
Pieewise Linear Hypersurfaes using the Marhing CubesAlgorithmJonathan C. Robertsa and Steve HillbaUniversity of Kent at Canterbury, Computing Laboratory, Canterbury, England, UK.bRadan Computational Ltd. Ensleigh House, Granville Road, Lansdown, Bath, England, UKABSTRACTSurfae visualization is very important within sienti� visualization. The surfaes depit a value of equal density (anisosurfae) or display the surrounds of spei�ed objets within the data. Likewise, in two dimensions ontour plotsmay be used to display the information. Thus similarly, in four dimensions hypersurfaes may be formed aroundhyperobjets.These surfaes (or ontours) are often formed from a set of onneted triangles (or lines). These pieewise segmentsrepresent the simplest non-degenerate objet of that dimension and are named simplies. In four dimensions a simplexis represented by a tetrahedron, whih is also known as a 3-simplex. Thus, a ontinuous n dimensional surfae maybe represented by a lattie of onneted n-1 dimensional simplies.This lattie of onneted simplies may be alulated over a set of adjaent n dimensional ubes, via for examplethe Marhing Cubes Algorithm. We propose that the methods of this loal-ell tiling method may be usefully-appliedto four dimensions and potentially to N-dimensions. Thus, we organise the large number of traversal ases and majorases; introdue the notion of a sub-ase (that enables the large number of ases to be further redued); and desribethree methods for implementing the Marhing Cubes lookup table in four-dimensions.Keywords: Marhing Cubes, four dimensions, hypersurfaes, surfaes1. INTRODUCTION AND MOTIVATIONWe live within three dimensional spae; seeing our world via a two dimensional projetion, whih is reonstrutedby our brain into a three dimensional model using motion, edge and depth ues. However, higher dimensions havebeen proposed and onsidered for many years; with the fourth dimension representing time, distane, a fourth spatialoordinate and even a spiritual realm.Objets within four and higher dimensions an be generated from natural extensions to plane or solid geometry,with eah three dimensional objet (plane, ube, one) having a four and higher dimensional equivalent (hyperplane,hyperube, hyperone). Data sets with higher dimensions an be generated from simulations, ollated from statistisor sampled from real-life phenomena; many diverse �elds-of-study provide data with opious variables that an bedisplayed in a number of dimensions using various imaging tehniques.Modern omputer graphis provide the ability to view, interrogate and understand objets and phenomena thatexist in higher dimensions. For example, an image of a Klein bottle, with a twisted surfae, intersets itself withinthree dimensions, whereas within four dimensional spae the bottle an be depited without the self intersetion.1Geometry in higher dimensions an be (1) projeted down to lower dimensions, using a variety of projetionmethods inluding parallel, perspetive and entral or (2) represented in other oordinate systems, inluding ParallelCoordinates2 that depit the relationships and dependenies between N-Dimensional data (espeially geometry)within a two dimensional parallel axis oordinate system.Visualizations of n-dimensional data an be obtained by rendering the `surfae' of the data. The surfae reatedis one dimension less than the original data: for example, the surfaes from two dimensional data reate ontour plots(one dimensional line segments in two dimensions) and three dimensional (volume) data produes two dimensionalfaes in three dimensions. Hene, from a four dimensional data volume a hypersurfae is formed.a j..roberts�uk.a.uk http://www.s.uk.a.uk/people/sta�/jr/ b steve.hill�uk.radan.om



A two dimensional ontour on a map, representing a partiular height above sea-level, an be reated using aontinuous onnetion of straight line segments. Similarly, a ontinuous surfae within three dimensions an berepresented by a lattie of two-dimensional polygons. Therefore, a ontinuous hypersurfae an be represented by alattie of n-dimensional simplies. These simplex elements an be alulated from how the `surfae' intersets a setof adjaent n-dimensional ubes. A surfae at a partiular value (isosurfae) through sampled data an be realised atthe point of zero value, interpolated between any edge of an opposing sign. The signs at the n-ube verties are foundby thresholding the spatial data at a disrete data point. Consequently, hypersurfaes