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tThe mar
hing 
ubes algorithm is a popular visualiza-tion algorithm for 
onstru
ting a 2D isosurfa
e froma regular 3D grid. We generalize the mar
hing 
ubesalgorithm to four dimensions and higher. For ea
hhyper
ube in the grid, we identify the edges whi
hinterse
t the isosurfa
e. We 
onstru
t the isosurfa
ewithin the hyper
ube by taking the 
onvex hull of themidpoints of these edges and 
hoosing a subset of theboundary of that 
onvex hull.1 Introdu
tionGiven a s
alar �eld, i.e., a s
alar fun
tion on Rd, anisosurfa
e is a set of points with identi
al s
alar val-ues. The mar
hing 
ubes algorithm by Lorensen andCline is a popular, simple, and eÆ
ient algorithm for
onstru
ting isosurfa
es from s
alar values in a threedimensional regular grid[1℄. The regular grid dividesthe volume into 
ubes whose verti
es are the gridverti
es and the isosurfa
e is 
onstru
ted pie
ewisewithin ea
h 
ube. Ea
h grid vertex is labelled posi-tive, \+", or negative, \-", depending upon whetherits value is greater or less than the value of the iso-surfa
e. The stru
ture of the isosurfa
e in the 
ubedepends only on the positive and negative labels onits eight verti
es. Thus there are 28 ways in whi
h theisosurfa
e 
an interse
t a 
ube. The mar
hing 
ubesalgorithm �rst builds a table of these 28 
ases andthen uses this table to determine the stru
ture of theinterse
tion of the surfa
e and ea
h 
ube. The a
tuallo
ation of the surfa
e within the 
ube depends uponinterpolation of the values of the 
ube verti
es.By exploiting symmetry, Lorensen and Cline re-du
ed the 28 
ases to fourteen. They analyzedthese fourteen 
ases by hand, 
onstru
ting a trian-gulated surfa
e in ea
h 
ase. Nielson and Hamannadded two more 
ases to resolve 
ertain ambiguitiesand in
onsisten
ies in Lorensen and Cline's original

algorithm[2℄.A hyper
ube in four dimensions has sixteen ver-ti
es and 216 possible vertex labellings. Even afterexploiting symmetry, we found that we were left with222 
ases. Analyzing all these 
ases by hand, wouldhave been a tedious and error prone exer
ise. Higherdimensions are even worse. Instead, we looked forand found a systemati
 way of generating the surfa
eand its triangulation for ea
h 
ase.Weigle and Banks generalized a variation of themar
hing 
ubes algorithm by repla
ing the 
ubes withsimpli
es[3, 4℄. Using the bary
entri
 subdivision,they broke ea
h 
ube into simpli
es and then 
on-stru
ted the isosurfa
e in ea
h simplex. They trian-gulated the isosurfa
e by re
ursively triangulating thevarious dimensional fa
es of the polyhedra 
omposingthe isosurfa
e. Be
ause of the simple stru
ture andsymmetry of a d-simplex, there are only d + 2 
ases,ea
h 
ase 
orresponding to a di�erent number of ver-ti
es with positive orientation. However, a d-
ubebreaks into between d! and 2d�1d! simpli
es, depend-ing upon the de
omposition used[3℄. The time andspa
e used by the algorithm in
rease by a 
orrespond-ing fa
tor.2 Mar
hing Cubes in RdWe present a dire
t generalization of the mar
hing
ubes algorithm to higher dimensions. More spe
i�-
ally, we give an algorithm to automati
ally generatea table of the isosurfa
e and its triangulation for allthe possible 22d labellings of the hyper
ube.The 1-skeleton of the hyper
ube is the graph of ver-ti
es and edges of the hyper
ube. We use a subgraphG of the 1-skeleton of the hyper
ube to determine thetopology of the isosurfa
e. The verti
es of G are theverti
es of the hyper
ube with positive labels. Theedges of G are edges of the 1-skeleton whose end-points are positive. Ea
h 
onne
ted 
omponent of G
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determines a separate pie
e of the isosurfa
e in thehyper
ube.For ea
h 
omponent G0 of G, identify all the 1-skeleton edges whi
h 
onne
t G0 to G0, the 
omple-ment of G0 in the 1-skeleton. Choose the midpoints ofall these edges and perturb them slightly along theirrespe
