
10 August 1998 

PHYSICS LETTERS A 

ELSEWIEK Physics Letters A 245 ( 1998) 31-34 

On the weak field approximation 
of the Brans-Dicke theory of gravity 

A. Barrosa, C. Romero b~1 
a Departamento de Fisica, Universidade Federal de Roraima. 69310-270, Boa Vista, RR, Brazil 

h Departatnento de Fisica, Universidade Federal da Parac%a, Caixa Postal 5008, 58059-970. JoEo Pessoa, PB, Brazil 

Received 19 September 1997; revised manuscript received 1 April 1998; accepted for publication 1 I May 1998 
Communicated by J.P. Vigier 

Abstract 

It is shown that in the weak field approximation solutions of Brans-Dicke equations are simply related to the solutions 
of genera1 relativity equations for the same energy-momentum tensor. A method is developed which permits one to obtain 
Brans-Dicke solutions from Einstein solutions. To illustrate the method some examples are discussed. @ 1998 Elsevier 
Science B.V. 

It is a well known fact that most of the mathematical 
difficulties of general relativity theory lies in the high 

non-linearity of the Einstein field equations. On phys- 

ical grounds this non-linearity means that the gravi- 
tational field interacts with itself, and the field con- 

tributes to its own source. However, under the special 
circumstance when the gravitational field is weak one 
can linearize the field equations thereby ignoring this 

feedback effect. Such a procedure, which leads to a 
great mathematical simplification of the gravitational 
field equations, has always found a wide range of ap- 
plications over the years. 

Certainly, the weak field approximation technique is 
not restricted to general relativity. It has been applied 
to the Brans-Dicke theory of gravity, another metric 
theory which also makes use of a highly non-linear 
set of field equations [ 11. 

In this paper we investigate how solutions of lin- 
earized Einstein equations are related to solutions of 
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linearized Brans-Dicke equations when both corre- 

spond to the same energy-momentum tensor. 
To begin with let us recall that in the weak field ap- 

proximation of general relativity we assume that the 
space-time metric tensor deviates only slightly from 

the flat space-time metric tensor. To put it more pre- 

cisely we write 

g/,v = vp,, + h,, 9 (1) 

where qP1, denotes Minkowski metric tensor and h,, 

is to be considered a small perturbation term. The lin; 
earized equations are obtained from direct substitution 
of ( 1) into the Einstein’s equations keeping only first- 
order terms in h,,. 

On the other hand, Brans-Dicke field equations are 
given by 

(2) 
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2w+3’ (3) 

where C$ is a scalar field, w is a dimensionless cou- 

pling constant and T denotes the trace of the energy- 

momentum tensor TPy. Although (2) and (3) repre- 
sent the more usual or standard form of Brans-Dicke 

equations we are going to consider equivalently the 

so-called Einstein representation [ 23 given by 

GPV = 877-G,, 

- 
0 ln(G&) = 2w +3 

S?rGa T 
y 

which are obtained from (2) and (3) by doing the 
transformation 

& = G&$-‘Tgv, (7) 

where GO is an arbitrary constant and the bar in GPV, 

0 and 7 just means that these quantities are now cal- 

culated using the unphysical metric &. 
In the weak field approximation of Brans-Dicke 

theory in addition to ( 1) we must also assume that 

#=#o+e, (8) 

where E = E(X) is a first-order term in the energy 

density and [e/&l < 1. 
Taking into account (8) and setting GO = 1 /#JO the 

transformation equations (6) and (7) become 

g,uv = VPV + 5,” 9 

T,, = ( 1 - EGO) T,w = T/w , 

where 

(9) 

(10) 

fi,, = h,, + EGO+, 9 (11) 

and only first-order terms in the mass density have 

been kept. 
Now, substituting ( 8) in the field equations (4) and 

having in view (9) and ( 10) we get 

GPcrv = 87rGoTP,. (12) 

On the other hand, the scalar field equation (3) be- 

comes 

87TT 
q e=- 

2wf3’ (13) 

It turns out then that Eqs. (12) are formally iden- 
tical to the field equations of general relativity with 

GO replacing the Newtonian gravitational constant G. 