within higher dimensions anbe depited using a lattie of three-dimensional simplies (volumes), generated by loal evaluation through a sampleset of points.This paper disusses the problems, requirements and some solutions in implementing an n-dimensional isosurfaealgorithm from spatial data, using loal ell tiling methods. We fous on the generation of the n-dimensional geometryrather than the rendering or realisti-representation (using say higher-dimensional light) of the n-dimensional image.Initially we present some bakground information. We then desribe the algorithms and tehniques: �rstly froma theoretial viewpoint and seondly within a pratial framework; we desribe three table methods, extending theMarhing Cubes Algorithm to four dimensions. Finally, we disuss other possible implementations and solutionswith their relevant merits and pitfalls, ending with onlusions and possible future extensions.2. BACKGROUNDThere are (broadly) two avours of surfae mesh algorithms: (1) Planar Contours, that generate surfae over theboundary of adjaent ontour paths3{5; and (2) Loal Cell evaluation, that an be further subdivided into: (a)Advaning Front, that �nds the surfae by growing a seed point on the surfae, from where the other surfaesegments are found6,7; and (b) Complete Cell Evaluation, that evaluates eah ell's ontribution to the surfae:forming a surfae made from tiles.8{10 We use and extend the latter method to four and theoretially higherdimensions. Moreover the advaning front tehniques ould be likewise extended to n-dimensions.2.1. 3D Loal Cell Surfae GenerationThe loal ell tilers evaluate a single ell for its ontribution to the surfae. Two suh methods in three dimensionsare by lookup (e.g. Marhing Cubes)9 and algorithmially.11 An estimate of the position of the surfae intersetionalong a partiular edge an be found by linear interpolation. Multiple surfaes at the same threshold an be produedby the loal ell methods, but erroneous surfaes due to the loality of the surfae deision (by false positives or falsenegatives) an be produed. Hill and Roberts12 and Ning and Bloomethal8 disuss some methods to disambiguatea ell and hene remove the erroneous surfaes. Degenerate triangle piees, where the surfae-simplies beomein�nitesimal, an also be reated (as a result of the interpolation proess), slowing the rendering and inreasingthe storage. However, deimation13 or mesh displaement14 tehniques an be used to redue the number of (tiny)polygons.2.2. Surfae Creation { the Use of SimpliesThe loal ell tilers often use a ube (retilinear) ell representation, as in the Marhing Cubes Algorithm. Tetrahedralells have also been used,15 the advantage being that a �ner detailed surfae is reated and, that from loal signalternations only one surfae an interset the tetrahedron | there is no ambiguous fae. However more polygonsare usually generated15 and as the tetrahedra an be divided into a loal ube ell, in on�gurations of �ve or sixtetrahedra, ambiguities are still present: beause the isosurfae is reated by onsidering only neighbour data points.The ambiguities an be resolved using a twelve tetrahedra on�guration16 requiring an additional (tri-linear17 ortri-ubi18) interpolated enter point.Simplies are also used in the representation of the surfae mesh. All two and three dimensional graphi librariessupport their rendering and there are algorithms that eÆiently triangulate two and three dimensional areas.19



2.3. The Marhing Cubes Surfae AlgorithmA surfae an interset a ube in 256 (28) ways: this an be broken down into 14 ases if mirror and rotationalsymmetry are onsidered or 15 ases without the mirror operation. The 256 omponents an be stored in a lookuptable ontaining appropriate surfae topology segments.The marhing ubes algorithm9 uses a binary threshold (the isosurfae value) on the verties of a ube to generatean eight bit (one for eah vertex) number that is used as the key into the lookup table. The algorithm `marhes'sequentially through the data, thresholding the eight neighbouring data-samples and looking up the index to olletthe surfae intersetions at that position. The verties of the retrieved surfae triangles are then interpolated intothe position governed by the threshold value, appropriately shaded and rendered.2.4. N-dimensional geometryPereiving geometry within a higher dimensional spae is not intuitive. Therefore, we present some simple n-dimensional geometry fats; for more information see:.1,20,21In