
Counting Cases in Marching Cubes:
Toward a Generic Algorithm for Producing Substitopes

David C. Banks
Florida State University

Stephen Linton
University of Saint Andrews

Distinct cases of colorings for a square, assigning one color to each vertex.
Top row: seven cases result from using four colors (fluid, bone, tissue, lesion) when applying Separating Surfaces to a square.

Bottom row: thirteen cases result from using three colors (+ – =) when applying Marching Cubes to a square.

Abstract

We describe how to count the cases that arise in a family of vi-
sualization techniques, including Marching Cubes, Sweeping Sim-
plices, Contour Meshing, Interval Volumes, and Separating Sur-
faces. Counting the cases is the first step toward developing a
generic visualization algorithm to produce substitopes (geometric
substitutions of polytopes). We demonstrate the method using a
software system (“GAP”) for computational group theory. The
case-counts are organized into a table that provides a taxonomy of
members of the family; numbers in the table are derived from actual
lists of cases, which are computed by our methods. The calculation
confirms previously reported case-counts for large dimensions that
are too large to check by hand, and predicts the number of cases
that will arise in algorithms that have not yet been invented.

CR Categories: G.2 [Discrete Mathematics]: Combinatorics—
Counting problems; G.4 [Mathematical Software]: Algorithm De-
sign and Analysis;

Keywords: level set, isosurface, orbit, group action, Marching
Cubes, separating surfaces, geometric substitution, substitope.

1 The MC family of algorithms

The Marching Cubes (MC) algorithm was presented by Lorensen
and Cline in 1987 [Lorensen and Cline 1987] as an exhaustive-
search algorithm that generates a level set (isosurface) of a scalar
function f . The algorithm iterates over each cube tesselating
a compact subvolume of R

3 on which the function f is defined.

The sign of f (vi)− c is evaluated at the eight vertices vi of a cube,
where c is some user-defined constant (the isovalue). Neglecting
the degenerate case where the sign is exactly zero, each of the eight
vertices can be in one of two states: negative or positive (black
or white). These produce 28 = 256 patterns. Many of these pat-
terns turn out to be equivalent under the symmetries of the cube
(such as rotation or mirror-reflection). Other patterns are equiva-
lent under reversal of colors (for example, all-black being equiva-
lent to all-white). Through patient brute-force organization of the
256 patterns, one discovers there to be fourteen or fifteen equiva-
lence classes of the colorings. Among the fifteen cases is a chiral
pair that are mirror images of each other, so these two are equivalent
if orientation is ignored.

In the MC algorithm, the pattern of a given cube is matched to
one of these fourteen or fifteen cases (via a look-up table), and a
pre-determined arrangement of polygons is fitted to meet the con-
straint f (p)− c = 0 for points p within the cube. In other words,
the cube is replaced by zero or more triangles approximating the
level set. Examples are illustrated in figure 1, showing one of the
geometric substitutions in a 2-simplex, a 3-simplex, a 2-cube, and
a 3-cube.

1.1 Variations on MC

Since its original publication, MC has inspired numerous modifi-
cations and extensions. These variations suggest that a family of
algorithms exists, whose members are distinguished by a few key
parameters. A selection of these variations is surveyed below.

Variation of the shape. If a 3-simplex (tetrahedron), rather
than a 3-cube, tiles the domain, then the scalar function is evalu-
ated at only four vertices. Bloomenthal presented this approach in
1988 [Bloomenthal 1988], and Shen and Johnson called it “Sweep-
ing Simplices” in their 1995 paper [Shen and Johnson 1995]. One
advantage of using tetrahedra rather than cubes is that the analy-
sis is simpler: only three cases arise for the vertex colorings of a
tetrahedron, rather than fourteen for a cube.

Variation of the dimension. The two-dimensional version of
MC is popularly called “Marching Squares,” which provides a sim-
ple motivation for the three dimensional case. Although the algo-
rithm is unpublished, it can easily be derived. One can find many
descriptions of Marching Squares by searching the World Wide

Web. It is described, for example, in slides for a course on Data
Visualization by Rheingans at UMBC, on Computer Graphics by
Pfenning at Carnegie Mellon, on Computergraphik by Hanisch at
Universität Tübingen, on Advanced Graphics by Dodgson at the
University of Cambridge, on Informatik in der Medizin by Gaugler
at Universität Karlsruhe, and many others.

When the MC algorithm is extended to dimension n = 4, two
problems arise. First, the number of vertex patterns is large
(65,536), so enumerating them all by hand is unrealistic. Second, it
becomes quite difficult to perform the mental rotations to determine
when two color patterns of a 4-cube are equivalent. As Lorensen
and Cline pointed out in the case of the 3-cube, “triangulating the
256 cases is possible but error prone. ... we reduced the problem
to 14 patterns by inspection” (page 165). Although this approach
to counting cases works for Marching Squares, it does not scale to
higher dimensions.

Recently, several researchers have tackled the case-counting
problem for the four-dimensional case in different ways. In 1996,
Weigle and Banks [Weigle and Banks 1996] demonstrated a tech-
nique (Contour Meshing) that divides the 4-cube into 4-simplexes.
They observed that counting cases for vertex colorings is much
simpler for the 4-simplex than for the 4-cube, and described how
to substitute zero or more 3-simplexes to approximate a level set
within a 4-simplex being traversed. In 1999, Roberts and Hill
[Roberts and Hill 1999] counted 272 cases for the 4-cube by com-
putation, numerically tagging equivalent cases. In 2000, Bhani-
ramka, Wenger, and Crawfis [Bhaniramka et al. 2000] followed a
similar approach, announcing the existence of 222 cases for the 4-
cube.

