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Abstract 

We present an algorithm for constructing isosurfaces in any dimension. The input to the 

algorithm is a set of scalar values in a d-dimensional regular grid of (topological) hypercubes. 

The output is a set of (d-1)-dimensional simplices forming a piecewise linear approximation to 

the isosurface.  The algorithm constructs the isosurface piecewise within each hypercube in the 

grid using the convex hull of an appropriate set of points.  We prove that our algorithm correctly 

produces a triangulation of a (d-1)-manifold with boundary. In dimensions three and four, lookup 

tables with 28 and 216 entries, respectively, can be used to speed the algorithm’s running time. In 

three dimensions this gives the popular Marching Cubes algorithm.  We discuss applications of 

four dimensional isosurface construction to time varying isosurfaces, interval volumes and 

morphing. 
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1. Introduction 

Given a continuous scalar field, i.e., a scalar function on Rd, an isosurface is the set of points 

with identical scalar values. We wish to construct a piecewise linear approximation to such an 

isosurface from a regular grid sampling of the scalar field. In 1987, Lorensen and Cline [5] 

devised the Marching Cubes algorithm for constructing such isosurface approximations in three 

dimensions. The algorithm constructs an isosurface piecewise within each grid cube. Dürst  [3] 

pointed out some problems with the original algorithm and various modifications were proposed.  

The Marching Cubes algorithm has gained widespread popularity and acceptance as a tool in 

visualization of volume data.  

In 1996, Weigle and Banks [14,15] presented an algorithm for constructing piecewise linear 

approximations to isosurfaces in arbitrary dimensions, Rd. Such isosurface approximations 

consist of (d-1)-dimensional simplices which properly fit together to form a (d-1)-manifold (with 

boundary.) Weigle and Banks break cubes into tetrahedra or, more generally, hypercubes into d-

simplices, and construct the isosurface piecewise within each d-simplex. However, a d-

dimensional hypercube breaks into between d! and 2d-1d! simplices, depending upon the 

decomposition used [15]. This increases the time and space used by their algorithm and the 

complexity of the resulting isosurface by a corresponding factor. 

In this paper, we present an algorithm that constructs an isosurface piecewise within each 

hypercube, thus avoiding the costly split into simplices. Our algorithm constructs the isosurface 

within a hypercube by finding the convex hull of an appropriate set of points and retaining the 

portion of its boundary that lies in the interior of the hypercube. We prove that these surface 

patches correctly join together to form a (d-1)-manifold with boundary. 

 2



The Marching Cubes algorithm labels each grid vertex positive, ‘+’, or negative, ‘−’, depending 

upon whether its value is greater than or less than the isosurface value, called the isovalue. (A 

small perturbation keeps any scalar grid value from equaling the isovalue.) The structure of the 

isosurface in a cube depends on the positive and negative labels of its eight vertices.  Thus there 

are 28 ways in which the isosurface can intersect a cube. Most implementations of the Marching 

Cubes algorithm first build a table of these 28 cases and then use this table to determine the 

structure of the intersection of the surface within each cube.  The actual location of the surface 

within the cube is determined by linear interpolation of the values at the cube vertices along the 

edges intersected by the isosurface.  

By exploiting symmetry, Lorensen and Cline reduced the 28 three-dimensional cases to fourteen. 

Montani, Scateni and Scopigno [8] added more cases to resolve the ambiguities and 

inconsistencies discovered by Dürst [3].  A triangulated surface for each of these cases was 

constructed by hand. The dimension independence of our algorithm allows us to generate 

isosurfaces from arbitrary dimensional data. Furthermore, since the isosurface is generated 

piecewise within each hypercube, the algorithm can be used to automatically generate the lookup 

table for the given dimension and later used to construct isosurfaces, as in the case of Marching 

Cubes algorithm. The lookup table generated by our algorithm for three dimensions is identical 

to that proposed in the Modified Marching cubes algorithm [8]. We also use our algorithm to 

generate the lookup table for the four-dimensional case and use it to generate isosurfaces from 

four dimensional data.  

As in the three dimensional case, the structure of the isosurface in a four dimensional hypercube 

depends on the positive and negative labels of its sixteen vertices. Thus there are 216 ways in 
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which an isosurface can intersect a four dimensional hypercube. Using symmetry we were able 

to reduce the 216 possible vertex labelings in four dimensions to 222 cases. However, 

constructing a triangulated surface for even 222 four dimensional cases by hand would have been 

a tedious and error prone exercise. By forming the convex hulls of appropriate hypercube 

vertices and edge midpoints, we determine the structure of the isosurface for each of the 216 

cases. Once the table is constructed, the isosurface construction algorithm is based simply on 

table lookup and linear interpolations along the hypercube edges. 

We demonstrate the usefulness of our algorithm by presenting some applications of isosurface 

construction in R4. Weigle and Banks discussed one of these applications, visualization of time 

varying data, in a paper on applications of their isosurface construction algorithm [15]. We also 

apply techniques from that paper for volume morphing.  

Using the four dimensional lookup table, our algorithm allows us to easily and quickly construct 

isosurfaces for four dimensional data. The most prevalent examples of such data are three 

dimensional time varying data. We visualize isosurfaces that lie in R4 by slicing them along 

different axes. Slicing allows us to present alternative views of such data other than the 

traditional time animation. Additionally, animation of time-varying data can be smoothed by 

slicing and rendering the isosurface between coarse time steps. 

We can also construct three dimensional interval volumes using isosurfaces in R4. An interval 

volume is a tetrahedralization of the volume between two isosurfaces defined by two different 

isovalues. We construct the interval volume by defining a four dimensional scalar field, building 

an isosurface in that scalar field and then projecting the isosurface to three dimensions. The same 

technique can be used for any dimension. 
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Finally, isosurfaces in R4 can be used to morph isosurfaces lying in R3. The source and target 

isosurfaces are identified with parallel hyperplanes in four dimensions. We construct an 

isosurface in R4 connecting the source and target isosurfaces and then slice the R4 isosurface by 

parallel hyperplanes to animate the morphing from one isosurface to the other.  Again this 

technique can be used in any dimension. 

A preliminary version of this paper which did not contain proofs appeared in [1]. In this paper, 

we prove that our algorithm produces a higher dimensional surface with no “cracking” or “holes” 

which approximates the true isosurface.  We also present additional results and applications of 

the algorithm. 