three dimensions the rotations an be expressed as \rotations about eah axis", but this does not extend ton-dimensions. There is, in fat, one rotation per pair of axes, whih formulates to N(N � 1)=2 degrees of rotation.20Therefore, in four dimensions there are six rotations.There are many di�erent projetions from four dimensions to three, inluding: (1) Orthographi, where oneoordinate an be thrown away ; (2) Pinhole perspetive, where the �rst N � 1 oordinates are saled by dividing by(FD�CN )=FL, FD being the Foal distane, FL the Foal Length and CN the nth oordinate; (3) Central, where thenth oordinate is shrunk into the N � 1 oordinates: (x; y; z; w) = (xFL=(FD � w); yFL=(FD � w); zFL=(FD � w));reating the popular hyperube depition, where a ube is displayed within a ube.203. MOTIVATION AND DEFINITIONSA lookup table, to hold a omplete enumeration of the ases within three dimensions, ontains 256 elements (2n {where n is the number of verties). Therefore, there are 65536 (216) on�gurations for the vertex lassi�ation on afour dimensional ube. If a Marhing Cube method was applied diretly to four dimensions the lookup table ouldbeome unmanageable; with an average of 20 tetrahedra (3D simplies) for eah major ase. Moreover tehniquesto subdivide the problem domain would (a) simplify the algorithm for explanation and implementation and (b)hopefully provide far more eÆient storage.Within this setion we (1) present how the major-ases are generated; (2) desribe a seondary partition separatingthe major-ases into sub-ases; and (3) desribe the various transformations that are available and enumerate theirrespetive major and sub-ases.3.1. Major-CasesIn n-dimensions eah ube has 2n verties eah of whih may be inside or outside the surfae, hene the set ofall possible on�gurations C ontains 22n elements. In Lorensen and Cline's aount9 of their loal ell tiler, theyidentify 14 major ases. These orrespond to sets of vertex on�gurations whih are losed under rotation, mirrorand vertex omplement.More formally, the major ases are established by partitioning C into smaller sets C1; C2; : : : ; Cm suh that:Smi=1 Ci = C i.e. the set C is overed, and Tmi=1 Ci = fg i.e. the sets are disjoint. Most importantly, for all e 2 Ci,Ci is a reexive transitive losure under the one-to-many relation: R(e) = f(e; T1(e)); (e; T2(e)); : : : ; (e; Tk(e)g whereeah Ti represents a major ase invariant transformation, e.g. rotation, mirror or omplement. Problems with surfaeontinuity imply that omplement may not be a desirable operation to inlude (see below).



Dimension1 2 3 4Major Cases 3 6 23 496R Sub-Cases 2 5 12 272Major Cases 2 4 15 272R,C Sub-Cases 2 3 7 99Major Cases 2 6 22 402R,M Sub-Cases 2 5 11 209Major Cases 2 4 14 222R,M,C Sub-Cases 2 3 7 74Transformations: Rotation (R),Complement (C), Mirror (M)Table 1. Group sizes for the Major ases and Sub-ases3.2. Sub-CasesIt is quite remarkable (and fortunate) that of 256 possible on�gurations in three dimensions, we need only onsider14 major ases (see10 for a disussion). In three dimensions it is not too expensive to store all 256 ases. In higherdimensions, however, the number of on�gurations explodes. Even the number of major ases grows rapidly. It turnsout that in four dimensions there are nearly as many major ases as their are on�gurations in three dimensions (seeTable 1). In higher dimensions, the geometry assoiated with a major ase is also more ompliated. This promptsus to seek ways to redue further the size of the tables required.We an redue the number of ases if we allow major ases to be onstruted from a union of sub-ases. Asub-ase represents a single fragment of boundary and is de�ned to be an edge-onneted (both verties have thesame status with respet to the threshold) fragment of a major ase.The set of sub-ases an be omputed by examining eah major ase and dividing it into one or more edge-onneted sub-omponents. The sub-omponents an then be identi�ed with their major ase equivalents along withappropriate transformations.In Table 1, we summarise the number of major and sub-ases in one to four dimensions. As shown in the table,the number of ases vary depending on the operators used; this is exempli�ed by di�erent authors expressing themajor-ases as being 14 or 15 ases, whih depends on the use of the Complement operator. In Figure 1 we depit arepresentation of the 74 sub-ases for four dimensions.The de�nition of a sub-ase in this way makes some assumptions about the