Variation of the shape’s symmetry. The symmetries of a figure
are due to transformations that preserve its shape and, perhaps, ori-
entation. If one considers orientation (clockwise versus a counter-
clockwise) to be irrelevant, one loses distinctions between certain
colorings of squares. So the number of cases depends in part on
the choice one makes when considering symmetries of the shape.
The original MC deals with two cases that are “chiral,” that is, not
equivalent to their mirror images under the orientation-preserving
symmetries of the cube. Accordingly the problem reduces to fif-
teen cases under orientation-preserving symmetries and to fourteen
cases under the larger group which includes mirror reflection.

An analogous situation exists in every dimension – the group of
orientation-preserving symmetries is, in general, only half as large
as the group of all symmetries. So there may be figures that are
equivalent under the larger group but not the smaller one. This is
the reason that Roberts and Hill found a larger number of cases
than Bhaniramka, Wenger, and Crawfis (272 versus 222 cases) –

Figure 1: Examples of geometric substitution rules in March-
ing Cubes, generalized to n-simplexes and n-cubes, for n ∈ [2..3].
The colors correspond to sign of f (vi)− c at each vertex such as
black for negative and white for positive. Upper left: 2-simplex
replaced by line segment. Upper right: 3-simplex replaced by tri-
angle. Lower left: 2-cube replaced by line segment. Lower right:
3-cube replaced by triangle.

they were admitting a smaller symmetry group.
Variation of the number of colors. The works described above

all share the goal of producing a level set of a scalar-valued func-
tion. But in 1997 Nielson and Sung showed that this strategy of
counting cases and using pre-computed geometry can be used for
other purposes. In their “Interval Volumes” [Nielson and Sung
1997], they generated subvolumes of a domain corresponding to the
locus of points x satisfying x : a < f (x) < b. In the arena of com-
putational geometry, this subvolume is represented by the Boolean
intersection La ∩Lb, where La and Lb are the subvolumes in which
a < f (x) and f (x) < b, respectively. Previously this constructive
solid geometry (CSG) problem had been approached in a totally
different way by Thibault and Naylor in 1987 using a binary space
partitioning (BSP) tree [Thibault and Naylor 1987]. Nielson and
Sung’s novel insight was that three discrete situations or “colors”
can prevail at a vertex (i.e., f < a; a < f < b; b < f), leading to fif-
teen cases of vertex colorings of a tetrahedron. Figure 2 (top row)
shows an example of the geometric substitution in Interval Volumes
for a 2-simplex and a 3-simplex. They could have further reduced
the cases, as Lorensen and Cline did, by treating as equivalent any
two figures whose coloring schemes are reversed, i.e., changing the
symmetry of the colors. Hege and colleagues also considered using
multiple colors, which they describe in two technical reports [Hege
et al. December 1997] [Stalling et al. December 1998]; their im-
plementation is the basis of the “amira” visualization tool’s GMC
module [AMI n. d.], which has been used to simulate rat dissection
in a virtual environment [Montgomery et al. 2001].

Weigle and Banks also considered the effect of changing the
number of colors. They discussed, but did not enumerate, the cases
where the function is exactly zero at a vertex of a simplex, repre-
senting a third “color.” In Marching Squares, this third color leads
to thirteen cases. These are illustrated at the top of this paper (bot-
tom row of figure). Until now there has been no published case
count for MC with this third color included; we calculate the solu-
tion and report it in section 5.

Variation of the colors’ symmetry. In 1997, Nielson and
Franke presented a technique for generating a separating surface
[Nielson and Franke 1997]. A separating surface is the boundary
between subvolumes, each of which has a discrete color or type.
For a 3-simplex, it suffices to consider four available colors for the
four vertices, Nielson and Franke treated as equivalent any two ver-
tex colorings where the colors of one figure are a permutation of the
colors of the other. For example, a tetrahedron with two vertices of
color1 and two of color2 is equivalent to the case of two vertices of
color3 and two of color4. Their paper lists four of the five possible
cases (the remaining case being the trivial case where all vertices

Figure 2: Examples of geometric substitution rules. For Interval
Volumes (upper row), Colors denote intervals such as white for (-∞,
a), gray for (a, b), and black for (b, ∞). Left: 2-simplex replaced
by line segment. Right: 3-simplex replaced by triangles. For Sepa-
rating Surfaces (lower row), colors denote set membership such as
fluid, bone, tissue, lesion. Left: three-colored 2-simplex replaced
by line segments. Right: two-colored 3-simplex replaced by trian-
gles.

have the same color). Figure 2 (bottom row) shows an example of
geometric substitution in Separating Surfaces for a 2-simplex and
a 3-simplex. Lorensen and Cline reduced the number of cases by
considering equivalences induced by the reversal of color. By com-
parison, Nielson and Franke considered color symmetry to include
not just reversal of an ordered set of colors, but all possible permu-
tations of colors. The important role of groups acting on shapes and
colors is noted in Hege’s abstract [Hege May 25-29, 1998] from a
seminar at Dagstuhl.

1.2 Generic Marching Cubes

The techniques surveyed in section 1.1 share a basic approach but
vary in detail. The basic approach is as follows.

1. A polytope (whether a cube or a tetrahedron or a 4-cube or a
4-simplex) in some domain is inspected.

2. Each vertex vi is assigned a color f (vi), as dictated by some user
interaction such as moving a slider bar to select a different isovalue.

3. (Optional) The polytope coloring is matched to representative
case via a look-up table.

4. Geometric substitution is performed, replacing the polytope with
some other geometry, e.g., to represent an isosurface.

Geometric Substitution. Geometric substitution was used by
Lindenmayer in 1971 [Lindenmayer 1971] and by Prusinkiewicz
in 1990 [Prusinkiewicz and Lindenmayer 1990] to model natu-
ral shapes; Glassner used geometric substitution to create com-
plex shapes [Glassner 1992]. Geometric substitution was used to
simplify polygonal meshes by Lounsbery, DeRose, and Warren
[Lounsbery et al. 1997] and by Kobbelt, Campagna, and Seidel
[Kobbelt et al. 1998], whose figure 1 shows the explicit use of a ge-
ometric substitution rule. So geometric substitution is by no means
exclusive to MC. There is no commonly used name for polytopes
that result from geometric substitution of other polytopes; we pro-
pose calling them substitopes.

