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Abstract

The marching cubes algorithm is a popular visualiza-
tion algorithm for constructing a 2D isosurface from
a regular 3D grid. We generalize the marching cubes
algorithm to four dimensions and higher. For each
hypercube in the grid, we identify the edges which
intersect the isosurface. We construct the isosurface
within the hypercube by taking the convex hull of the
midpoints of these edges and choosing a subset of the
boundary of that convex hull.

1 Introduction

Given a scalar field, i.e., a scalar function on R%, an
isosurface is a set of points with identical scalar val-
ues. The marching cubes algorithm by Lorensen and
Cline is a popular, simple, and efficient algorithm for
constructing isosurfaces from scalar values in a three
dimensional regular grid[1]. The regular grid divides
the volume into cubes whose vertices are the grid
vertices and the isosurface is constructed piecewise
within each cube. Each grid vertex is labelled posi-
tive, “4+”, or negative, “-”, depending upon whether
its value is greater or less than the value of the iso-
surface. The structure of the isosurface in the cube
depends only on the positive and negative labels on
its eight vertices. Thus there are 28 ways in which the
isosurface can intersect a cube. The marching cubes
algorithm first builds a table of these 2% cases and
then uses this table to determine the structure of the
intersection of the surface and each cube. The actual
location of the surface within the cube depends upon
interpolation of the values of the cube vertices.

By exploiting symmetry, Lorensen and Cline re-
duced the 2% cases to fourteen. They analyzed
these fourteen cases by hand, constructing a trian-
gulated surface in each case. Nielson and Hamann
added two more cases to resolve certain ambiguities
and inconsistencies in Lorensen and Cline’s original

algorithm[2].

A hypercube in four dimensions has sixteen ver-
tices and 2'¢ possible vertex labellings. Even after
exploiting symmetry, we found that we were left with
222 cases. Analyzing all these cases by hand, would
have been a tedious and error prone exercise. Higher
dimensions are even worse. Instead, we looked for
and found a systematic way of generating the surface
and its triangulation for each case.

Weigle and Banks generalized a variation of the
marching cubes algorithm by replacing the cubes with
simplices[3, 4]. Using the barycentric subdivision,
they broke each cube into simplices and then con-
structed the isosurface in each simplex. They trian-
gulated the isosurface by recursively triangulating the
various dimensional faces of the polyhedra composing
the isosurface. Because of the simple structure and
symmetry of a d-simplex, there are only d + 2 cases,
each case corresponding to a different number of ver-
tices with positive orientation. However, a d-cube
breaks into between d! and 2%71d! simplices, depend-
ing upon the decomposition used[3]. The time and
space used by the algorithm increase by a correspond-
ing factor.

2 Marching Cubes in R?

We present, a direct generalization of the marching
cubes algorithm to higher dimensions. More specifi-
cally, we give an algorithm to automatically generate
a table of the isosurface and its triangulation for all
the possible 22 labellings of the hypercube.

The 1-skeleton of the hypercube is the graph of ver-
tices and edges of the hypercube. We use a subgraph
G of the 1-skeleton of the hypercube to determine the
topology of the isosurface. The vertices of G are the
vertices of the hypercube with positive labels. The
edges of G are edges of the 1-skeleton whose end-
points are positive. Each connected component of G
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determines a separate piece of the isosurface in the
hypercube.

For each component G’ of G, identify all the 1-
skeleton edges which connect G’ to G', the comple-
ment of G’ in the 1-skeleton. Choose the midpoints of
all these edges and perturb them slightly along their
respective edges so that any d+1 which do not lie on a
common facet of the hypercube are not on a common
hyperplane. Take the convex hull of these perturbed
midpoints. Because of the perturbation, the convex
hull will be a full dimensional polytope in R%.

The intersection of the boundary of the convex hull
and the boundary of the hypercube partitions the
boundary of the convex hull into connected regions.
Each such connected region separates some portion
of the hypercube boundary from the interior of the
convex hull. We choose the connected region which
separates the vertices in G’ from the interior of the
convex hull as part of our isosurface.

The isosurfaces for each connected component of
G are generated separately. However, we claim that
they do not intersect. We demonstrate this by giving
an alternate construction of our isosurface. Instead
of constructing the isosurface for each component of
G separately, form the set of midpoints of all edges
which connect G and G, i.e., the edges which have
one positive and one negative endpoint. Perturb the
midpoints along their edges and construct the convex
hull of all the midpoints.

The intersection of the boundary of the convex hull
and the boundary of the hypercube partitions the
boundary of the convex hull into connected regions.
Again each such connected region separates some por-
tion of the hypercube boundary from the interior of
the convex hull. We choose the connected regions
which separate the vertices with positive label from
the interior of the convex hull as our isosurface in the
hypercube. These isosurface ”patches” exactly corre-
spond to the patches of isosurface constructed indi-
vidually in the previous method. Since these patches
line on the boundary of a single convex polyhedron,
they clearly do not intersect.

The key to the correctness of these algorithms is
the claim that some region separates the vertices in
G' and no other hypercube vertices from the inte-
rior of the convex hull. Alternatively, in the second
construction each region separates either positive or
negative vertices from the interior of the convex hull,
but not both. A proof will appear in the full paper.

Instead of using the vertices with positive labels, we
could have used the vertices with negative labels in ei-
ther construction. Doing so gives a different although
equally valid isosurface. However, using positive la-
bels for some cases and negative labels for others can

result in mismatches on the boundaries of the hyper-
cubes. This was essentially the problem discovered by
Nielson and Hamann in the original marching cubes
algorithm[2].

3 Implementation

The marching cubes algorithm is usually imple-
mented by constructing a complete table of all 256
labellings of the cube. A similar table for four di-
mensions would contain 2'® = 65,536 entries. This
is large but not prohibitively so. Alternatively, sym-
metry could be used to reduce the table size, at the
expense of increasing the table lookup time. This
would be necessary in five dimensions since such a
table would contain 232 entries. Finally, some or all
entries in the table could be generated as needed.

Our algorithm constructs the isosurface for each
connected component in the subgraph G separately.
Thus two different labellings which have a common
component in their subgraphs would have the same
portion of isosurface corresponding to those compo-
nents. This commonality could be exploited to aid in
the table construction and lookup.

The 3D marching cubes algorithm uses interpolants
of the positive and negative vertices to determine the
isosurface, not simply midoints of the two. Using in-
terpolants in four dimensions could potentially cause
the surface to fold back on itself. We are investigating
whether and when this is a problem. Generating the
surface for each cube directly, instead of using a ta-
ble, would avoid this problem, at the cost of increased
time.
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