underlying surfae, and may lead toinonsistenies in the resulting geometry (for example holes may appear). However, many other approahes lead tothe same deisions being made. We return to these problems in Setion 4.2.4. IMPLEMENTATIONThe n-dimensional surfae is generated by onneting individual surfae elements (simplies). The pieewise surfaesegments may be generated through lookup methods, suh as the Marhing ubes or algorithmially.11 Indeed,tetrahedral, rather than uberille ells, may be used, suh as used by22 who additionally alulate a enter point inthe uberille ell.The simplex information an be subdivided and stored in many ways. The amount and orientation of the simplies,for a given ell, represents the most signi�ant information { being used in every method.Further, we desribe our methods to store and retrieve the simplex information:Method 1 Dynami Simplex Enumeration { alulate eah simplex division dynamially as it is required.11Method 2 Complete simplex Enumeration { pre-alulate and store eah simplex division within one large table.See Figure 2.



Figure 1. 74 Sub-ases for four dimensionsMethod 3 Seondary Tables { pre-alulating the simplex division for just the major-ases or the sub-ases. Wename these the `Major-ase seondary table' and `Sub-ase seondary table' methods, respetively.The latter two-table lookup shemes inlude a primary table that holds information about either (a) the major-ases or (b) the sub-ases, with a seondary table ontaining the atual divisions of the major or sub-ases, respe-tively; as shown in Figure 2 as Method (3a) and (3b) respetively.Within this setup, the primary table ontains a list of two-tuples: an orientation with a seondary-index. Theseondary-index then provides the key into a table of either major-ase or sub-ase simplies. The orientationrepresents a matrix operation, transforming the simplies (of the seondary table) into the orret orientation forthe hosen surfae-intersetion index of the primary table.4.1. Pre-Proessing { Table GenerationWe now desribe how the major and sub-ases for the primary and seondary tables, respetively, are formed. Thedata is proessed sequentially as eah stage uses the results from the previous level.The Major-ases. Two lists are reated, one to hold the searhed-ases and another to hold the major-ases.The next unmarked index is taken from the searh-list added to the major-ase list and then exhaustively trans-formed into all other on�gurations whih are marked. The proess then repeats for the next major ase until allthe indies have been searhed.The Sub-ases. These are formed by dividing the major ases into their disjoint ases, using the edge-onnetedriterion (as de�ned in Setion 3.2).
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Figure 3. Splitting an objet into tetrahedraTetrahedronizing the sub-ases. Tetrahedronization is the four-dimensional analogue of triangulation. Ouraim is to split n-dimensional geometry into simplies. There is no anonial deomposition of a hyper-surfae intotetrahedra, so any algorithm must make somewhat arbitrary hoies.In the ontext of this work, we are interested in deomposing only the sub-ases, and a simple strategy an bemade to work. The method proeeds by repeatedly hoosing a vertex and removing the tetrahedron assoiated withthat vertex from the sub-ase objet until a single tetrahedron remains. This proess is depited in Figure 3, andis similar to the tehniques used in three dimensions. Unfortunately in four dimensions, the remnant sub-objetmay have verties with four, �ve or more inident edges making further subdivision diÆult. Therefore, we use abaktraking tehnique to avoid this problem.A question remains | how do we hoose whih vertex to remove? Several strategies might be tried: for example,hoose the �rst entry in the vertex list or take the vertex with the least onneting edges. Experiment suggests thatthe latter approah is most e�etive in this ase.The method proeeds by:1. The sub-ase objet is represented as a list of verties, eah of whih is linked to a list of its neighbours. Initially,by onstrution, all verties have three onnetions.2. Selet the next vertex (in order on the list) with the fewest inident edges, and remove it from the objet thusgenerating a tetrahedron or two tetrahedra. It is easy to split a vertex with three edge onnetions into onetetrahedron or even four edge onnetions into two tetrahedra, but ambiguities and diÆulties our whenthere are �ve or more edge onnetions.