tive edges so that any d+1 whi
h do not lie on a
ommon fa
et of the hyper
ube are not on a 
ommonhyperplane. Take the 
onvex hull of these perturbedmidpoints. Be
ause of the perturbation, the 
onvexhull will be a full dimensional polytope in Rd.The interse
tion of the boundary of the 
onvex hulland the boundary of the hyper
ube partitions theboundary of the 
onvex hull into 
onne
ted regions.Ea
h su
h 
onne
ted region separates some portionof the hyper
ube boundary from the interior of the
onvex hull. We 
hoose the 
onne
ted region whi
hseparates the verti
es in G0 from the interior of the
onvex hull as part of our isosurfa
e.The isosurfa
es for ea
h 
onne
ted 
omponent ofG are generated separately. However, we 
laim thatthey do not interse
t. We demonstrate this by givingan alternate 
onstru
tion of our isosurfa
e. Insteadof 
onstru
ting the isosurfa
e for ea
h 
omponent ofG separately, form the set of midpoints of all edgeswhi
h 
onne
t G and G, i.e., the edges whi
h haveone positive and one negative endpoint. Perturb themidpoints along their edges and 
onstru
t the 
onvexhull of all the midpoints.The interse
tion of the boundary of the 
onvex hulland the boundary of the hyper
ube partitions theboundary of the 
onvex hull into 
onne
ted regions.Again ea
h su
h 
onne
ted region separates some por-tion of the hyper
ube boundary from the interior ofthe 
onvex hull. We 
hoose the 
onne
ted regionswhi
h separate the verti
es with positive label fromthe interior of the 
onvex hull as our isosurfa
e in thehyper
ube. These isosurfa
e "pat
hes" exa
tly 
orre-spond to the pat
hes of isosurfa
e 
onstru
ted indi-vidually in the previous method. Sin
e these pat
hesline on the boundary of a single 
onvex polyhedron,they 
learly do not interse
t.The key to the 
orre
tness of these algorithms isthe 
laim that some region separates the verti
es inG0 and no other hyper
ube verti
es from the inte-rior of the 
onvex hull. Alternatively, in the se
ond
onstru
tion ea
h region separates either positive ornegative verti
es from the interior of the 
onvex hull,but not both. A proof will appear in the full paper.Instead of using the verti
es with positive labels, we
ould have used the verti
es with negative labels in ei-ther 
onstru
tion. Doing so gives a di�erent althoughequally valid isosurfa
e. However, using positive la-bels for some 
ases and negative labels for others 
an

result in mismat
hes on the boundaries of the hyper-
ubes. This was essentially the problem dis
overed byNielson and Hamann in the original mar
hing 
ubesalgorithm[2℄.3 ImplementationThe mar
hing 
ubes algorithm is usually imple-mented by 
onstru
ting a 
omplete table of all 256labellings of the 
ube. A similar table for four di-mensions would 
ontain 216 = 65; 536 entries. Thisis large but not prohibitively so. Alternatively, sym-metry 
ould be used to redu
e the table size, at theexpense of in
reasing the table lookup time. Thiswould be ne
essary in �ve dimensions sin
e su
h atable would 
ontain 232 entries. Finally, some or allentries in the table 
ould be generated as needed.Our algorithm 
onstru
ts the isosurfa
e for ea
h
onne
ted 
omponent in the subgraph G separately.Thus two di�erent labellings whi
h have a 
ommon
omponent in their subgraphs would have the sameportion of isosurfa
e 
orresponding to those 
ompo-nents. This 
ommonality 
ould be exploited to aid inthe table 
onstru
tion and lookup.The 3D mar
hing 
ubes algorithm uses interpolantsof the positive and negative verti
es to determine theisosurfa
e, not simply midoints of the two. Using in-terpolants in four dimensions 
ould potentially 
ausethe surfa
e to fold ba
k on itself. We are investigatingwhether and when this is a problem. Generating thesurfa
e for ea
h 
ube dire
tly, instead of using a ta-ble, would avoid this problem, at the 
ost of in
reasedtime.Referen
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