
Marhing Cubes in Four and Higher Dimensions: Extended AbstratPraveen Bhaniramka Roger Craw�s Ho-Seok KangDongLin Liang Rephael Wenger Zhi YaoThe Ohio State UniversityColumbus, OhioAbstratThe marhing ubes algorithm is a popular visualiza-tion algorithm for onstruting a 2D isosurfae froma regular 3D grid. We generalize the marhing ubesalgorithm to four dimensions and higher. For eahhyperube in the grid, we identify the edges whihinterset the isosurfae. We onstrut the isosurfaewithin the hyperube by taking the onvex hull of themidpoints of these edges and hoosing a subset of theboundary of that onvex hull.1 IntrodutionGiven a salar �eld, i.e., a salar funtion on Rd, anisosurfae is a set of points with idential salar val-ues. The marhing ubes algorithm by Lorensen andCline is a popular, simple, and eÆient algorithm foronstruting isosurfaes from salar values in a threedimensional regular grid[1℄. The regular grid dividesthe volume into ubes whose verties are the gridverties and the isosurfae is onstruted pieewisewithin eah ube. Eah grid vertex is labelled posi-tive, \+", or negative, \-", depending upon whetherits value is greater or less than the value of the iso-surfae. The struture of the isosurfae in the ubedepends only on the positive and negative labels onits eight verties. Thus there are 28 ways in whih theisosurfae an interset a ube. The marhing ubesalgorithm �rst builds a table of these 28 ases andthen uses this table to determine the struture of theintersetion of the surfae and eah ube. The atualloation of the surfae within the ube depends uponinterpolation of the values of the ube verties.By exploiting symmetry, Lorensen and Cline re-dued the 28 ases to fourteen. They analyzedthese fourteen ases by hand, onstruting a trian-gulated surfae in eah ase. Nielson and Hamannadded two more ases to resolve ertain ambiguitiesand inonsistenies in Lorensen and Cline's original

algorithm[2℄.A hyperube in four dimensions has sixteen ver-ties and 216 possible vertex labellings. Even afterexploiting symmetry, we found that we were left with222 ases. Analyzing all these ases by hand, wouldhave been a tedious and error prone exerise. Higherdimensions are even worse. Instead, we looked forand found a systemati way of generating the surfaeand its triangulation for eah ase.Weigle and Banks generalized a variation of themarhing ubes algorithm by replaing the ubes withsimplies[3, 4℄. Using the baryentri subdivision,they broke eah ube into simplies and then on-struted the isosurfae in eah simplex. They trian-gulated the isosurfae by reursively triangulating thevarious dimensional faes of the polyhedra omposingthe isosurfae. Beause of the simple struture andsymmetry of a d-simplex, there are only d + 2 ases,eah ase orresponding to a di�erent number of ver-ties with positive orientation. However, a d-ubebreaks into between d! and 2d�1d! simplies, depend-ing upon the deomposition used[3℄. The time andspae used by the algorithm inrease by a orrespond-ing fator.2 Marhing Cubes in RdWe present a diret generalization of the marhingubes algorithm to higher dimensions. More spei�-ally, we give an algorithm to automatially generatea table of the isosurfae and its triangulation for allthe possible 22d labellings of the hyperube.The 1-skeleton of the hyperube is the graph of ver-ties and edges of the hyperube. We use a subgraphG of the 1-skeleton of the hyperube to determine thetopology of the isosurfae. The verties of G are theverties of the hyperube with positive labels. Theedges of G are edges of the 1-skeleton whose end-points are positive. Eah onneted omponent of G