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Topologically Correct SurfaceFigure 4. False negative appearing, from adjaent omplementary ases3. Update the onnetivity of the remaining objet. This update is ahieved by onneting the verties of theremaining objet in the same on�guration as the onnetivity of the base of the split tetrahedron.4. Determine if at a ertain level of vertex splitting all the verties are onneted to �ve or more edges. If so thenthe previous level is reinstated and the di�erent split attempted in 2.In our results, using the `fewest edges method', and only taking o� the maximum of two tetrahedra at one,baktraking ours for only three of the 74 sub-ases.Creating the Orientation Matrix. The orientation matrix represents the transformation from the primary table(of major or sub-ase indexes) into individual simplex elements and is stored as a 32 bit integer, with two bits for everyposition in the matrix. As all the rotations are by 90Æ, only values of �1; 0; 1 mapped onto 00; 01; 10 respetively, arerequired. The orientation matrix is alulated by rotating eah sub-ase (from eah major ase) into the standardsub-ase and alulating the inverse transformation matrix, of the whole operation.4.2. Inherent Ambiguities and Possible SolutionsAmbiguities may our in surfaes evaluated from loal ell intersetions. These our in the ells when the surfaeintersets one fae of the n-ube through eah of its four edges. Therefore, as a result of loal deisions spuriousholes or additional surfae segments an be generated. Moreover, this fae ours in two dimensions and propagatesto higher dimensions, so any n-ube that has an `ambiguous fae' is potentially an ambiguous n-ube.There are many reported disambiguation strategies for the three dimensional loal ell tiling algorithms (see12,8)whih an be divided into two groups: (1) those that provide a solution from a stati analysis of the loal vertiesand (2) methods that require an extra sample point to generate an appropriate onneted surfae.Any orret disambiguation strategy needs to be onsistent, to generate a ontinuous onneted surfae. The orig-inal Marhing Cubes algorithm generates an inonsistent surfae when adjaent ubes of alternative (omplementary)on�guration are onneted,23 Figure 4a. This an be improved by individually triangulating the omplementaryases,24 Figure 4b. This on�guration an be provided by an extended lookup table, with di�erent triangle on�g-urations for the omplementary ases. In general the amount of triangle ombinations required for eah ambiguousfae f for a given n-ube is 2#f ,25 where #f is the number of ambiguous faes; but, in pratie only a sub-set ofthese on�gurations is required,24 being similar under rotation and generating a topologially orret surfae.Similarly, this method an be extended to n-dimensions, where the omplementary ases are treated di�erently.Separate omplementary on�gurations also help to maintain the vertex-order of the simplex elements: as they anbe desribed in a lokwise order, relative to the surfae-objet, aiding the renderer.



