
ABSTRACT
This paper considers an idealized subclass of surface reflectivities; namely,
a simple superposition of ideal diffuse and ideal specular, restricted to
point light sources. The paper derives a model of diffuse and specular illu-
mination in arbitrarily large dimensions, based on a few characteristics of
material and light in 3-space. It describes how to adjust for the anomaly of
excess brightness in large codimensions. If a surface is grooved or furry, it
can be illuminated with a hybrid model that incorporates both the 1D
geometry (the grooves or fur) and the 2D geometry (the surface).

CR Categories and Subject Descriptors: I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism− color, shading, shadowing
and texture.

Additional Keywords and Phrases: manifold, anisotropic reflection,
hair, fur.

1 Introduction
When a geometric object possesses a distinct (outward) unit
normal at each point, the familiar models of illumination can be
applied to the object. When the object is in a large dimensional
space, the space of unit normals has two or more dimensions and
the illumination model must be extended; examples include
curves in 3-space and 4-space, or surfaces in 4-space and higher.

This paper addresses the problem of applying light in large codi-
mensions. Consider an object of dimensionk >0 in Euclidean
space of dimensionn >k. The differencen − k is thecodimension
of the object. Mathematicians use the termk-manifold to denote
the k-dimensional generalization of curves (1-manifolds) and
surfaces (2-manifolds). Every neighborhood of ak-manifold is
homeomorphic with Euclideank-space.

Regarding codimension 1, popular texts on computer graphics
[Foley90, Rogers85] handle the special case ofk =2 andn =3:
these are ordinary surfaces in 3-space. Other authors [Carey87]
[Steiner87] have noted that whenever the codimension is 1, each
point of a manifold can be naturally assigned a normal vector. The
usual lighting equations then prevail. (Special care is required for
non-orientable manifolds or manifolds with boundary, since their
“frontfacing” elements are not well defined.)

Regarding codimension 2, several authors have considered the
case ofk =1, n =3 for illuminating fur [Kajiya85], hair [Anjyo92,
Miller88, LeBlanc91, Watanabe92], or anisotropic grooves on a
surface [Kajiya89, Poulin90, Westin92, Ward92]. The casek =2,
n =4 has been studied in the “Fourphront” system [Banks92,
Banks93] and elsewhere [Hanson93] for examining a variety of
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surfaces in 4-space. Kajiya and Hanson each testify that their
model is not based on physical principles; Kajiya calls it “ad hoc”
and Hanson calls it a “heuristic” result. But in fact the Kajiya-
Hanson model can be derived from a few physical principles. This
is the subject of section 2.

In daily life one encounters illuminated surfaces everywhere. It is
reasonable to believe that the human visual system is especially
well designed to infer shape from the shading of 2-dimensional
surfaces in 3-space [Horn89]. If surfaces in 3-space represent the
ideal for visual comprehension, the Kajiya-Hanson model suffers
from a peculiar drawback: manifolds are “too bright” when the
codimension grows larger. The increase in brightness in higher-
dimensional spaces is not caused by any defect in the ideal diffuse
model, but is caused instead by the increasing proportion of unit
vectors that lie near the normal space. Section 3 discusses the
problem and section 3.4 presents a simple remedy.

Kajiya [Kajiya85] noted the importance of global illumination
effects (in the form of attenuation and shadows) for rendering
textured volume elements. Section 4 shows how the combination
of a manifold together with a vector field (like a surface together
with fur) can be illuminated to simulate global effects. The tech-
nique can be incorporated into a simple object-order (e.g.,
polygon) renderer.

That reader should note that more complete reflection models are
available; in particular, models that accurately describe the form
of the specularly-reflected energy and the shape of the diffusely-
reflected energy. The quantity of specular and diffuse reflection
depends on the solid angle of the incident irradiation. In particular,
the reflected intensity is not finite at grazing angles of reflection,
but goes to zero. Examples of more comprehensive reflection
models for surfaces in 3-space can be found elsewhere [Kajiya86,
He92, Hanrahan93].

2 The Model for Large Codimensions
The final results of this section will be equations for diffuse and
specular illumination that are equivalent to the results that Kajiya
and Hanson have presented [Kajiya89] [Hanson93]. The new
contribution that this section offers is a physical motivation to the
derivation. The conventional motivation begins by promoting the
dimension of a manifold, illuminating the promoted manifold, and
integrating. The new motivation dispenses with the promotion and
integration steps altogether. It proceeds directly from the geom-
etry to the illumination solution, without regard to the partici-
pating dimensions.

The following discussion makes heavy use of the tangent spaceT
and the normal spaceN at a pointp on ak-manifoldM in n-space
(see Figure 1). The spaceT is the vector space tangent to a point
in M. It has dimensionk, matching that of the manifoldM. The
spaceN is orthogonal toT and has dimensionc (the codimension
of M). The dimensions ofT andN add up to the dimension of the
entire space (that is,k+c = n).
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2.1 Conventional Motivation
The benefit of codimension 1 is that there exist only two unit
normals in a point’s 1-dimensional normal space. The usual illu-
mination equations require the modest choice of one of the two. If
the codimension is large, there is no clear way to select one unit
normal from the infinitude that are available. There is a clever
solution that other authors have adopted: the dimension of the
manifold can be promoted to reduce the codimension.

