mass f pdv.

If electricity of density a- be attached to the perfect fluid, the ratio
-/V-p, called the substance coefficient, remains forever constant along any
worldline.

In what follows the perfect fluid is regarded as the single primordial form
of matter.

5. Suppose now that the perfect fluid, with energy tensor

TIJ = vivJ- 1/2(v.v')gU (1)

is not free but is subject to body forces. Formally, the suggestion is obvious
that we define a force vector fi by means of

=Tta f (2)axcl
where because of the postulated invariance of the integral

fVpdv (3)
we have
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Thus the force vector is required to be identically orthogonal to the
stream (or velocity) vector. It may be recalled that the acceleration vector
a' along any worldline has the same property.

In view of the identity (4) it is clear thatfl cannot be independent of the
vector v'. For the case of electrically charged matter fY is known to be
linear homogeneous in the 4-vector vl and identically orthogonal to it. For
the gravitational forces it is the simplest possible hypothesis to assume that
in a purely gravitational field f' is homogeneous and quadratic in vi and
proportional to p. We write therefore in that case

= pOLOvc9 (5)

where the components of the tensor 'p!ik = Pkj are functions of t, x, y, z de-
fined throughout space-time.
Without going into any detail it is to be stressed that this is the most

natural assumption which can be made about the manner in which fl de-
pends on the stream vector vi. This is especially the case in view of the re-
versibility of gravitational phenomena in time.

6. At this stage of our genetic account of the theory under consideration,
in full accordance with the tradition of the past, it will be supposed to begin
with that non-gravitational forces, such as electrical forces, need not be
considered in gravitational problems. This hypothesis is justified by the
more complete form of the theory given in the Note already alluded to.'
For the case of a rest system the x, y, z components of the gravitational

forces take the form

f2 = P'Pu1P fA = Mily A2 = P'°11 (5')

with ft = 0 of course.
In the corresponding Newtonian situation the force components are:

f2= gXs f = Pay f =
bgf by

where g is the Newtonian potential defined by Poisson's equation

ax2 +ay2 + a = - 4wp, or O in empty space,?X2 6y2 ?z2

together with the requirement that g is finite (or vanishes) at infinity.
By formal analogy one is led to require that 'ik are linear homogeneous

in the first derivatives of the gravitational potential defined by means of an
appropriate Poisson equation.
A very simple possibility would be to set up a scalar gravitational poten-

tial h defined by

-2- h = 8rT, or 0 in empty space,
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where we have written

T = gapT = p/2

for the contracted energy tensor. However, with this form of ft it is not
possible to fulfil the vital condition of orthogonality, embodied in (4).
The alternative, equally simple, hypothesis from the formal point of view

is to take as the analog of the Poisson equation

[62 62 62 621 8irTi1, or 0 in empty space, (6)
b72 62 &Z-2Jh~

with the additional requirement that hij are finite (or vanish) at infinity.
The gravitational potential h , thus introduced is a symmetric tensor of the
second order. No essential limitation is introduced by use of the special
numerical factor 8&r on the right.

It is now readily seen that the same condition of orthogonality (4) leads
to the following uniquely determined form for the gravitational force vec-
tor f:

f- (ah-agt) a (7)

The theory has now been completely formulated for the limitedform in which
only gravitationalforces enter. It maybe extended so as to include electrical
and atomic forces in a natural and interesting manner (see reference 1 and
Section 1 1 below). In the limited but important form now under consider-
ation, with use of the usual tensorial subscript and superscript notation, the
theory is embodied in the pair of equations

6T = giy (6h.-__ha_
6Xa'

gl /

6x 6xy C/Pax2hij aw ax / '(8)
g 6xa6 = 87rTi,, or 0 in empty space,

where TtJ is given by equation (1).
At this stage it is clear why it was natural to take the undetermined con-

stant c in TIJ to be 0. Otherwise we should have had

TtJ = v'vJ - 1/2(VmVa)gj - Cg'j = p(U'U1 - l/2giJ) - Cg'

and we should obtain as the Poisson equation for the limiting case p = 0,
inside of the fluid,

gaP = - 8rcgt,,
which seems inappropriate unless c is 0.
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On the basis of the theory thus obtained it is found that isolated bodies
have a static, centrally symmetric distribution, and that a collection of
spherical bodies move with very high approximation according to the
Newtonian law of gravitation, relative to a convenient rest system.