Weigle and Banks demonstrated with Contour Meshing that the
recursive nature of substitopes permits an MC-style technique to be
applied repeatedly to a dataset: they reduced the dimension from
four to three to two, generating surfaces in R

4.
Acceleration Schemes. Some, but not all, of the variations on

MC pre-compute a look-up table, which serves as an acceleration
technique when the geometric substitution is applied; the geometric
substitution can also be performed procedurally.

Another way to accelerate the algorithm is to skip over the triv-
ial substitutions rather than to employ an exhaustive traversal of the
domain. Traversing the domain is the most inefficient portion of
these algorithms, because in practice most polytopes are replaced

comment ĝ ĝ (s) g
identity () (v1,v2,v3,v4) ()

swap (x y) (v1,v3,v2,v4) (2 3)
flip (x -x) (v2,v1,v4,v3) (1 2) (3 4)
flip (y -y) (v3,v4,v1,v2) (1 3) (2 4)

swap flip (x -x)(x y) (v3,v1,v4,v2) (1 2 4 3)
swap flip (y -y)(x y) (v2,v4,v1,v3) (1 3 4 2)

swap flip flip (y -y)(x -x)(x y) (v4,v2,v3,v1) (1 4)
flip (y -y)(x -x) (v4,v3,v2,v1) (1 4) (2 3)

Figure 3: Permutations acting on axes and vertices. Column ĝ
gives permutations of x and y axes. Column ĝ(s) shows the effect
of a permutation on vertices of the square s=(v1,v2,v3,v4). Column
g gives corresponding permutations of vertices. Permutations are
written as cycles, acting by composition from right to left.

by the empty set. The performance of MC improves considerably
when a spatial data structure is available that delivers the subdomain
containing only polytopes for which the geometric substitution is
non-trivial. Shen, Hansen, Livnat, and Johnson showed in 1997
how a hierarchical data structure vastly improves the speed of the
algorithm by spending most of the computation on the non-trivial
replacements [Shen et al. 1997]. Their work built on previous work
by Wilhems and Van Gelder that imposed octrees on the spatial
domain [Wilhelms and Gelder 1992], and work by Gallagher [Gal-
lagher 1991] that inverted the spatial database to support queries
based on the value of the scalar field, which were incorporated into
Sweeping Simplices.

Parameters needed for counting cases. As the variations listed
in section 1.1 suggest, there are five key parameters that determine
the number of cases that arise for colored polytopes. The number
of cases is independent of the actual geometric substitution that is
employed. The five parameters are

1. the symmetry applied to the polytope;
2. the symmetry applied to the colors;
3. the choice of polytope from the set {n-simplex, n-cube};
4. the dimension n of the polytope; and
5. the number k of colors.

The remainder of this paper explains how to count cases by using
group theory: orbits of groups acting on sets are enumerated using
a computational algebra package. Section 2 describes the aspects of
group theory that are required for solving the case-counting prob-
lem. Section 3 describes how a tool for computational group theory
can be programmed to count cases and shows the results of the cal-
culations organized into a table. Section 5 indicates where various
Marching-Cubes-style algorithms fit into this new taxonomy.

2 Action of a Group on a Set

For years mathematicians have studied problems similar to count-
ing cases of polytope colorings. In order for us to apply their results
we first convert the problem of counting cases in various visualiza-
tion algorithms into the appropriate mathematical language. This
task requires the use of group theory, described briefly below.

The theory of groups owes its name to a paper published in 1854
by Arthur Cayley [Cayley 1854], “On the theory of groups.” A
group is a set with a binary operation satisfying four criteria:

1. the set is closed under the operation;
2. the operation obeys the associative law;
3. the set has an identity element (denoted by the symbol 1); and
4. each element has an inverse.

Figure 4: Permutations from figure 3 acting on the x and y axes
and on the square ŝ. Top row: first four permutations applied to ŝ.
Bottom row: next four permutations applied to ŝ. Note that half of
the permutations preserve orientation, one on the top row and three
on the bottom.

Often the appearance of the binary operation is suppressed, so
a∗b is written as ab, and a∗a is written as a2. More details about
groups can be found in textbooks on modern algebra, such as the
popular one by Fraleigh [Fraleigh 1998]. Familiar examples of
groups include integers with the addition operation, and rational
numbers (without zero) under multiplication.

In creating the table for MC, Lorensen and Cline produced a
set of 256 cube colorings. Then they considered the action of a
symmetry group on the 256 cube colorings. The group operation is
composition: a permutation (of vertices and colors) composed with
another permutation is again a permutation, satisfying requirement
(1) of a group, namely, closure. One can readily determine that
permutations also meet the other three criteria for being a group.

A group acts on a set X by mapping it to itself in a particular
kind of way. The requirements of a group action are given below.

Definition. A group G is said to act on a set X if (1) the iden-
tity fixes every element of X i.e., 1x = x, and (2) the associative
law holds; i.e, (g2g1)x = g2(g1x), where 1,g1,g2 ∈ G, and x ∈ X .
(Note: some authors apply actions from the right rather than the
left, thus writing xg1g2.)

Example. The symmetric group S2 of all permutations of coordi-
nates x and y acts on R

2.

S2 = {(x → x, y → y), (x → y, y → x)}

The first (identity) element leaves the x and y coordinates fixed; the
second element sends x to y and y to x, producing a reflection about
a diagonal line. Both actions preserve the shape of an axis-aligned
square centered at the origin.