Figure 5. Examples of AppliationThe sub-ases are generated by separating the major ases into disjoint surfae elements, the same way as inthe Marhing Cubes9 and similar problems of surfae ontinuity may result. Consequently, these sub-ases an besaid, depending on the separation tehnique, to be ambiguous in form. Like the surfae on�gurations in threedimensions: 2#f possible sub-ase on�gurations an be formed. One simple solution is provided by using separateomplementary sub-ase on�gurations for eah major ase.It an be argued that at high data-resolutions the anomalies beome unobservable, although at high magni�ationsthe anomalies ould still be seen. Alternatively, a subdivision tehnique ould be implemented: dividing the datauntil pixel sized ubes are formed, suh as the Dividing Cubes algorithm,10 although magni�ation, again, an reveala disontinuous surfae.Other disambiguation strategies ould be used and extended to higher dimensions, inluding using tetrahedralells, that provide unique surfae intersetions (see: Setion 2.2), instead of ubial ells. A dilemma ours betweenthe `added advantage of the omplex-disambiguation strategy' and the `osts involved in alulating and proessingthe strategy'. In pratie, the added omputation ost is insigni�ant and although more simplies are generatedthey represent a `small inrease' on the omplexity of the overall surfae. Conversely, the ambiguous ases withinthree dimensions infrequently our: as Neilson and Hamann25 disovered.5. RESULTSOur n-dimensional surfae algorithm is useful for data visualization, where the data is sampled over a retilineargrid. Phantom data generated from analyti funtions is quite easy to generate and four dimensional fratal data orthe four dimensional ounter-parts of the three dimensional variants an be formed { hyper-ube, one or sphere, forexample.5.1. Examples of AppliationIris Explorer on a Silion Graphis Indy has been used as the harness for our implementation. We have tested thealgorithm on a number of sampled data sets and generated appropriate results.Eah of the methods produe the same visual results, with the same tetrahedra on�gurations, a simple parallel(orthographi) and perspetive projetion is used to generate the result. A voxel version of a four dimensional ube isdisplayed using the system, Figure 5. The surfae intersetions are generated by linear interpolation of the thresholdaross the edges of the ell; the upper images were generated using a low threshold, whereas the lower pair weregenerated using a middle threshold value.



5.2. Table SizesHere we desribe the memory usage of eah of the four methods desribed in setion 4.A tetrahedra ontains four verties, and eah vertex an be represented by an integer label, so, eah tetrahedraan be stored in 4 bytes (one byte for eah vertex). Moreover, the verties of the tetrahedra are reovered fromintersetions along the edges of the loal ell, therefore, an alternative representation onsists of a two-tuple labelfor eah tetrahedra-vertex: relating to the edges of the hyper-ube. The former 4-byte representation will be usedbelow.Method 1 The dynami method uses the least memory, but takes the longest to alulate.Method 2 The omplete simplex table onsists of a 65536 array with n tetrahedrons per index. Therefore, aseah tetrahedron an be stored in 4 bytes, the number of tetrahedra in 1 byte, the array pointer in 4 bytesand there are 356817 tetrahedra for the whole (222 major-ase) table: the table an be stored in 1.75M bytes(4�356817+5�65536).Method 3a The primary table for the major-ases onsists of an array of 65536 (orientation, major-index) tuples:stored in (4 byte, 1 byte) portions. Therefore, the table an be stored in approximately 328K bytes (65536�5).However, many arhitetures may pad the struture to at least 6 or 8 bytes. The seondary table for the (222)major-ases onsists of an array of pointers to an array of n tetrahedra, there are 2332 tetrahedrons so thetable an be stored in 10.2K bytes (4�2332+222�4).Method 3b The primary table using the sub-ases, onsists of an array of 65536 pointers pointing to an arrayof (orientation, sub-index) tuples, stored with the size of the array { representing the number of sub-asesper major index. Eah orientation and pointer an be stored in 4 byte portions. Therefore, as the wholetable ontains approximately 130800 sub-ase indies, the table an be stored in approximately 916K bytes(65536�4+130800�5). The seondary table for the (74) sub-ases onsists of 869 tetrahedra that an be storedin 3.8K bytes (4�869+74�4).5.3. ConlusionsThe omplete simplex table (method 2) provides the advantage that all of the data is orretly orientated, so it anbe diretly applied to the data, and although the table is larger than the other methods its size is not too great(within four dimensions) to be stored on a loal mahine.The primary table for the major ases is about half the size of the sub-ase primary table: due mainly to the useof pointers for the 2-tuple array. The reverse is true for the size of the seondary table: where the sub-ase seondarytable is muh smaller; we postulate that this omparison would be even more distint in higher dimensions. However,the ombined size of the primary and seondary tables falls in favour of the major-ases: due to the way the dataneeds to be stored.The sub-ases, although using a �xed orientation disambiguation strategy, provide a onise representation:allowing the simplies to be alulated by a simple tetrahedronizing algorithm.6. RELATED APPROACHESAn n-dimensional surfae an be generated by many other methods. The following three parts desribe: (1) othermethods omparable with the hyperube approah presented herein; (2) related work; and (3) some omments onour possible future work.6.1. Similar TehniquesA hyperube an be imagined as multiple ubes: the hyperube surfae an therefore be evaluated with a series ofthree dimensional ubes (one for eah fae of the hyperube). In four dimensions a lattie of onneted surfaes(rather than volumes) would be reated. This lattie ould then be displayed or triangulated before displaying,Figure 6B.