2. Algorithm 
2.1 Basic Algorithm 

A d-dimensional regular grid divides a d-dimensional volume into hypercubes.  The edges of the 

grid are the edges of these hypercubes. Our algorithm starts by computing the intersection of the 

isosurface with each of the grid edges. The isosurface intersects the grid edge if the scalar value 

at one endpoint of the edge is greater than the isovalue and the scalar value at the other endpoint 

is less than the isovalue. (By slightly perturbing the value at the cube vertices, we guarantee that 

the isosurface does not pass through the vertex.) We linearly interpolate between the scalar 

values at the endpoints to approximate the intersection point of the isosurface and the edge. Let 

U be the discrete set of all such interpolated points over all hypercubes. Set U will be the vertices 

of the piecewise linear approximation to the isosurface.  Henceforth, we will refer to this 

approximation as the isosurface. 
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Resulting isocontour 

Figure 1.  Example of  two dimensional isosurface (isocontour) construction, isovalue 3. 
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Figure 2.  Example of three dimensional  isosurface construction, isovalue 3. 

Our next step is to reconstruct the isosurface within each hypercube. We do so by approximating 

the set of points in the hypercube with scalar values above the isovalue. The isosurface is the 

intersection of the boundary of this point set and the interior of the hypercube. 

For each hypercube h, let Uh be the intersection of U and hypercube h, i.e., the points of U which 

lie on the edges of h. Let  and  be the set of vertices of h whose scalar values are above or 

below, respectively, the isovalue. Let  equal , the set of interpolated points and the 

vertices of h with scalar value above the isovalue. (See Figures 1 and 2.)  Similarly, let  equal 

. Construct the convex hull of . 

+
hV −

hV

+
hW +

hh VU U

−
hW

−
hh VU U

+
hW

 6



 

Algorithm: 

1. Approximate the intersection of the isosurface and grid edges using linear 
interpolation; 

2. For each hypercube h do: 
a. Uh ← Intersection point of hypercube edges and isosurface; 
b.  ← Vertices of h with scalar values above the isovalue; +

hV

c. Construct canonically triangulated convex hull of  W . ++ = hhh VU U

d. Remove simplices which lie on a facet of h. 

Figure 3. Isosurface construction algorithm. 

The convex hull of  is a d-dimensional convex polytope lying in hypercube h and 

approximating the set of points in h whose scalar values are greater than or equal to the isovalue. 

Remove the (d-1)-dimensional facets of this polytope that lie on the boundary of the hypercube. 

The remaining (d-1)-dimensional facets comprise the isosurface in the hypercube. Repeat this 

process for every hypercube to construct the entire isosurface. (See Figures 1 and 2.) 

+
hW

If the points in Uh are affinely dependent, the (d-1)-dimensional facets comprising the isosurface 

may not be simplices. For instance, in three dimensions there may exist two dimensional 

polygons with more than three vertices. We wish to triangulate these facets so that the isosurface 

can be simply represented by a set of simplices.  There are many ways of doing so.  Note, 

however, that this triangulation should be consistent across adjacent facets, i.e., the intersection 

of any two simplices should be a face of each of the simplices. This is not a problem in three 

dimensions since two dimensional polygons intersect only on their edges.  However, in four 

dimensions the reconstructed isosurface consists of three dimensional polyhedra. These 

polyhedra may meet in a two dimensional polygon other than a triangle, for instance a planar 
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quadrilateral. If the triangulations of the two polyhedra contain different diagonals of this 

quadrilateral, then the resulting triangulations will not match.  

Let p1,…,pn be points in convex position in Rd.  We call a triangulation T’ of conv(p1,…,pn) 

canonical if T’−pn, the simplicial complex T’ with all the simplices incident on pn removed, is a 

canonical triangulation of  conv(p1,…,pn-1). A single simplex is a canonical triangulation.  

Intuitively, a canonical triangulation is built by incrementally adding points and their incident 

simplices in the specified order.  Clarkson, et. al. in [2] describe an incremental convex hull 

algorithm which adds points to the convex hull one at a time.  As each point is added, the 

boundary of the new convex hull is constructed from the boundary of the previous one.  The 

algorithm constructs not only the boundary of the convex hull but a triangulation of the 

boundary.  Since the points and simplices are added incrementally, the resulting triangulation of 

each facet is a canonical triangulation as defined above.    

Clarkson, et. al. analyze the expected running time of their incremental convex hull algorithm 

when points are inserted in random order.  To ensure the triangulations between two adjacent 

hypercubes is consistent, we insert the points in lexicographically sorted order. In the next 

section we prove that by inserting the points in lexicographic order  the ‘canonical’ triangulations 

of the reconstructed isosurfaces in two adjacent hypercubes properly match at their boundaries. 

The incremental convex hull algorithm is not optimal, but provides a practical solution to our 

problem of generating consistent triangulations. 

We note that the incremental convex hull algorithm is only one possible way to generate a 

consistent triangulation of the isosurface. We could have used any convex hull algorithm to 
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construct the isosurface and then used an algorithm by Max [6] to triangulate each of its facets.  

The algorithm by Max produces a different triangulation than the canonical one described here 

although both are based on a lexicographical ordering of the triangulation vertices. 

Instead of constructing the convex hull of  containing the vertices , we could have 

constructed the convex hull of  which contains the vertices . Doing so gives a different, 

although equally valid, isosurface. However, using  for hypercube h

+
hW +

hV

−
hW −

hV

+
1hW 1 and  for an adjacent 

hypercube h

−
2hW

2 could result in a mismatch on the face common to h1 and h2. This was essentially 

the problem discovered by Dürst [3] in the original Marching Cubes algorithm. 

2.2 Table Lookup 

Constructing a convex hull for each hypercube can be quite time consuming. In dimensions four 

or less, we can use our algorithm to build lookup tables of surface patches for various 

configurations and then construct the isosurface within each hypercube using the lookup tables. 

For dimensions greater than four, the number of table entrees can be prohibitively expensive. 

Each grid vertex can be assigned a positive label, ‘+’, or a negative label, ‘−’, depending upon 

whether its value is greater or less than the isovalue. There are 2d vertices of a d-dimensional 

hypercube and so different vertex labelings. For each such labeling we construct one entry in 

the lookup table as follows. 

d22

Let h be the unit hypercube with a given labeling. Assign the positive vertices a scalar value of  

+1 and the negative vertices a scalar value of –1. Apply our algorithm to construct a triangulated 

isosurface in the hypercube with scalar value 0. Note that the vertices of this isosurface lie on the 

midpoints of the edges of h. Store this triangulated isosurface in the lookup table entry of the 
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associated labeling.  Instead of storing the vertices of the isosurface, we store information on the 

hypercube edges containing the vertices and the resulting triangulation.  The actual vertex 

coordinates are irrelevant. 