The usual convention when writing a permutation is to list the cy-
cles it induces on elements of the set. For example, the permutation
(x → y, y → x) sends x to y which goes to x; the permutation is
denoted by the cycle (x y). The identity mapping is, by conven-
tion, denoted () rather than (x)(y), and trivial cycles like (x) and
(y) are suppressed when the permutation is written out. Thus the
symmetric group on two letters is the set with two permutations:
the identity, written (), and the swap, written (x y).

The shape of the square is also preserved by the action of mir-
ror reflections (flips) exchanging x with -x or y with -y. These flip
groups contain the permutations {(),(x -x)} and {(),(y -y)}; each
flip group is equivalent (isomorphic) to the group S2. Their direct
product contains all four combinations of flip operations.

S2 ×S2 = { (), (x -x), (y -y), (x -x)(y -y) }

These four operations correspond to the identity, a flip of the x-axis,
a flip of the y-axis, and flips of both axes.

2.1 Group Acting on the Set of Vertices

The full set of symmetries on an n-cube is the wreath product (writ-
ten o) of a flip with the permutations. We let shapeGroup represent
the symmetry group acting on a polytope, so shapeGroup = S2 oSn
for the cube. The wreath product is too complicated to describe
here; for its definition see the algebra textbook by Cohn [Cohn
1984].

One particular geometric incarnation of a square is ŝ, which has
vertices labeled as v1 = (-1, -1), v2 = (1, -1), v3 = (-1, 1), and v4 =
(1, 1), corresponding to the lower left, lower right, upper left, and
upper right vertices of a square centered at the origin. Squares, for
the purpose of counting cases, result from any action of shapeGroup
on this reference square ŝ. This observation is formalized below.

Definition. A standard square is the tuple ŝ=(v1,v2,v3,v4) and its
image under any action of shapeGroup. That is, s is a standard
square if and only if s = gŝ for some g ∈ shapeGroup.

Example. The element (x -x) of shapeGroup acts on the square,
flipping it in the x direction. So (x -x)(ŝ) = (v2,v1,v4,v3).

Although we defined shapeGroup in terms of its actions on the
plane (in particular, its actions on the positive and negative axes),
we would prefer to think of it in terms of its actions on vertices. In
the example above, the flip (x -x) puts vertex v1 into the second
slot and puts v2 into the first slot, since negating the x coordinates
swaps the bottom two vertices. By looking at the tuple on the right
hand side, one can deduce what permutation acted on ŝ: an out-
of-position vertex must have been permuted. So if vi is put into
position j, then the permutation maps i → j.

Example. Under the action of (x -x) on the plane, vertex v1 in
the square s moves to position 2 and vertex v2 moves to position 1.
Likewise, vertices v3 and v4 swap positions in the tuple. The group
element (x -x) can be re-labeled accordingly in terms of its effect
on the vertices of ŝ, namely (1 2)(3 4).

This re-labeling is important in section 3, which describes how the
computational algebra package “GAP” can create shapeGroup au-
tomatically.

All eight actions of shapeGroup are listed in figure 3. In the
left-most column of the table in figure 3, element ĝ ∈ shapeGroup
is written in terms of the coordinates x and y. The middle column
shows its action on the square ŝ = (v1,v2,v3,v4). The right hand
column re-names the group element as g, which acts on the vertices
of the square.

2.2 Group Acting on the Set of Colors

In counting cases for MC, we see that one group acts on the vertices
of a square by moving them around; another group acts on the set of
colors by permuting them. We call the second group colorGroup.
A vertex vi in a square can be labeled with two symbols + and -
or, equivalently, can be marked with two colors color1 and color2
to indicate the sign of f (v)− c, where c is the isovalue. The color
of vertex vi is determined by a coloring function χ which maps
vertices to colors. If σ̂ is a permutation on the colors, then colori is
mapped to the color σ̂(colori). The notation is simplified if we use
the permutation σ that maps one color index to another color index.
Thus

σ̂(colori) = colorσ(i)

Example. The permutation σ = (1 2) acts as follows on the color
indexes 1 and 2.

(1 2) (1) = 2 i.e., σ of 1 is 2

(1 2) (2) = 1 i.e., σ of 2 is 1

So there is one group (i.e., shapeGroup) that acts on the vertices
of a square, and another (i.e., colorGroup = S2) that acts on the
colors. Together they act on the combinatorial set of all 24 = 16
colorings of the square. The next section describes this action.

2.3 Group Acting on the Set of Colorings

Having defined actions on vertices and on colors, we can now define
a group action on colored vertices. It is convenient to write χ(vi) as
χi, suppressing the v, so that a coloring of the square can be written
in the compact form given below.

Definition. A coloring of the square is the 4-tuple of colors
(χ1,χ2,χ3,χ4) and its permutations by shapeGroup × colorGroup.

Examples. Suppose color1 is purple and color2 is orange. The
coloring (1, 1, 1, 1) has all purple vertices. The coloring (1, 1, 2, 2)
has purple for the bottom two vertices and orange for the top two.

Figure 5: Orbits of shapeGroup × colorGroup acting on colorings
of the square. In each row, any coloring can be mapped to any other
via the action of some element (g,σ) of coloringGroup.

The coloring (1, 2, 1, 2) has purple on the left side and orange on
the right.

The direct product shapeGroup × colorGroup acts on a coloring
in the obvious way: an element of shapeGroup shuffles the order of
the four colors, and an element of colorGroup permutes the value
of the colors. We call this product coloringGroup. An element h of
coloringGroup has the form (g,σ), where g acts on vertices and σ
acts on colors.

Example. The action of ((2 3), σ̂) on a coloring is

((2 3), σ̂) (χ1,χ2,χ3,χ4) = (σ̂(χ1), σ̂(χ3), σ̂(χ2), σ̂(χ4))

The two middle terms get switched, the result of permutation (2 3)
acting on the tuple, and the colors get permuted.

Representing colori by its subscript i allows the action on the col-
oring (1, 1, 2, 1) to be written as follows, using σ rather than σ̂ .