Therefore, if gPy( G, X) is a known solution of the Ein- 
stein equations in the weak field approximation for a 

given TPs, then the Brans-Dicke solution correspond- 
ing to the same TPp will be given in the weak field 

approximation just by taking the inverse of Eq. (6)) 

i.e., 

g,,(x) = G,-‘4-‘&v(Go~) 
= 11 - l (x)Gol&w(Go~ n> 7 ,( 14) 

or, equivalently, 

h,,(x) = h,v(Go,x) - dx>Goqw. (15) 

Thus, we conclude that the general problem of find- 

ing solutions of Brans-Dicke equations of gravity 
in the weak field approximation may be reduced to 
solving Einstein field equations for the same energy- 

momentum tensor. 
It should be noted that the Einstein tensor GPy which 

appears in the left hand side of ( 12) must be calculated 

in the weak field approximation, i.e., taking &, as 

given by (9). 
As to the function E(X) , which appears in the con- 

formal factor of the metric &, (Go, x), it may be cal- 
culated directly from ( 13) and will be given as a re- 
tarded integral in the form 

2 
E(X) = - 

2wf3 s 

T(t - Ix - ~‘1, x’) d3X, 
Ix -xx’] ’ (16) 

with qPr = diag( 1, -1, -1, -1) in Eq. (13). Let us 
conclude this paragraph with a remark concerning the 
constant 40, which comes out in the weak field ap- 
proximation. Actually, in order that Brans-Dicke the- 
ory possesses a Newtonian limit this constant must be 
related to the Newtonian gravitational constant G by 
setting [ l] 

(17) 
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Thus we have 

Go = (18) 

We shall go through two solutions of Brans-Dicke 
equations in the weak field approximation and show 
how they can be directly obtained with the help of the 
method just outlined. 

Let us start with the line element which describes 
the space-time generated by a static string the energy- 
momentum tensor of which is given by 

7’: = &x)WMag(p,O,O, -P) , 

where p is the linear energy density and p is the pres- 
sure in the z direction. The solution of this problem 
in the context of general relativity was first worked 
out by Vilenkin [ 31. Using the weak field approxima- 
tion Vilenkin solved the field equations and obtained 
in Cartesian coordinates 

&I = &s = ~G(cL + P) Wplpo) y (19) 

i; II = & = 4G(~.c -P) Wp/po) 7 (20) 

where p = (x2 + y*)‘/* and pc is a constant. Now, 
using the weak field approximation to approach this 
problem in Brans-Dicke theory we have to solve 
Eq. ( 13), which takes the form 

v*e=- &CP - P)&X)&Y)v (21) 

whose solution is readily found to be 

4(EL-P) ln& 
‘=- 20-l-3 po’ 

(22) 

Then, from (14) it follows that the sought-for line 
element, which describes the space-time generated by 
the string in Brans-Dicke theory, is given by 

(23) 

Particularly, for a vacuum string, p = -_cL, and turning 
to cylindrical coordinates (23) reduces to 

(24) 

Finally, introducing a new coordinate p’ by the 
transformation p = po( p//a) b, where a = pe( 1 - 
8#uGa) -‘/2 and b = ( 1 - 4pGa)-l, and neglecting 
second-order terms in ,uGe we arrive at 

1 
x [dt2-dz2-ddp’2-(l-8~Ga)p’2d82], (25) 

which is the result obtained in Ref. [4]. 
The second example comes from Vilenkin’s solu- 

tion corresponding to the space-time of a static mas- 
sive plane [ 31. In this case, the source of the gravita- 
tional field consists of an infinite static plane wall par- 
allel to the (y, z) plane. For a homogeneous energy 
surface distribution (+ the energy-momentum tensor 
T/‘ is given by TF = G(x)diag( c, 0, -p, -p), where 
p is the pressure. In the weak field approximation of 
the linearized Einstein equations yield the solution 

ds2= [I +4aG((++2p)]xl]dt2 

- [ 1 - 47i-G(cr - 2p)lx]]dx* 

- [ 1 - 47rGoJxJ] (dy* + dz*). (26) 