To construct the isosurface from a grid of scalar values, we label each of the grid vertices ‘+’ or 

‘−’ depending on their scalar values. For each grid hypercube h, we find in the lookup table the 

set of simplices corresponding to the given labeling. Each simplex vertex is a midpoint of some 

edge of the unit hypercube. Using linear interpolation, we determine the location of the vertex on 

the corresponding edge of h and map the simplex vertex to this location. These mapped simplices 

form the isosurface patch in h. 

Our basic algorithm first generates locations of the isosurface vertices and then constructs the 

triangulated isosurface. In contrast, the lookup table algorithm generates the isosurface 

triangulation and then adjusts the isosurface vertex locations. These algorithms do not have 

identical results and may generate different isosurfaces with different triangulations, although the 

topological structure of the underlying simplicial complexes will be the same. More problematic, 

we don’t know whether moving the vertices in four or higher dimensions can introduce self 

intersections in the isosurface. This does not happen in three dimensions. We conjecture that this 

does not happen in four dimensions either, although we suspect that it might happen in 

sufficiently high dimensions. 

Theoretically, isosurface lookup tables can be constructed in any dimension. However, a five 

dimensional hypercube has 32 vertices and thus 232 possible labelings. This is far too large for a 

lookup table. One possibility would be to exploit symmetry to reduce the size of the lookup 
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table. Another possibility might be to employ lazy evaluation so that only the most prevalent 

labelings appear in the lookup table. 

3. Proof of Algorithm Correctness 

Given a regular grid sampling of a scalar field and an isovalue, we claim that our algorithm 

constructs a surface that approximates the true isosurface for that isovalue.  Our claim has two 

parts. First, we show that our algorithm does actually construct a surface, not simply a set of 

arbitrarily connected simplices.  More specifically, it constructs a triangulated (d−1)-manifold 

with boundary in Rd. Note that a valid isosurface need not be a manifold but in many applications 

it is desirable that the surface be a manifold.  

The second claim is that the surface constructed by our algorithm approximates the exact 

isosurface from the scalar function. Without conditions on the underlying scalar field, it is not 

possible to reconstruct the exact isosurface from a discrete sampling of the function or even to 

produce a surface that is close under some metric to the exact isosurface.  The exact isosurface 

must intersect the grid edges with one positive and one negative endpoint, although it could 

intersect others. We claim and prove that our approximate surface intersects exactly this set of 

grid edges with one positive and one negative endpoint. 

Even in three dimensions there are many topologically distinct surfaces that intersect the same 

set of grid edges.  Without the underlying scalar function, it is impossible to know which surface 

is homotopic (continuously deformable) to the exact isosurface, although predictions can be 
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made based on certain simplifying assumptions[9]. As with the Modified Marching Cubes 

algorithm[8], we make no claim that our isosurface is homotopic to the exact isosurface. 

Our algorithm returns a set of simplices that we claim form a surface.  To prove our claim, we 

first show that these simplices intersect properly at their faces, forming what is known as a 

simplicial complex. Then, using basic properties of simplicial complexes, we then show that this 

simplicial complex forms a surface. 

To more precisely state our results, we proceed with some definitions.  A set of points M in Rd is 

a (d−1)-dimensional manifold with boundary if the neighborhood of each point in M is 

homeomorphic to either Rd-1 or a closed half-space of Rd−1. Intuitively, a manifold with boundary 

is a set of points that behave locally like a portion of (d−1)-dimensional Euclidean space or the 

boundary of a (d−1)-dimensional Euclidean half-space. 

A set T of simplices defines a simplicial complex if the non-empty intersection of any two or 

more simplices of T is a face of each of these simplices. For instance, the non-empty intersection 

of any two tetrahedra is either a (triangular) face, or an edge or a vertex of the two tetrahedra and 

the non-empty intersection of any three tetrahedra is an edge or a vertex of all three.  

More formally, a simplicial complex T is a finite collection of simplices in Rd such that: 

• If t is a simplex in T and t’ is a face of t, then t’ is also a simplex in T; 

• If t1 and t2 are simplices in T, then t1 ∩ t2 is also a simplex in T. 
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Note that a simplex can have any dimension up to d and a face of a simplex is also a simplex (of 

lower dimension.) If T is a simplicial complex, then |T| is the underlying point set, i.e., the union 

of all the simplices in T. The set T of simplices is called a triangulation of |T|. 

Let T be the set of simplices returned by our algorithm.  We prove: 

1. The set T of simplices defines a simplicial complex; 

2. |T| is a (d−1)-dimensional manifold with boundary. 

The first statement is used to prove the second. 

We now more precisely define the output of our algorithm. Let G be a regular d-dimensional grid 

whose vertices are labeled positive, ‘+’, or negative, ‘−’.  Let  and  be the vertices of G 

with positive and negative labels, respectively. Call an edge bipolar if one endpoint has a 

positive label and one has a negative label. Choose one point in the interior of each bipolar edge 

and let U be the set of all such chosen points. In Section 2.1 set U is a set of linear interpolants of 

scalar grid values but U could also be edge midpoints or higher order interpolants.  

+V −V

As before, let the sets Uh,  and  be subsets of U,  and  restricted to a single 

hypercube h. Let  (abbreviated ) equal  and  (abbreviated ) equal 

. Form (abbreviated ) by taking the boundary of the convex hull of , 

removing any points on the boundary of h, and taking the closure of the remaining set. Formally, 

 equals cl(∂conv( ) – ∂h), where cl, ∂ and conv are the closure, boundary and 

convex operators, respectively. Similarly,  (abbreviated ) equals cl(∂conv( ) – 

∂h). 

+
hV −

hV +V −V

)(UWh
+ +

hW +
hh VU U )(UWh

− −
hW

−
hh VU U )(USh

+ +
hS )(UWh

+

)(USh
+ )(UWh

+

)(USh
− −

hS )(UWh
−
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For instance, in Figure 1, set  contains the two open line segments in the interior of h. It 

also contains the endpoints of these line segments, which lie on the boundary of h. These 

endpoints are in the closure of the open line segments.  Similarly, in Figure 2, set contains 

four triangles in the interior of h, but it also contains the boundaries of these triangles, portions of 

which lie on the boundary of h.  

)(USh
+

)(USh
+

Let equal . Our algorithm returns . Actually, it returns a set of (d−1)-

dimensional simplices whose underlying point set is . 