((2 3),σ) (1,1,2,1) = (σ(1),σ(2),σ(1),σ(1))

Again the middle two elements get swapped by (2 3) and σ is ap-
plied to the color indexes. We next show an example with a specific
permutation from shapeGroup and a specific permutation from col-
orGroup acting on a specific coloring.

Example. The group element ((2 3), (1 2)) acts on the coloring
(1, 1, 2, 1) as follows.

((1 2)(1), (1 2)(2), (1 2)(1), (1 2)(1)) = (2,1,2,2)

So the middle elements of the tuple get swapped and all the colors
get reversed.

Two colorings x1 and x2 are said to be equivalent if a group ac-
tion maps one into the other (by permuting the vertices and colors).
For example, all eight of the squares are equivalent whose vertices
are three black and one white or one black and three white. Each of
these squares can be mapped to any other via the action of some el-
ement of coloringGroup. Each equivalence class of colorings forms
an orbit, which is defined below.

Definition. The orbit of the group G acting on the coloring x1 is
the set of colorings {x2 : gx1 = x2, for some g ∈ G}.

As figure 5 shows, coloringGroup, acting on the 16 colorings
of a square, has four orbits: an orbit with 2 elements (all colors
the same), an orbit with 8 elements (a singleton color), an orbit
with 4 elements (adjacent pairs of a color), and another orbit with
2 elements (diagonal pairs of a color). Figure 6 shows these same
four orbits, written in the notation of a four-tuple of vertex colors
as in figure 4; the goal of section 3 is to produce this numerical
depiction of the orbits as tuples.

(1, 1, 1, 1) (2, 2, 2, 2)

(1, 1, 1, 2) (1, 1, 2, 1) (2, 1, 1, 1) (1, 2, 1, 1)
(2, 2, 2, 1) (2, 2, 1, 2) (1, 2, 2, 2) (2, 1, 2, 2)

(1, 1, 2, 2) (2, 2, 1, 1) (1, 2, 1, 2) (2, 1, 2, 1)

(1, 2, 2, 1) (2, 1, 1, 2)

Figure 6: Orbits of shapeGroup × colorGroup acting on color-
ings of the square. These encodings of colorings correspond to the
images in figure 5, where white=1 and black=2.

For two-dimensional Marching Squares, counting orbits of prod-
ucts of groups acting on colorings of vertices is no improvement
over drawing a mere sixteen figures by hand and inspecting them for
equivalence. However, by casting the problem in terms of combina-
torial algebra we can exploit powerful computational tools to count
the orbits for us in situations where the large dimension or large
combination of colorings makes hand-enumeration overwhelming.

In this section we used the square as an example of the process of
counting orbits of group actions on colorings, but our goal is to con-
sider other shapes as well (such as triangles and tetrahedra), other
sets of colors, and other kinds of groups acting on each of them.
Before generalizing the algebraic details, we first describe a com-
putational algebra package and demonstrate its ability to enumerate
the number of cases for a square.

3 Computational Group Theory

Many practical questions in group theory can be answered by sheer
calculation. Computational group theory is concerned with the nu-
merical solution of problems in group theory, a notable example
being the solutions to Rubik’s cube. An article by Seress gives an
overview of computational group theory [Seress 1854].

Two numerical packages for computational group theory are
widely used: GAP (Groups, Algorithms, and Programming), which
is free software, and Magma, costing about $US 1000 for a sin-
gle license at the time of this writing. For more details about
these packages, see “GAP – Groups, Algorithms and Program-
ming” [Schönert 1994] and “An Introduction to MAGMA” [Cannon
and Playoust 1993].

Practitioners of visualization, and other casual users of compu-
tational group theory, are likely to choose GAP because it is free
software. So we describe how to use GAP to solve the particular
problem of counting cases for a two-colored square. (Users should
be aware that GAP uses the convention of applying group actions
from the right, as noted in the definition of action in section 2.)

Below is a transcript of an interactive session using GAP, slightly
edited for formatting purposes. The user input is shown in sans-
serif font, and GAP’s reply is shown in the fixed-width type-
writer font. We begin by creating shapeGroup, colorGroup,
and coloringGroup for dimension n with k colors (note: the dou-
ble semicolons suppress feedback from GAP).

n := 2;;
k := 2;;
shapeGroup := WreathProductProductAction (SymmetricGroup(2),

SymmetricGroup(n));;
colorGroup := Group (PermList (Reversed ([1..k])));;
coloringGroup := DirectProduct (shapeGroup, colorGroup);;

Next we construct projection operators to extract the two groups

back from their direct product.

shapeProjection := Projection (coloringGroup, 1);;
colorProjection := Projection (coloringGroup, 2);;

Next we generate the list of colors and colorings, allowing GAP to
answer back with its results.

numVerts := 2ˆn;;
coloredVerts := ListWithIdenticalEntries (numVerts, [1..k]);
[[1..2], [1..2], [1..2], [1..2]]
colorings := Cartesian (coloredVerts);

[[1,1,1,1], [1,1,1,2], [1,1,2,1], [1,1,2,2],
[1,2,1,1], [1,2,1,2], [1,2,2,1], [1,2,2,2],
[2,1,1,1], [2,1,1,2], [2,1,2,1], [2,1,2,2],
[2,2,1,1], [2,2,1,2], [2,2,2,1], [2,2,2,2]]

Then we define a function to produce the action of a group element
on a coloring. The projections of element (g,σ) of coloringGroup
yield the components g and σ that shuffle the order of the tuple and
permute the colors.

action := function (coloring, groupElement)
local shapePerm, colorPerm, shuffled, result;
shapePerm := Image (shapeProjection, groupElement);
colorPerm := Image (colorProjection, groupElement);
shuffled := Permuted (coloring, shapePerm);
result := OnTuples (shuffled, colorPerm);
return result;

end;;