7. Let us now turn to the case of a static, centrally symmetric distribu-
tion of the perfect fluid. It is not difficult to determine the radial distri-
bution of the density p, but for our present purposes it suffices to observe
that we have precisely (r, radial distance),

T= 1/2P(r)8ij.
Our extended Poisson equation takes the form

a2+ a h,j+ 2= - 47rp(r)5t, or 0 in empty space.

Here, of course, the boundary of the (spherical) distribution occurs for some
value ro of r where p(ro) = P0.' Thus we find as the exact solution for the cen-
trally symmetric case

h =m Z
r

in empty space (r > ro), involving, as the single arbitrary constant, the
mass m of the fluid.

In this way we obtain the gravitational potentials around a static,
centrally symmetric body like the Sun. These potentials are not observ-
ably affected by random atomic motion.

8. Now consider a comparatively small approximate sphere of the per-
fect fluid, forming in the limit a kind of ideal particle of mass 0. First, we
have essentially p = po throughout, so that we may write

6T7ac bulu abut
bxo P xa be=fU

with high approximation, since (4) yields with similar approximation

aIa
-X =0.
bXa

But we have

xa~ = d=2 (ds2 dt2 - dX2 - dy2 - dZ2)
IJXa ds ds2

along the worldline of the ideal particle, so that we may write
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?T2 d2x ?T3" d2y T4` d2z
1Xa = PodS2p IXa Pj2' bea POdS2j

Thus there are obtained the differential equations of motion for a com-
paratively small body which moves in the field of a larger central body.
These lead to essentially the same result for the perihelial advance of a
planet and for the bending of a light photon in the field of the Sun as does
the theory of Einstein.

Furthermore, if we assume that the Planck formula

E =7hv

determines the frequency of radiation v, the restult of Einstein for the
"red shift" in light reaching the Earth from the Sun is obtained. Inas-
much as the precise mechanism of radiation is unknown, it seems more cor-
rect to employ this basic formula, than to give an explanation in which
the light-carrying photon plays no r6le, such as is afforded by the Einstein
theory.

9. A real test of the availability of the new theory in other directions
is afforded by the problem of two or more bodies.
As a first approximation to this problem, it is natural to consider the

limiting case of n "ideal particles" of masses mn, M2 . . . m", respectively,
obtained by taking the equilibrium density po to be very large. It is
clear that in the neighborhood of each particle PI of mass ml, the corre-
sponding gravitational potentials should have a principal part

riz
in instantaneous rest coordinates.

Graef has already shown (see references 3 and 4) that the calculations
involved'can be effectively carried out in the case of two bodies of masses
ml and M2. Presumably his method can be extended to the case of more
than two bodies. Furthermore it should be possible to investigate in a
similar spirit all of the fine-structure corrections to the Newtonian theory
which lie within the limits of observation.

10. In order to generalize the theory so as to admit cosmological terms
one has only to write the Poisson equation in the form

[at2 ax2 ay2-az2 h t ='87rTij+ Kgi,

where K is the small cosmological constant. This really means that we

allow a form of energy tensor Ti containing the term - cgt previously indi-
cated, with c = - K/87r small but not 0.
The conditions at co have then clearly to be lightened to the form that
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hj becomes regularly infinite to the second order at infinity, in which case
it is concluded that for a uniquely determined space-time origin we have

hil = hk* + -X -

where h!1 satisfy the previously indicated form of the Poisson equation and
boundary conditions. In this case there is obtained an expanding uni-
verse, about the space-time origin t = x = y = z = 0 in the flat space-time
under consideration.