)(US + )(US
Gh hU ∈

+ )(US +

)(US +

Each k-dimensional face f of h is also a hypercube, albeit a k-dimensional one. Thus for k > 0 we 

can construct a (k−1)-dimensional isosurface in f in the same manner that we constructed a 

(d−1)-dimensional isosurface in h. Let the sets Uf,  and  be subsets of U,  and  

restricted to f. Let  equal  and  equal . Let  equal 

cl(∂conv( ) – ∂f) and  equal cl(∂conv( ) – ∂f).  

+
fV −

fV +V −V

)(UW f
+ +

ff VU U )(UW f
− −

ff VU U )(US f
+

)(UW f
+ )(US f

− )(UW f
−

We could also construct a (k−1)-dimensional surface in f by simply taking the isosurface from h 

and intersecting it with f. We will show that these two constructions are equivalent, i.e., that 

 equals  )(US f
+ .)( fUSh I+

Our proof proceeds as follows. We start with a technical lemma showing that the convex hull of 

 is full dimensional, i.e., if f has dimension k, then so does conv( ) (Lemma 1.) 

This lemma is used for making arguments about the neighborhood of points on . Next, we 

)(UW f
+ )(UW f

+

)(USh
+
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prove that the intersection of  with a face f of h is , i.e., it can be constructed 

directly from the vertices and sample points on face f without any reference to the other vertices 

or sample points in the containing hypercube h (Lemma 2.) As a corollary, if sets and  

agree in the common face f between two adjacent hypercubes and . In other words,  

equals  (Corollary 1.) Note that this implies that there is no “cracking” between 

isosurface patches in adjacent hypercubes, the problem plaguing the original Marching Cubes 

Algorithm[3].  

)(USh
+ )(US f

+

+
1hS +

2hS

1h 2h fSh I+
1

fSh I+
2

Using Lemma 2, we show that the set of simplices returned by our algorithm forms a simplicial 

complex (Theorem 1.) For completeness, we provide a simple proof that a simplicial complex is 

a manifold with boundary if it is a manifold with boundary in the neighborhood of each of its 

vertices (Lemma 3.)  Finally, we apply Theorem 1 and Lemma 3 to show that 

is a manifold with boundary (Theorem 2.) )()( USUS
Gh hU ∈

++ =

Lemma 1: If f is a k-dimensional face of a grid hypercube, then conv( ) is either the 

empty set or has dimension k. 

)(UW f
+

Proof: If is not the empty set, then h has some vertex .  For every edge (v,v’) 

in h, either v’ is in  or some interior point of (v,v’) is in . In either case, some interior 

point of (v,v’) lies in conv( ). Vertex v and interior points from each of its incident edges form 

a k-dimensional simplex contained in conv( ). 

)(UWW ff
++ = +∈ fVv

+
fW +

fW

+
fW

+
fW

Q.E.D. 
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Note that f need not be a proper face and could be the full hypercube h. 

-dimensional convex set 

is completely determined by the vertices and sample points on f. This implies that the surfaces 

defined by US +  and US +  for two adjacent grid hypercubes h  and h  fit together properly at 

at the intersection of  and a face f of h depends only on the vertices and 

e m

the set whose limit is p. 

By Lemma 1, the interior of )(USh
+  is identical to the boundary of a d

and so clearly forms a surface. W xt show that the intersection of )(USh  and any k-face f of h 

1h 2h

e ne +

)( )( 1 2

their boundaries. 

We now show th  +
hS

sample points in f.  The main difficult is that hS and fS  are defined as the closure of open sets. 

To prove that a point p is in one of these sets, w ust find a sequence of points in the interior of 

+ +

 

Figure 4. Neighborhood of p ∈ S .  +
f

 

Figure 5. Hyperplane Γ containing p and a facet of +  hS .

 

Lemma 2: If f is a k-dimensional face of a grid hypercube h, then ).()( USfUS fh
++ =I  

 16



Proof: As noted above, abbreviate )(UWh
+  and )(USh

+  by +
hW and  respectively. Similarly, 

abbreviate  and  by tive y. The theorem is trivially true if f 

equals h so assume that f is a proper face of h. 

v ). 

Since  = ,  

conv( I v ). 

Since f ot ers te  of h ,  

). 

Consider a point S fin on, in every neighborhood of point p there is some point p’ 

∈ ∂conv( ) – ∂f. (See Figure 4.) The neighborhood of p’ contains a point q∈ f which is not in 

conv( ). Since point p’ lies in conv( ) conv( ) and, by Lemma 1, conv( ) has 

dimension d, the neighborhood of p’ also contains a point q’ which is in the inte r of 

f h

) – 

 ,+hS

)(UW f
+ )(US f

+ +
fW and ,+fS  respec l

Since f is a face of h,  

conv( hW ) fI = con+ ( fWh I+

fh I+W +
fW

+
hW f = con) ( +

fW

 does n int ect the in rior  +W

∂conv( +
hW ) fI = conv( +

hW ) fI = conv( +
fW

p ∈ +
f . By de iti 

+
fW

+
fW +

fW ⊆ +
hW +

hW

rio

conv( ). Since conv( +W ) is a subset o , point q’ is also in the interior of h. Line segment 

(q,q’) intersects ∂conv( +
hW ) at a point p’’ which lies in the interior of h.  Thus p is the limit of a 

set of points in ∂conv( ∂h and so is in cl(∂conv( + ) – ∂h) = + . Since p is in f, point p lies 

in +  

+
hW h

+
hW hW hS

.fSh I
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Now consider a point p  .fSh I+  Some (d−1)-dimens al facet o +
hS  contains p. Let Γ be the 

hyp e

 ∈ ion f

erplan  containi ee Figure 5.) Since each facet of  intersects the interior of 

h, hyperplane Γ also intersects the interior of h. 

es

ment given above, 

Since p is in conv , set  is not empty and must contain some vertex v. 

We show that hyperplane Γ does not contain g. If hyperplane Γ contained g, then it would 

 g. Sinc  would separate 

conv( ) from some grid edge (v,v’) incident on v.  Edge (v,v’) is a 1-dimensional face of 

h but conv( ) equals v which is 0-dimensional, violating Lemma 1. Thus 

hyperplane Γ cannot contain g. 

interior of g, the subspace 

 

ng this facet. (S +
hS

Let g be the smallest face of the hypercube h containing p. Since p li  on f, the face g is also a 

face of f. (Note that g could equal f.) By the argu

 conv gWh I)(  = conv( gW ). 