We now let GAP produce the orbits and count how many there are.
Notice that these orbits agree exactly with the tuples we computed
in figure 6.

orbits := OrbitsDomain (coloringGroup, colorings, action);
[[[1,1,1,1], [2,2,2,2]],

[[1,1,1,2], [1,1,2,1], [1,2,1,1], [2,2,2,1],
[2,1,1,1], [2,2,1,2], [2,1,2,2], [1,2,2,2]],

[[1,1,2,2], [2,2,1,1], [1,2,1,2], [2,1,2,1]],

[[1,2,2,1], [2,1,1,2]]]
Length (orbits);
4

This demonstration shows how GAP can enumerate the orbits of a
group action in Marching Squares, and thus to determine the num-
ber of cases for polytope colorings that arise in the two-dimensional
version of Marching Cubes. The variable names suggest how to ex-
tend this example to handle other cases; for example, one can sim-
ply change the value of n from 2 to 3 to enumerate the orbits and
count them for MC. One can also change the definition of shape-
Group or colorGroup at the beginning of the code to generate the
orbits for still other colorings. The next section describes how this
approach can be extended to handle additional geometries and sym-
metries, constructing a complete taxonomy of case-counts for sub-
stitopes.

4 Taxonomy of Substitopes

In order to extend the case-counting capabilities of our demonstra-
tion GAP program, we must express the shape groups and color
groups for various substitopes. The colorings of interest to us are
the ones that arise in algorithms like MC. The shape groups involve
simplexes and cubes, with orientation-preserving (direct) symmetry
and with full symmetry acting on them. The color groups include
reversal and full permutation.

Shape groups. A polytope in n-dimensional space is acted on
by symmetries of that space. The orthogonal group O(n), consisting

of n× n orthogonal matrices, forms a continuous group under ma-
trix multiplication. This group contains finite subgroups that pro-
duce the symmetries of the n-simplex and of the n-cube. The sym-
metries of the simplex form a subgroup of O(n) isomorphic to Sn+1,
the symmetric group permuting the n+1 vertices of the n-simplex.
The symmetries of the cube form a subgroup of O(n) isomorphic to
S2 oSn, also known as the hyperoctahedral group. These two groups
are the full symmetry groups of the simplex and the cube.

The set of orientation-preserving symmetries of R
n forms the

special orthogonal group SO(n), a subgroup of O(n). Its intersec-
tion with a full symmetry group, called a direct symmetry, yields the
orientation-preserving symmetries on the simplex or the cube. The
direct symmetry group for the n-simplex is the alternating group
An. The direct symmetry group for the n-cube is the direct-cube
group.

Color groups In the examples cited in Section 1.1 above, vari-
ations on Marching Cubes have employed three different groups to
permute color indexes. These are listed below.

(1) The simplest color group is the identity group, which leaves
each index fixed. Nielson and Sung considered the ordering of the
colors to be significant, meaning the identity group Idk acted on k
colors.

(2) The reversal group Revk on the numbers {1..k} swaps the
first with the last element, the second with the next-to-last element,
and so forth. Lorensen and Cline used the reversal group to re-
order two colors. The group Revk contains only two permutations:
the identity permutation () and the permutation ρ defined below.

ρ =

{

(1 k)(2 k-1)..(k
2

k+2
2) if k is even

(1 k)(2 k-1)..(k-1
2

k+3
2) if k is odd

(3) Nielson and Franke considered two color orderings to be
equivalent no matter how they were permuted, thereby allowing the
symmetric group Sk to act on the k colors.

So we see in the literature variations on MC in which shape-
Group is one of the two types of symmetry {direct, full} acting on
a polytope p ∈ {simplex, cube}, and colorGroup is one of the three
groups {Idk, Revk, Sk}. We programmed GAP to fill in a table (ta-
ble 1) of combinations of these parameters, with both the dimension
n and the number k of colors in the range [1..4]. Each entry in the ta-
ble gives the number of cases (orbits) for the corresponding colored
polytopes. A table entry noted in boldface indicates a combination
of parameters that was at work in any of six algorithms surveyed in
section 1.1. The GAP source code orbitTable.gap that gen-
erated the table is freely available for download at the GAP Web
site.

The table is easily computed on a desktop machine for n and k in
the range [1..3]. For this range, we measured the table generation
time at about ten seconds on a desktop machine with 1 GB mem-
ory and a 1.7 GHz Intel Xeon processor. But the memory demands
increase significantly for the 4-cube with more than two colors; cal-
culating the orbits exceeded the capacity of our desktop machine. In
order to enumerate the six coloring groups acting on the 4-cube with
3 colors, we used the parallel GAP package ParGAP by Gene Coop-
erman [Cooperman 1999] and ran it on a Beowulf cluster [Sterling
et al. 1995] composed of 85 nodes, each node having dual 2.4GHz
processors, connected by 100 Mb/s Ethernet. Using two processes
per node (with 0.5 GB of workspace per process) on twelve nodes,
calculating each of the six table entries for the 4-cube with three
colors took about 300-500 seconds of wall-clock time, and about
1000-3000 seconds of CPU time. In other words, calculating the
six cases n = 4, k = 3 for the cube took more than a thousand times
longer than calculating the 54 cases where n ≤ 4 and k ≤ 3.