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determines a separate piee of the isosurfae in thehyperube.For eah omponent G0 of G, identify all the 1-skeleton edges whih onnet G0 to G0, the omple-ment of G0 in the 1-skeleton. Choose the midpoints ofall these edges and perturb them slightly along theirrespetive edges so that any d+1 whih do not lie on aommon faet of the hyperube are not on a ommonhyperplane. Take the onvex hull of these perturbedmidpoints. Beause of the perturbation, the onvexhull will be a full dimensional polytope in Rd.The intersetion of the boundary of the onvex hulland the boundary of the hyperube partitions theboundary of the onvex hull into onneted regions.Eah suh onneted region separates some portionof the hyperube boundary from the interior of theonvex hull. We hoose the onneted region whihseparates the verties in G0 from the interior of theonvex hull as part of our isosurfae.The isosurfaes for eah onneted omponent ofG are generated separately. However, we laim thatthey do not interset. We demonstrate this by givingan alternate onstrution of our isosurfae. Insteadof onstruting the isosurfae for eah omponent ofG separately, form the set of midpoints of all edgeswhih onnet G and G, i.e., the edges whih haveone positive and one negative endpoint. Perturb themidpoints along their edges and onstrut the onvexhull of all the midpoints.The intersetion of the boundary of the onvex hulland the boundary of the hyperube partitions theboundary of the onvex hull into onneted regions.Again eah suh onneted region separates some por-tion of the hyperube boundary from the interior ofthe onvex hull. We hoose the onneted regionswhih separate the verties with positive label fromthe interior of the onvex hull as our isosurfae in thehyperube. These isosurfae "pathes" exatly orre-spond to the pathes of isosurfae onstruted indi-vidually in the previous method. Sine these pathesline on the boundary of a single onvex polyhedron,they learly do not interset.The key to the orretness of these algorithms isthe laim that some region separates the verties inG0 and no other hyperube verties from the inte-rior of the onvex hull. Alternatively, in the seondonstrution eah region separates either positive ornegative verties from the interior of the onvex hull,but not both. A proof will appear in the full paper.Instead of using the verties with positive labels, weould have used the verties with negative labels in ei-ther onstrution. Doing so gives a di�erent althoughequally valid isosurfae. However, using positive la-bels for some ases and negative labels for others an

result in mismathes on the boundaries of the hyper-ubes. This was essentially the problem disovered byNielson and Hamann in the original marhing ubesalgorithm[2℄.3 ImplementationThe marhing ubes algorithm is usually imple-mented by onstruting a omplete table of all 256labellings of the ube. A similar table for four di-mensions would ontain 216 = 65; 536 entries. Thisis large but not prohibitively so. Alternatively, sym-metry ould be used to redue the table size, at theexpense of inreasing the table lookup time. Thiswould be neessary in �ve dimensions sine suh atable would ontain 232 entries. Finally, some or allentries in the table ould be generated as needed.Our algorithm onstruts the isosurfae for eahonneted omponent in the subgraph G separately.Thus two di�erent labellings whih have a ommonomponent in their subgraphs would have the sameportion of isosurfae orresponding to those ompo-nents. This ommonality ould be exploited to aid inthe table onstrution and lookup.The 3D marhing ubes algorithm uses interpolantsof the positive and negative verties to determine theisosurfae, not simply midoints of the two. Using in-terpolants in four dimensions ould potentially ausethe surfae to fold bak on itself. We are investigatingwhether and when this is a problem. Generating thesurfae for eah ube diretly, instead of using a ta-ble, would avoid this problem, at the ost of inreasedtime.Referenes[1℄ Lorensen, W., and Cline, H. Marhing ubes:a high resolution 3d surfae onstrution algorithm. Comput. Graph. 21, 4 (1987), 163{170.[2℄ Nielson, G., and Hamann, B. The asymp-toti deider - resolving the ambiguity in marhingubes. In Proeedings of Visualization `91 (1991),IEEE Computer Soiety Press.[3℄ Weigle, C., and Banks, D. Complex-valuedontour meshing. In Proeedings of Visualization`96 (1996), IEEE Computer Soiety Press.[4℄ Weigle, C., and Banks, D. Extrating iso-valued features in 4-dimensional salar �elds. InProeedings of the 1998 Symposium on VolumeVisualization (1998), pp. 103{110.
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