11. In the general case there is an electromagnetic 4-potential wp satis-
fying Maxwell's equations, and an atomic potential 4t constant along every
worldline. This leads to the complete theory with (covariant) force com-
ponents:

f = -a + p(hi bhap_)uau (9)

where the terms corresponding to atomic, electric and gravitational forces
are homogeneous of degrees 0, 1 and 2, respectively, in the velocity vector,
and are linear homogeneous in the first partial derivatives of the corre-
sponding potentials 4,,, (p and htP, respectively.

It will require further mathematical investigation in order to determine
the serviceability of this conjectural theory in the domain of atomic phys-
ics. I have previously indicated how an equation much like the Schr6dinger
wave equation may be obtained on the basis of the atomic potential i.8
However, my attempt was based on a background of curved space-time,
and I had not then realized that the potentials must all be of zero dimensions,
so that I used bl/bxi in place of paI/lx1.

12. Professors Barajas, Graef, Sandoval Vallarta and I are examining
further these and other physical problems in the light of the new theory.
Meanwhile,' it seems clear that the theory promises well and deserves
careful study because of its striking simplicity, completeness and mathe-
matical consistency. Furthermore, as will be seen from what precedes,
the theory is independent of all ideas of. curved space-time and of the
corresponding Einstein theory.
,No doubt, in view of the substantial successes of the Einstein theory, it

is worth while to attempt to reflect that theory on to flat space-time, and so
to obtain a degenerate theory, which in a certain sense is only the shadow
of a shadow. However, the objections made by Barajas2 to the form of de-
generate theory considered by Weyl5 seem to be substantially valid.9
As far as I can see, the Einstein principle of equivalence ("that inertia

and gravitation are one," Weyl, loc. cit.) is at bottom a mathematical
principle signifying only that certain equations in the Einstein theory are
linear homogeneous in the density of matter-a fact just as true of the
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theory of gravitation here proposed as of the general theory of relativity.
To me there is only the following mathematical fact in the comparison of
the basic points of view of the Einstein theory and my own: in his theory
there is no underlying framework of independent variables t, x, y, z valid
throughout space-time, such as are present in the theory based on flat
space-time. The real question is whether or not the theory based on such
special coordinates is simpler and more useful for the description and pre-
diction of the physical facts. This is not a question to be decided by a
priori considerations. What is required is rather a study of the new theory
and its physical applications.

1 Birkhoff, G. D., "Matter, Electricity and Gravitation in Flat Space-Time," these
PROCEEDINGS, 29, 231 (1943). My lecture at Tonanzintla is about to appear under the
title "El Concepto de Tiempo y la Gravitacion," Boletfn de la Sociedad Matemdtica
Mexicana, 1, No. 4 (1944).

2 Barajas, A., "Birkhoff's Theory of Gravitation and Einstein's for Weak Fields,"
these PROCEEDINGS, 30, 54 (1944).

3 Barajas, A., Birkhoff, G. D., Graef, C., and Sandoval Vallarta, M., "On Birkhoff's
New Theory of Gravitation," Physical Review, 66, 138 (1944).

4 In vol. 1, No. 5 (1944) of the Boletin de la Sociedad Matemdtica M&xicana.
Weyl, H., "Comparison of a Degenerate Form of Einstein's with Birkhoff's Theory of

Gravitation," these PROCEEDINGS, 30, 205 (1944).
6 See for instance, Birkhoff, G. D., Relativity and Modern Physics, Chaps. VII and XI,

Cambridge, 1423, 1927.
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8 Cf. two notes in these PROCEEDINGS, 13, 160, 165 (1927).
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speaking, is no more usable than is the early Nordstr6m theory. See M. Wyman, Math.
Rev. 5, 218 (1944). Since all of the relativistic theories of gravitation take the classical
Newtonian theory as prototype, the formal resemblance between them is inevitably
considerable. This fact is stressed, for example, in my article, Newtonian and Other
Forms of Gravitational Theory, Scientific Monthly, 58, 49 and 136 (1944). It is to be
looked upon as the source of the formal resemblance between Einstein's general theory
of relativity, based on curved space-time, and my own theory, based on flat space-time,
which Weyl refers to.
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