Calculating the case-counts for four colors (k = 4) exceeded even
the memory capacity of our parallel version, although it appears that
the ParGAP version of our code could be further modified to exploit

n-simplex n-cube

n\
k 1 2 3 4 n\

k 1 2 3 4

1 1 4 9 16 (direct, Idk) 1 1 4 9 16
2 1 4 11 24 2 1 6 24 70
3 1 5 15 36 3 1 23 333 2916
4 1 6 21 56 4 1 496 230076 >22000000

1 2 5 8 (direct, Revk) 1 2 5 8
1 2 6 12 1 4 14 38
1 3 9 20 1 115 183 1508
1 3 12 28 1 2272 115606 >11000000

1 2 2 2 (direct, Sk) 1 2 2 2
1 2 3 3 1 4 6 7
1 3 4 5 1 15 72 166
1 3 5 6 1 272 38914 >930000

1 3 6 10 (full, Idk) 1 3 6 10
1 4 10 20 1 6 21 55
1 5 315 35 1 22 267 1996
1 6 21 56 1 402 132102 >11000000

1 2 4 6 (full, Revk) 1 2 4 6
1 2 6 10 1 4 713 31
1 43 79 19 1 114 7147 71036
1 53 5,712 28 1 2222 766524 >5600000

1 2 2 2 (full, Sk) 1 2 2 2
1 2 3 3 1 4 6 77
1 3 4 65 1 14 58 7124
1 3 5 6 1 222 22490 >460000

Table 1: Table of case counts for substitopes. Each of the twelve
sub-tables contains the case-counts for the tuple (shapeGroup, col-
orGroup, polytope, n, k), with n and k in the range [1..4]. Each
row of sub-tables shares (shapeGroup, colorGroup), as indicated in
the middle. The left column contains sub-tables for simplexes; the
right column for cubes. Case-counts specifically mentioned in this
paper are highlighted in boldface. 1Marching Cubes. 2Marching
Hypercubes. 3Interval Volume. 4Sweeping Simplices. 5Contour
Meshing. 6Separating Surfaces. 7Counting Cases (this paper).

finer-grain parallelism and thus satisfy the memory constraint. We
therefore merely estimate a lower bound for each of these entries,
based on the fact that no orbit can be bigger than the order of the
group.

5 Summary

Marching Cubes (MC), and algorithms like it, share the essential
feature of applying geometric substitution to polytope colorings to
produce substitopes. These algorithms vary in the choice of groups
acting on vertices and on colors, in the choice of polytope, and
in the choice of dimension n and number of colors k. We pre-
sented a technique for enumerating the cases that arise in count-
ing the cases of polytope colorings, and showed how this tech-
nique can be applied using software for computational group theory
software (called GAP). One benefit of a tool for computational al-
gebra is that it independently confirms the results announced by
Bhaniramka, Wenger, and Crawfis [Bhaniramka et al. 2000] and by
Roberts and Hill [Roberts and Hill 1999] for counting the cases in
four-dimensional MC, results that cannot reasonably be checked by
hand. Moreover it permits us to predict the size of tables for MC
variants that have yet to be implemented. The following examples
illustrate the predictive utility of the table.

Example. What happens when the algorithm for Separating Sur-
faces is extended to 3-cubes with four colors? Consulting the table

(full, Sk, n-cube, 3, 4) we see that 124 cases arise. For the square
(n = 2) with four colors, only seven cases arise; they are illustrated
in the diagram at the top of the paper (top row), with a possible
interpretation of colors that might be derived from medical data.

Example. What happens when MC is extended to handle the
degenerate situation where f (vi)− c = 0 at vertices vi? This case
would almost never happen (that is, would occur on a set with mea-
sure zero) if the scalar function were truly real-valued. But in prac-
tice one routinely encounters integer-valued isosurfaces of integer-
valued datasets, so a level set may, with non-zero probability, pass
through many grid points. When the set of corresponding colors
is augmented to include the degenerate case (full, Revk, n-cube, 3,
3) we see that 147 cases arise. For the square (n = 2) with three
colors, only 13 cases arise; they are illustrated in the lower part of
the diagram at the top of this paper (bottom row).

What happens when Marching Hypercubes is extended to handle
the degenerate situation where f (vi)−c = 0? The table predicts that
for (full, Revk, n-cube, 4, {2,3}) the number of cases explodes from
222 to 66,524.

Example. Weigle and Banks briefly discussed the degenerate sit-
uation where f (vi)−c = 0 for n-simplexes in Contour Meshing, but
did not enumerate all the cases. How many cases would they have
found for the 4-simplex? The table predicts that for (full, Revk,
n-simplex, 4, 3) there are 12 cases.

Example. What happens when Interval Volumes is applied to
cubes instead of tetrahedra? The table predicts that for (full, Revk,
n-cube, 3, 3) there are 147 cases.

What happens when an interval is added, creating the four “col-
ors” (−∞,a), (a,b), (b,c), and (c,∞)? Letting k = 4, we find the
table predicts that for (full, Revk, {n-simplex, n-cube}, 3, 4) there
are 19 cases for the tetrahedron and 1036 cases for the cube.

These examples illustrate how table 1 can be used to determine
the number of cases required to implement a variation on exist-
ing MC-style algorithms. The table also imposes a clear taxon-
omy on this collection of algorithms where no such organization
has heretofore been suggested. This indicates that a very deep, very
generic underlying algorithm for visualization exists, which can be
incarnated in many different ways. The table also shows the in-
timate connection between group theory, geometry, and visualiza-
tion. The availability of GAP, a free software package for com-
putational group theory, should encourage the research community
to explore group actions for generating substitopes in novel ways;
not only can GAP count the number of cases (orbits) automatically,
but it can also enumerate the members of each orbit. This capabil-
ity eliminates a very difficult part of any substitope algorithm. We
look forward to the novel applications that this general framework
invites.

We are actively working on ways to expand the table to larger
values of n and k, and to determine the asymptotic case-counts of
certain coloring groups as functions of n and k. We are also ac-
tively exploring ways in which colored polytopes might arise in
other types of data and in other visualization techniques.

ACKNOWLEDGEMENTS

We gratefully acknowledge support by NSF grants CISE-#0083898
and FRG-#0101429, and by the Scottish Higher Education Fund-
ing Council (SHEFC) and the Particle Physics and Astronomy Re-
search Council (PPARC) for use of the Beowulf cluster to run Par-
GAP on the larger problem sizes. We thank Eric Klassen for fruitful
discussions about group actions and orbits, and the reviewers for
their careful reading and helpful comments.