As before, in order to get the corresponding solution in 
Brans-Dicke theory, we must solve Eq. (13), which 
in this case will be given by 

q E= &b7 - 2P)&X). (27) 

Due to planar symmetry E = l ( X) and (27) is reduced 
to 

d2E -= 
dx* -&(o - 2P)&X), 

hence yielding the solution 

(28) 
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Therefore, from ( 14) we obtain 

x (1 + 4n-Co(a + 2p)]x])dt* 

- (1 - 4n-Gc(a - 2p)lxj)dx* 

- (I - hGoalnl) (dy* + dz*) 9 I (29) 

which represents the space-time generated by the static 

massive plane in Brans-Dicke theory. For a vacuum 

domain wall, p = -IT and 

Izoo = -h** = -hss = - 
87rGcc+w]x( 

2wf3 ’ 
(30) 

h,, = 24rGoa(~ + 1 I 1x1 
20+3 

(31) 

in accordance with Ref. [4]. 
An interesting Brans-Dicke solution that can be eas- 

ily worked out in this context corresponds to the space- 

time and the scalar field generated by a static point of 
mass [ I I. Another illustrative example is provided by 

the global monopole [ $61. 
To conclude we would like to briefly comment on 

the result expressed by Eq. ( 14). Essentially, this 

equation means that in the weak field approxima- 

tion the metric tensor calculated from Brans-Dicke 
equations is quasi-conformally related to the metric 

tensor calculated from Einstein equations for the same 

energy-momentum tensor. The term quasi-conform 
here should be understood in the sense that in going 
from the Einstein solution &(G, X) to the corre- 
sponding Brans-Dicke solution g,,(x) apart from 
the scale factor A(x) s 1 - E(X)GO one must replace 

G for GO in &, i.e., +(x) = Mx)g,,(G~,nl. 

An immediate physical consequence of that con- 
cerns the trajectories of light rays. For it is evident 
that null geodesics in both space-times described by 

g,, and g,, are closely related: the only change in- 
volved is the replacement of the Newtonian gravita- 

tional constant G by the new w-dependent “effective” 
gravitational constant GO = [ (20~ + 3) /( 20 -t 4) ] G. 
For a value of w consistent with solar system obser- 

vations and experiments, say w N 500 [ 71, it means 
that massless particles travelling in the space-time de- 

scribed by g,, would “feel” a decrease in the gravita- 
tional strength as Go N 0.999G. 

Finally, it is worth mentioning that in the weak field 

approximation when w --+ 00 the Brans-Dicke so- 

lution goes over the corresponding Einstein solution, 
although this does not always happen in the case of 
exact solutions [ 81. Indeed, to prove this statement 

just note that when w -+ co we have, respectively, 

from ( 16) and ( 18) that E(X) + 0 and Go ---t G. 

C. Romero thanks CNPq (Brazil) for financial sup- 

port. 

References 

[ I ] C. Brans, R.H. Dicke, Phys. Rev. 124 (1961) 925. 

[2] R.H. Dicke, Phys. Rev. 125 (1962) 

131 A.Vilenkin, Phys. Rev. D 23 (1981) 852. 

[4] A.Barros, C. Romero, J. Math. Phys. 36 (1995) 5800. 

15 1 M. Barriola, A. Vilenkin, Phys. Rev. Lett. 63 ( 1989) 34 I. 
[6] A. Barros, C. Romero, Phys. Rev. D 56 (1997) 6688. 

[ 7 1 CM. Will, Theory and Experiment in Gravitational Physics 

(Cambridge University Press, 1993). 

[8] C. Romero, A. Barros. Phys. Lett. A 173 ( 1993) 243; 

N. Banerjee, S. Sen, Phys. Rev. D 56 ( 1997) 1334. 