+

+ +

gWh I)( +
gW

contain vertex v ∈ e Γ intersects the interior of hypercube h, hyperplane Γ

+
hW

hypercube +

Since g is the smallest face containing p, point p lies in the interior of g. Since Γ does not contain 

g, but contains a point p in the 

)',( vvW

gIΓ  must separate conv  = 

conv( ) from some points in the interior of g. Thus, every neighborhood of p in g contains a 

point  which is not in conv( ). (See Figure 5.) By Lemma 1, every neighborhood of p in f 

contains a point r’ which is in conv ∂−+  Line segment (r,r’) intersects ∂conv W ) at a 

terior

gWh I)( +

+
gW

r +
gW

.)( fW f f

point r’’ which lies in the in  of f. This point is not on the boundary of f and so lies in 

( +
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∂conv( +
fW ) – ∂f. Since p is the limit o n ∂conv( +

fW ) – ∂f, point p is in cl(∂con +
f ) – 

∂f) = +
fS . 

f points i v W

Q.E.D. 

The following corollary follows immediately: 

: If h1 and h2 are grid hypercubes and 

(

Corollary 1 21 hhf I= , then 

Recall that a triangulation T’ of conv(p1,…,pn) is canonical if T’−pn, the simplicial complex T’ 

n anonical lation of  conv(p1,…,pn-1). As 

discussed in the previous section, the algorithm in [2] returns a canonical triangulation of the 

boundary of the convex hull of a set of points. We prove that if the points are always sorted in 

lexicog aphic order, then the canonical triangulation of each facet of the isosurface produces a 

simp omplex. 

 canonical triangulation of conv(p1,…,pn) induces a canonical triangulation 

of every face of conv(p ,…,p ). 

 is a subset of  by Lemma 2 and the canonical 

triangulation of  induces a canonical triangulation of . 

.
21

fSSfS hfh II +++ ==  

with all the simplices incident on p  removed, is a c triangu

r

licial c

The definition of canonical triangulation still holds if conv(p1,…,pn) and its triangulation T’ are 

not d dimensional. A

1 n

We call a triangulation of )(USh
+  canonical if it is a canonical triangulation of all the facets of 

+ . If f is a face of h, then )(USh )(US f
+ )(USh

+

)(USh
+ )(US f

+
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For each hypercube h, let )  (abbreviated +
hT ) be the canonical triangulation of )(USh

+  

the vertices are sorted in lex aphic order. Our ithm returns T(U) = ).(UT
Gh hU ∈

+  

For our next theo recall that an edge of G is bipolar if o dp

(UTh
+

where icogr  algor

rem, ne en oint has a positive label and 

one has a negative label. 

Theorem 1: If G is a regular grid whose vertices are labeled positive or negative and U is a 

selection of points from the interior of each of the bipolar edges of G, exactly one point per edge, 

Proof: Let t  and t be simplices in T(U).  We must show that t  ∩ t  is also a simplex in T(U). 

t t d−

 element of n of  for some hypercube h1. 

t

 of  induces the canonical 

triangulation  of  Since f is a face of h , set t  ∩ f is a simplex in .  Similarly, set t  ∩ f  

is a simplex in T . Since t  ∩ f and t  ∩ f are both simplices in T , the set t  ∩ t  = t  ∩ t  ∩ f  is 

also a simplex in T .  Since T  is a subset of T , the simplex t1 ∩ t  is an element of T(U). 

en anifold with bound  is 

then set T(U) = )(UT +  is a simplicial complex. 
Gh hU ∈

1 2 1 2

Note that 1 and 2 may have any dimension between 0 and 1. 

Simplex t1 is an  the canonical triangulatio  )(
11

USS hh
++ =

Similarly, simplex 2 is an element of the canonical triangulation of 
2hS  for some hypercube h+

2. 

Let f  equal h1 ∩ h2. The canonical triangulation (
11

UTT hh
++ = ) +

1hS

+
fT .+fS 1 1 2

f

+
fT

+
1 2

+
f 1 2 1 2

+
f f 1h

+ +
2

Q.E.D. 

Let 1−dR denote the closed half-space of R+
d−1

  given by the equation xd = 0. A set M of points in 

Rd is a (d−1)-dim sional m ary if the neighborhood of each point in M
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homeomorphic to either Rd−1
 or  We claim that to show a simplicial complex is a manifold 

with boundary, we need onl

ensional.  The neighborhood of every 

ood. 

Simplex t has a vertex v whose neighborhood is homeomorphic to Rd−1 or dR  Some point p in 

d−1

d

t has such a neighborhood.  Since every point in |T’| lies in the interior of some simplex of T’, 

every point has a neighborhood homeomo Rd−1 or dR  Thus, |T’| is a manifold. 

Q.E.D

.1−
+
dR

y check its vertices.  

Lemma 3:  Let T’ be a simplicial complex.  If the neighborhood of each vertex of T’ is 

homeomorphic to Rd−1 or a closed half-space of Rd−1, then |T’| is a manifold with boundary. 

Proof:  Let t be any simplex of T’, not necessarily full dim

point in the interior of t is topologically identical, so if the neighborhood of some point in the 

interior of t is homeomorphic to Rd−1 or 1−
+
dR , then every point has such a neighborh

 .1−
+

the interior of t lies in this neighborhood and so p has a neighborhood homeomorphic to R  or 

.1
+R  Since some point in the interior of t has such a neighborhood, every point in the interior of −

rphic to  .1−
+

.  

Figure 6. Neighborhood of vertex v. 
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Finally, we show that  is a surface, i.e., a manifold with boundary. 

Theorem 2:  If G is a regular grid whose vertices are labeled positive or negative and U is a 

selection of points from the interior of each of the bipolar edges of G, exactly one point per edge, 

then the set  is a manifold with boundary. 

Proof:  By Theorem 1, h . By the previous lemma, 

at every vertex of T Rd−1
  or 

 Note that the vertices of T(U) are all in the interior of hypercube edges.  While 

contains hypercube vertices, ∂(h) matches (∂conv(W )) in the neighborhood of a hypercube 

vertex, and so hypercube vertices are never included in S . 

Let v be a vertex of T(U) in the interior of the regular grid G. (See Figure 6.) Vertex v lies  on 

1 2 u1 has a positive la 2 has a negative one. Let 

+ α(u (U

im T(U). Let r be the minimum of 

r’, r1 and r2. Let Nv be a ball in Γ of radius r around v. 