References
TEMPLATE GRAPHICS SOFTWARE. Module: GMC. (User manual entry

for amira visualization software).

BHANIRAMKA, P., WENGER, R., AND CRAWFIS, R. 2000. Isosurfacing
in higher dimensions. In Proceedings of IEEE Visualization 2000, IEEE,
267–273.

BLOOMENTHAL, J. 1988. Polygonization of implicit surfaces. In Computer
Aided Geometric Design, vol. 5, 341–355.

CANNON, J., AND PLAYOUST, C. 1993. An Introduction to MAGMA.
School of Mathematics and Statistics, Sydney University.

CAYLEY, A. 1854. On the theory of groups, as depending on the symbolic
equation θ n = 1. Philosophical Magazine 7, 40–47.

COHN, P. M. 1984. Algebra, volume 1 (second edition). Wiley.

COOPERMAN, G. 1999. Parallel GAP/MPI (ParGAP/MPI), Version 1.
College of Computer Science, Northeastern University.

FRALEIGH, J. G. 1998. A First Course in Abstract Algebra (6th edition).
Addison-Wesley Publishing.

GALLAGHER, R. S. 1991. Span filter: An optimization scheme for volume
visualization of large finite element models. In Proceedings of IEEE
Visualization 1991, IEEE, 68–75.

THE GAP GROUP. 2002. GAP – Groups, Algorithms, and Programming,
Version 4.3. (http://www.gap-system.org).

GLASSNER, A. 1992. A tutorial on geometric replacements. IEEE Com-
puter Graphics & Application 12, 1 (January), 22–36.

HEGE, H.-C., SEEBASS, M., STALLING, D., AND ZÖCKLER, M. De-
cember 1997. A Generalized Marching Cubes Algorithm Based on Non-
Binary Classifications. Konrad-Zuse-Zentrum für Informationstechnik
Berlin. Technical Report SC 97-05.

HEGE, H.-C. May 25-29, 1998. Enumeration of symmetry classes in mesh
generation. In Report on Dagstuhl Seminar 9821: Hierarchical Meth-
ods in Computer Graphics, M. Gross, H. Müller, P. Schröder, and H.-P.
Seidel, Eds., 9–10.

KOBBELT, L., CAMPAGNA, S., AND SEIDEL, H.-P. 1998. A general
framework for mesh decimation. In Graphics Interface, 43–50.

LINDENMAYER, A. 1971. Developmental systems without cellular inter-
action, their languages and grammars. Journal of Theoretical Biology,
455–484.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes: A high res-
olution 3d surface construction algorithm. In Proceedings of SIGGRAPH
1987, ACM Press, 163–169.

LOUNSBERY, M., DEROSE, T. D., AND WARREN, J. 1997. Multireso-
lution analysis for surfaces of arbitrary topological type. ACM Transac-
tions on Graphics 16, 1, 34–73.

MONTGOMERY, K., BRUYNS, C., AND WILDERMUTH, S. 2001. A virtual
environment for simulated rat dissection: a case study of visualization
for astronaut training. In Proceedings of IEEE Visualization 2001, IEEE,
509–512.

NIELSON, G. M., AND FRANKE, R. 1997. Computing the separating
surface for segmented data. In Proceedings of IEEE Visualization 1997,
IEEE, 229–233.

NIELSON, G. M., AND SUNG, J. 1997. Interval volume tetrahedrization.
In Proceedings of IEEE Visualization 1997, IEEE, 221–228.

PRUSINKIEWICZ, P., AND LINDENMAYER, A. 1990. The algorithmic
beauty of plants. Springer-Verlag, New York.

ROBERTS, J. C., AND HILL, S. 1999. Piecewise linear hypersurfaces using
the marching cubes algorithm. In Visual Data Exploration and Analysis
VI, Proceedings of SPIE, IS&T and SPIE, R. Erbacher and A. Pang, Eds.,
170–181.

SCHÖNERT, M. 1994. GAP - Groups, Algorithms and Programming.
Lehrstuhl D für Mathematik, RTWH, Aachen.

SERESS, Á. 1854. An introduction to computational group theory. Notices
of the AMS 44, 6 (June/July), 671–679.

SHEN, H.-W., AND JOHNSON, C. R. 1995. Sweeping simplices: A fast
iso-surface extraction algorithm for unstructured grids. In Proceedings
of IEEE Visualization 1995, IEEE, 143–151.

SHEN, H.-W., HANSEN, C. D., LIVNAT, Y., AND JOHNSON, C. R. 1997.
Isosurfacing in span space with utmost efficiency (issue). In Proceedings
of IEEE Visualization 1996, IEEE, 287–294.

STALLING, D., ZÖCKLER, M., SANDER, O., AND HEGE, H.-C. Decem-
ber 1998. Weighted Labels for 3D Image Segmentation. Konrad-Zuse-
Zentrum für Informationstechnik Berlin. Technical Report SC 98-39.

STERLING, T., SAVARESE, D., BECKER, D. J., DORBAND, J. E.,
RANAWAKE, U. A., AND PACKER, C. V. 1995. BEOWULF: A par-
allel workstation for scientific computation. In Proceedings of the 24th
International Conference on Parallel Processing, I:11–14.

THIBAULT, W. C., AND NAYLOR, B. F. 1987. Set operations on polyhe-
dra using binary space partitioning trees. In Proceedings of ACM SIG-
GRAPH 1987, ACM, 153–162.

WEIGLE, C., AND BANKS, D. C. 1996. Complex-valued contour meshing.
In Proceedings of IEEE Visualization 1996, IEEE, 173–180.

WILHELMS, J., AND GELDER, A. V. 1992. Octrees for faster isosurface
generation. ACM Transactions on Graphics 11, 3 (July), 201–227.