A B CFigure 6. Cube surfaes: (A) hypervolumes, (B) hypersurfaes, (C) hyperlinesIn the same manner, a two dimensional `ube' an be evaluated through eah hyperube fae to reate a lattieof onneted hyperlines, Figure 6C. Wyvill et al6 use the faes of a three dimensional ube (two dimensional square)to generate one dimensional lines that are joined to make surfaes in two dimensions.An n-simplex20,26 an be used to segment the ells unambiguously. Therefore, the n-data an be segmenteddiretly into n-simplies. To reate a uniform ontinuous surfae the adjaent n-simplies need to be mirror imagesof eah other, so an alternating pathwork of simplies are used.An advaning front tehnique ould be adapted into four dimensions to reate a lattie of tetrahedra.27 Hansonand Heng28 use a similar method: they divide the whole volume into tetrahedra and then projet eah tetrahedroninto the view volume. We use a omparable method that �rst selets the hypersurfae part using a threshold andloal ell tehnique, and then dissets the hypersurfae into tetrahedra whih are projeted and rendered.6.2. Related WorkFor many years, omputers have been used to generate pitures and manipulate higher dimensional objets. Noll,29as early as 1967, reated a program to plot projeted images of n-dimensional objets. He used these plots toprodue a \stereo-graphi movie of the three dimensional parallel and perspetive projetions of four dimensionalhyperobjets, rotating in four dimensional spae".Polygonising methods are also used. Bajaj30 impliitly de�nes quadrati and ubi hypersurfaes in n >= 3dimensional spae with a onstant or adaptive stepping proedure that reates a grid of points, forming polygonswhen onneted.Ray traing an also be extended to higher dimensions: Ke and Panderanga31 display projetions of a fourdimensional Mandelbrot set use a ray traing tehnique.Hanson and Cross32 desribe a hybrid method of ray-traing and san-onverting to transform the four dimensionalimage to an equivalent three dimensional image. The problem is then redued to a texture-mapping problem.However, visualizations produe abstrat images projeted from higher dimensional data. Hanson states that\adding more visual detail may give even more lues".33 The visual detail an be generated by: perspetive proje-tions, n-dimensional lighting, shading, objet-silhouettes and olour ues within a highly manipulative environment.Therefore, greater understanding ould be grasped if the data was presented by many abstrat forms, within multiplediretly manipulated and oupled displays, suh as provided by the Waltz abstrat visualization environment.34Hanson and Heng28,32 desribe methods to display and shade four dimensional images using a four dimensionallight model. A thikening strategy, is used, that exhanges eah point on the line with a small sphere, allowingshading to be applied to the `pseudo' line and inreasing the 3D nature of the line.28,32Diret manipulation tehniques an also be used. Van Wijk and van Liere35 display multidimensional salarfuntions as two dimensional slies of data. The user an ontrol any view in the matrix of windows to ontrol theslie of eah of the other views. An overall impression of the multidimensional funtion is obtained. Feiner andBeshers36 have designed a model of \worlds within worlds", where three dimensional graphis are positioned withina three dimensional graph. The internal three dimensional graph hanges values as it is moved inside the seondarygraph by diret manipulation.
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