)()( USUS
Gh hU ∈

++ =

)()( USUS
Gh hU ∈

++ =

)(US +  )(UT
Gh hU ∈

+as a triangulation T(U) = 

we need only show th (U) has a neighborhood homeomorphic to 

.1−
+
dR +

hW  

+
h

h
+

some edge (u ,u ), where bel and u Γ be the 

hyperplane through v which is perpendicular to (u1,u2). For each point p on Γ, let lp be the line p 

1−u2) parameterized by α. Let r’ be the minimum distance from v to any simplex in T ) 

not containing v. Let r1 and r2 be the minimum distances from u1 and u2, respectively, to any 

simplex in T(U).  Note that neither u1 nor u2 are on any s plex of 

Each line lp for p ∈ Nv intersects at least one hypercube h containing edge (u1,u2). Since line lp is 

parallel to edge (u1,u2), line lp intersects conv( +
hW ) in a line segment. One endpoint of this line 
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segment is in the neighborhood of v while the other is in the neighborhood of u1. The endpoint p’ 

in the neighborhood of v is on )(USS hh
++ =  while the other is not. Map p’ to p. 

Restricted to each hypercube pping from  to Nv  is 1-1 and onto.  We must show 

1 2 

1 2 1 ∩ h2

intersection of h1 and h2. By Corollary 1, =  Thus,  for any 

point p ∈ h ∩ Γ. Since the mapping agrees wherever two hypercubes intersect, it is 1-1 and onto.  

hypercube.  Since the map is continuous within each hypercube, it is continuous everywhere. 

 +
hSh, this ma

that this mapping agrees on points in the intersection of two hypercubes. Let h  and h be two 

hypercubes containing (u ,u ).  Let f equal h  , a lower dimensional hypercube that is the 

++ ++.
21

fSfS hh II =
21 hphp SlSl II

We can restrict any convergent sequence of points to a convergent sequence lying in a single 

If v lies on an edge (u1,u2) on the boundary of G instead of in the interior, then we can map 

points of |T(U)| in the neighborhood of v to G∩Γ , which omorphic to 

Since the neighborhood of each vertex of v is homeomorphic to R  or  set |T(U)| is a 

manifold with boundary. 

Q.E.D. 

dges and only the bipolar edges of G. This 

follows directly from Lemma 2. 

gular grid whose vertices are labeled positive or negative and U is a 

selection of points from the interior of each of the bipolar edges of G, exactly one point per edge, 

is home .1    The 

argument is essentially the same as the previous one. 

d−1

−
+
dR

,1−
+
dR

It remains to prove that )(US + intersects the bipolar e

Theorem 3:  If G is a re
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then an edge of G is intersected by  if and only if one endpoint has a positive label and 

one endpoint has a negative label. 

one dimensional face of a grid hypercube h. By Lemma 2, 

++ =  for any hypercube h containing e. If e is a bipolar edge, then +  is a 

Q.E.D. 

4. Implementation 

Our implementation is composed of two separate applications. The first application generates the 

okup table for the g e used later. We use an 

ementation by Clarkson of the algorithm in [2]  to compute the convex hull of the vertices in 

W . (See http://cm.bell-labs.com/who/clarkson.) Clarkson's hull algorithm uses fixed point 

arithmetic to avoid numerical inaccuracies in the computations. It also computes the convex hull 

tex at a time, to ensure a canonical triangulation of the various 

app

hypercube was only about 6. Our isosurface generation application took approximately 7 minutes 

)(US +

Proof:  An edge e of G is a 

)()( USeUS eh I e

single point eU ∩ and )(US +  intersects e. If e is not a bipolar edge, then )(USe
+  is the empty set 

and )(US +  does not intersect e. 

)(US

isosurface lo iven dimension and stores it in a file to b

impl

+
h

incrementally, adding one ver

cases.  

The complete Marching-Cubes like lookup table for four dimensional contours has 216 entries 

with a maximum of 26 tetrahedra in a given case. The average table entry contains 

roximately 13 tetrahedra. In practice, cases that require many tetrahedra are uncommon.  For 

the Jet Shock Wave data set discussed in Section 5.1, the average number of tetrahedra per 
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(3 minutes CPU time, 4 minutes system time) for generating the lookup table for four dimensions 

on a 1.5 gigahertz Pentium 4 processor running Linux. Approximately 70% of this time was 

spent in the convex hull computation.  

ration algorithm performs topology checks to validate 

canonical triangulations across hypercube boundaries. It constructs adjacency lists for the 

simplicial mesh, which would be useful for further processing like mesh simplification.  

Source code for isosurface patch and table generation is available at http://www.cis.ohio-

state.edu/graphics/isotable. 

The second application is used to compute and visualize four dimensional isosurfaces. We have 

used this application with several four dimensional data sets.  We visualize the isosurface using 

three dimensional slices of the four dimensional space. The intersection of these three 

dimensional slices and the isosurface is a two dimensional surface in three dimensional space, 

which we rendered using standard graphics techniques. Our implementation allows slicing the 

isosurface with arbitrary hyperplanes to visualize the relationships among different data 

attributes (axes). Our isosurface gene

Since the isosurface generation part of our algorithm is dimension independent, we were able to 

use it to construct isosurfaces in R5. A five dimensional hypercube has 232 possible sign patterns 

on its vertices.  The isosurface lookup table would take too long to precompute and be the table 

would be too large to store. Instead, we used a lazy evaluation method with our algorithm to 

generate the entries as needed. 
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5. Applications 
5.1 Time Varying Isosurfaces 

A number of different techniques have been introduced for fast isosurface extraction and 

compressed representation of time-varying fields [11, 13, 14, 15]. Our algorithm provides 

another approach to compact representation of time varying isosurfaces, similar to that of Weigle 

back of their method is that they decompose each 4-cell into at most 

 contour each of the simplices. This approach produces a 

and Banks [15]. The draw

192 4-simplices and then recursively

larger number of tetrahedra than our method. 

 

   

Slice along X-axis Slice along Y-Axis Slice along Z-axis 

Figure 7. Slices of a time varying isosurface for the Jet Shock Wave Data Set along different axes.  

Isovalue = 37, Timesteps = 56-65. 

We output our tetrahedral grid sorted in time, hence, we can easily access the 4D tetrahedra that 

intersect our time slice. This approach makes the slicing independent of the total number of time 

steps and speeds up the slicing considerably. On an SGI Octane, computing a time slice is 

interact g the ive for a 4D isosurface generated from a 40x40x40x36 size data set. Constructin
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isosurface in R4 allows slicing ffectively merging the steps of at non-integral time steps, e

interpolation and isosurface extraction into one, allowing us to generate smooth animations of 

the time-varying isosurface very efficiently. 

For 10 time steps of the Jet Shockwave data set, an isovalue of 37 generated an isosurface with 

8,021,739 tetrahedra having 1,394,104 vertices in just under 20 minutes. The isosurface 

intersected 1,317,975 hypercubes, giving an average of around 6 tetrahedra per hypercube.  The 

total number of triangles generated for the same 10 time steps by Marching Cubes was 

1,796,350.  

 

 

Figure 8.  Interval volume for the sphere function. 

5.2 Interval Volumes 

For a trivariate function f(x,y,z) sampled on a three dimensional rectilinear grid, the interval 

volume [4] is defined by If(α,β) = {(x,y,z): α ≤ f(x,y,z) ≤ β}. More generally, for a function f : 

Rd→R in any dimension, the interval volume is defined by If(α, ) = {(x1,…,xd): α ≤ f(x1,…,xd) ≤ 

β }. In three dimensions,  of interval volumes and 

β

 Fujishuro et. al. [4] discuss applications
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propose a solid fitting algorithm for tetrahedralizing the interval volume by extending Marching 

1 d

1 d

Note that: 

1

1

txxf
txxf

tx
d

d
d β

α
K

K
K . 

Let S be the isosurface give t the intersection of S and 

t = 0 is the isosurface given by f(x1,…,xd) = α while the intersection of S and the 

hyperplane t = 1 is the isosurface given by f(x1,…,xd) = β. Let π be the projection function 

mapping Rd+1 to Rd given by π( x1,…,xd,xd+1) = (x1,…,xd).  The mapping from S to π(S) is a 1-1 

mapping of S onto the interval volume If(α,β). 

Our algorithm follows directly from the description of the continuous case. Given a regular d-

dimensional grid sampling of f, the grid values for F are f(x1,…,xd) − α for t = 0 and  f(x1,…,xd) − 

Cubes. Max et. al. [7] and Nielson et. al. [10] compute the tetrahedralization by decomposing 

each cube in the grid to five tetrahedra. Nielson then uses an efficient lookup table to compute 

the interval volume within each simplex and decompose it into tetrahedra. Since they do this for 

simplices rather than cubes, the number of tetrahedra generated is very large. We show how to 

compute interval volumes for any dimension d by computing an isosurface in Rd+1
  and then 

projecting this surface onto Rd. 

For a d-dimensional function f(x ,…,x ) and scalar values α < β, consider the (d+1)-dimensional 

function F(x ,…,x ,t) given by: 

F(x1,…,xd,t) = f(x1,…,xd) − (α (1−t) + β t). 

⎩
⎨
⎧

=−
=−

=
1for   ),,(
0for   ),,(

),,,( 1xF

n by F(x1,…,xd,t) = 0 for 0 ≤ t ≤ 1. Note tha

the hyperplane 
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β  for t = 1. Construct the piecewise linear approximation to F(x1,…,xd,t) = 0 using the algorithm 

in Section 2. Project this approximation to Rd by removing the last coordinate from each vertex. 

In the next section, we prove that this projection is the triangulation of the volume between the 

two piecewise linear surfaces approximating f(x1,…,xd) = α and f(x1,…,xd) = β. 

Figure 9.  Interval volume and one of the isosurfaces bounding the interval volume for the hydrogen atom data set. 

To compare our technique to that of Nielson’s, we show the results obtained for the following 

function sampled on a 14x14x14 grid for α = 0.35, β = 0.37.  

f(x,y,z) = (x - 0.5)2 + (y - 0.5)2 + (z - 0.5)2. 

The resulting tetrahedralization consists of 4204 tetrahedra with 1496 vertices as compared to 

8500 tetrahedra and 3224 vertices in [10]. Figure 8 shows the interval volume for the above 

e consisting of 44,072 

tetrahedra and 11,648 verti ing the Shirley-Tuchman's 

tetrahedra projection algorithm [12]. Furthermore, the 3D isosurface can be animated to show the 

function sampled at a resolution of 32x32x32 to give an interval volum

ces. The tetrahedral mesh was rendered us

 29



contour sensitivity or function gradient by slicing the 4D isosurface. Slicing allows the user to 

quickly move back and forth between different isovalues to see the contour sensitivity. Sections 

of the isosurface that are more sensitive to the isovalue can be seen to change more rapidly 

compared to other sections.  

Figure 9 shows an interval for the hydrogen atom data set. The data set is 128x128x128 in size 

and the resulting interval volume has approximately 797,000 tetrahedra and 142,000 vertices. 

The first figure shows the interval volume rendered using [12] while the second figure is a slice 

of the same interval volume. 

  

  

Figure 10.  Interval volume using two different transfer functions and the two isosurfaces bounding the interval 
volume for the Neghip data set. 
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In order to visualize a larger range of isovalues (α1,α2,…,αn) this idea can be extended to 

tetrahedralize the volume using n steps along the t axis. Thus, the function F(x1,…,xd,t) is given  

by  

F(x1,…,xd,t) = f(x1,…,xd) − (αi (1−t) + αi+1 t)  for .1 ni <≤  

Using 5 steps, we generated the interval volume for the neghip protein molecule data set. The 

data set is of size 64x64x64 and the resulting interval volume consisted of 222,000 tetrahedra 

and 44,600 vertices.  We used the isovalues (110, 120, 130, 140, 150) for αi in the interval 

ered data shows how the structure of isosurface changes with the isovalue. This level of 

detail would be difficult to visualize using conventional direct volume rendering of the volume 

data set. Two slices of the 4D isosurface are also shown.  

 

volume. Figure 10 shows the volume rendered tetrahedral mesh using two different transfer 

functions. Notice the "bands" corresponding to each "interval" in the volume. The volume 

rend

     

     

Figure 11.  Morph from a sphere to a torus and then to two spheres. 
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5.3 Morphing 

Time-varying isosurfaces can also be used as a compressed representation in volume morphing 

applications.  We use the idea from Weigle and Banks [15] of representing a time-varying 

isosurface as a four dimensional isosurface and then slicing that isosurface. For two functions 

f0(x1,…,xd) and  f1(x1,…,xd) and scalar values α0 and  α1, define the (d+1)-dimensional function 

F(x1,…,xd,t) given by: 

F(x1,…,xd,t) = (f0(x1,…,xd) − α0) (1−t) + (f1(x1,…,xd) − α1) t. 

Note that:  

=),,,( 1 txxF dK . 

Construct the piecewise linear approximation to the R  isosurface F(x1,…,xd,t) = 0. At t = 0, 

this surface equals the isosurface f0(x1,…,xd) = α0, while at t = 1 it equals the  isosurface 

f1(x1,…,xd) = α1.  Intermediate surfaces can be constructed by cutting the Rd+1 isosurface by the 

hyperplane xd+1 = d store a separate 

d-dimensional isosurface for each value of t. Computing a single isosurface in Rd+1 is far more 

Figure 11 shows a sequence of frames generated using a time varying function. This function is 

radial at time 0, migrates to a toroidal function at time 1, and then to a union of two radial 

⎩

⎧
=α−
=α−
1for   ),,(
0for   ),,(

111

010

txxf
txxf

d

d

K

K

d+1

⎨

t for various values of t. Alternatively, one could compute an

time and space efficient, however.  

functions at time 2. This technique easily and effortlessly handles topology changes. 
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5.4 Isosurfaces in R5 

Applying the interval volume algorithm in Section 5.2 to time varying data, requires constructing 

an isosurface in five dimensions. An isosurface lookup table for a five dimensional hypercube 

would have 232 entries, which would be prohibitive to pre-compute. Instead of using the table, 

we constructed the isosurface patches directly in each hypercube. 

and 37 for 

timesteps 56 and 57.  This interval volume consisted of 3.3 million simplices and 2.2 million 

vertices for the 256x256x256x2x2 size data set. The average number of simplices per intersected 

5-cube was approximately 24.  

ate isosurface patches in any 

convex polyhedra, not just hypercubes.  In particular, it could be used to build isosurface lookup 

tables for higher dimensional simplices or pyramids. The polyhedra must be convex and all the 

given vertices and edges must be external. We’ve used our algorithm to build isosurface tables 

for various dimensional simplices up to and including dimension 10. Simplices in dimension 10 

have 11 vertices, so the isosurface lookup table has 211 entries. Computation of the lookup table 

ium 4 processor running Linux.  

time varying data sets give an alternative to the traditional visualization of such data sets by 

We constructed an interval volume for the Jet Shockwave between isovalues 27 

5.5 General convex polyhedra 

The algorithm in this paper can be used to automatically gener

took 3 minutes on a 1.5 gigahertz Pent

6. Conclusions 

In this paper, we presented a simple, efficient algorithm for constructing isosurfaces in d-

dimensional grids.  Our algorithm can either be used to generate a lookup table of isosurface 

patches or to directly generate the isosurface patches in each hypercube.  Isosurfaces in R4 of 
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animation through time.  Isosurfaces in R4 and R5 can also be used to construct interval volumes 

of three and four dimensional data, respectively.  Finally, isosurfaces in R4 can be used to morph 

three dimensional volumes. 

8. References 
d R. Crawfis, Isosurfacing in higher dimensions, in T. Ertl, 
 eds., Visualization 2000, IEEE Computer Society Press, 

[2] K. L. Clarkson, K. Mehlhorn and R. Seidel, Four results on randomized incremental 

[5] W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3d surface 
construction algorithm, in M. C. Stone, ed., Computer graphics (Proceedings of 

[6] N. t subdivision of convex polyhedra into tetrahedra, Journal of Graphics 

[7] a and volume coherence for efficient 
visualization of 3d scalar functions, Computer graphics (San Diego Workshop on Volume 

[8] C. Montani, Scateni, R. and Scopigno, R., A modified look-up table for implicit 

7. Acknowledgements 

This work was supported by NSF career grant #ACI- 9876022. We would like to thank Zhi Yao, 

Donglin Liang and Hoseok Kang for contributing to the introductory ideas for this work. We 

would also like to thank Zbigniew Fiedorowicz for helpful consultations on topology. The Jet 

Shockwave data is part of the Advanced Visualization Technology Center’s data repository and 

appears courtesy of the University of Chicago. 

[1] P. Bhaniramka, R. Wenger an
B. Hamann and A. Varshney,
Salt Lake City, Utah, 2000, pp. 267-273. 

constructions, Comput. Geom. Theory Appl., 3 (1993), pp. 185-212. 

[3] Dürst, Additional reference to marching cubes, Computer Graphics, 22 (1988), pp. 72-73. 

[4] I. Fujishiro, Y. Maeda, H. Sato and Y. Takeshima, Volumetric data exploration using 
interval volume, IEEE Transactions on Visualization and Computer Graphics, 2 (June 
1996). 

SIGGRAPH 87), Anaheim, California, July 1987, pp. 163-169. 

Max, Consisten
Tools, 6(3), 2002, pp. 29-36. 

N. Max, P. Hanrahan and R. Crawfis, Are

Visualization), November 1990, pp. 27-33. 

disambiguation of Marching Cubes, Visual Computer, 10 (1994), pp. 353-355. 

 34



[9] G. M. Nielson and B. Hamann, The Asymptotic Decider: Removing the ambiguity in 
Marching Cubes, Visualization '91, 1991, pp. 83-91. 

[10] G. M. Nielson and J. Sung, Interval volume tetrahedrization, in R. Y. a. H. Hagen, ed., 

[11]  temporal hierarchical 
index tree, in D. E. a. H. H. a. H. Rushmeier, ed., IEEE visualization '98, IEEE, October 

[12] P. Shirley, A. Tuchman. A polygonal approximation to direct scalar volume rendering. 

[13] xtraction in time-varying fields using a 
temporal branch-on-need tree (t-bon), in D. E. a. M. G. a. B. Hamann, ed., IEEE 

[14] C. Weigle and D. C. Banks, Complex-valued contour meshing, in R. Y. a. G. M. Nielson, 

[15] C. Weigle and D. C. Banks, Extracting iso-valued features in 4-dimensional scalar fields, 

[16] J. Wilhelms and A. V. Gelder, Multi-dimensional trees for controlled volume rendering 
, 

[17] J. Wilhelms and A. V. Gelder, Octrees for faster isosurface generation, ACM 

 

IEEE Visualization '97, IEEE, November 1997, pp. 221-228. 

H.-W. Shen, Isosurface extraction in time-varying fields using a

1998, pp. 159-166. 

Volume Visualization Workshop, 1990, pp. 63-70. 

P. M. Sutton and C. D. Hansen, Isosurface e

Visualization '99, IEEE, San Francisco, California, October 1999, pp. 147-154. 

ed., IEEE Visualization '96, IEEE, October 1996, pp. 173-180. 

1998 Volume Visualization Symposium, IEEE, October 1998, pp. 103-110. 

and compression, in A. K. a. W. Krueger, ed., 1994 Symposium on Volume Visualization
ACM SIGGRAPH, October 1994, pp. 27-34. 

Transactions on Graphics, 11 (July 1992), pp. 201-227. 

 35