Let Sn(r) denote ann-sphere of radiusr. A circle of radius 10 is
thenS1(10); a unit sphere isS2(1), or simplyS2. Kajiya, Hanson,
and others have proposed that illuminating ak-manifold M of
codimensionc>1 can be accomplished after forming the Carte-
sian product ofM with Sc-1(r). It is required thatSc-1(r) lie within
the normal spaceN. A point is thus promoted to a circle in 2-space
or to a sphere in 3-space; a curve is promoted to a tube in 3-space;
a surface is promoted to a volume in 4-space.

The advantage of promotingM to M′ = M ✕ Sc-1(r) is that the
promoted manifold has codimension 1. This represents the simple
case where the usual lighting equations prevail. The promoted
manifoldM’ can provide an effective representation ofM with no
further processing. But to renderM itself, one must employ a
scheme whereby a pointp in M inherits the illumination of its fiber
p ✕ Sc-1(r) in M′. A reasonable way to accomplish that goal is to
integrate the intensity of the reflected light overp ✕ Sc-1(r) and
then to average it. The average intensity is obtained by dividing
the integrated intensity by the measure of the fiber as seen by the
eye. This measure can be a length, an area, a volume, or so forth,
in accordance with the dimensionc- 1 of the sphereSc-1(r) (used
in the cross product) over which the average is taken. The limit of
the average, asr → 0, yields a reasonable intensity for the pointp.

There are two drawbacks to this approach of promotingM to M′,
integrating, and then averaging. First, the integration is unwieldy
for c>1, due to the specular term in the integrand. Second, the
projected measure ofSc-1(r) is view-dependent. This opposes the
notion that diffuse reflection is view-independent. For example, in
derivation (13) of [Kajiya89], the integrated intensity over a fiber
p ✕ S1(r) of M′ is calculated to be

I ′diffuse = kd r L . LN  sinθ dθ

= kd 2r L . LN

wherekd is the diffuse coefficient, L is the light vector, andLN is
the projection ofL ontoN (Figure 1). Under a parallel projection,

Figure 1. Light shines in directionL at a pointp on a tube.LN is
the projection of the light onto the normal spaceN. The diffuse
reflection is integrated over the visible portion of the circleS1.

L

T

N

LN

S1

p

0
π∫

the arclength of the circle can vary from 2r (viewing the tube from
the side) toπr (viewing the tube end-on). So the average intensity
ranges between a minimum of 2/π kd L ⋅ LN and a maximum of
kd L ⋅ LN according to the viewing angle. Kajiya avoided this
problem by treating the quantitykd 2r/projectedArclength(r) as a
constant, so that a point on the original manifold M has intensity

Idiffuse = Kd L . LN

2.2 Principles for Diffuse Reflection
One can, in fact, justify Kajiya’s result by characterizing diffuse
reflection in the following way. A neighborhood of a pointp
absorbs energy from the incoming light (which deliversIsource per
unit cross section), and then it re-radiates a fractionkd of the
absorbed energy. How much energy does the beam deliver to a
unit-neighborhood ofp? That depends on the cross section of the
beam and the angle it makes with the tangent plane (Figure 2).

Suppose an incident light beam strikesM at p. The light vectorL
(pointing in the direction that the beam propagates) projects
orthogonally onto the tangent spaceT at p to produce the vector
LT. The two vectors form an anglea(L, LT). Simple trigonometry
shows that a unit neighborhood of the tangent space intercepts a
beam whose cross-section has measure sin(a). Note that this quan-
tity is never negative, since a vector can be no more than 90° from
the tangent space. The manifold re-radiateskd of the energy deliv-
ered by the beam’s cross-section. Thus the diffuse component of
reflection atp is given by

(1) Idiffuse = kd Isource sina(L, LT).

This solution is essentially the same as Kajiya’s: the sine
(measured againstT) and cosine (measured againstN) are equal.

The principles for this result are (1) the re-radiated light’s intensity
varies with the energy delivered by the incident beam; and (2) the
manifold re-radiates isotropically.

Equation (1) is purely local, neglecting any effects of shadowing
(even self-shadowing). For a closed surface in 3-space, it is
common practice to clamp the diffuse term to zero when the
surface normal points away from the light source. This is best
regarded as a “global” calculation. A very thin surfacedoes re-
radiate light both forward and backward, as the local model
predicts. Moreover, when the codimension is larger than 1, the
unit normals form a connected set. In that case there is no “front”
or “back” side of the manifold. Local two-sidedness is an exclu-
sive property of codimension 1.

Figure 2. Light shines in directionL at a pointp. LT is the projec-
tion of the light onto the tangent spaceT. The beam strikes a unit
neighborhood ofp at an angle a.
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2.3 Principles for Specular Reflection
A specular highlight is most intense where a reflection vector R
and the view vector V are aligned. One can use a power function
to condense the reflected intensity within a neighborhood where
the angle between R and V is small (Phong lighting). The only
problem is how to determine an appropriate unit-length reflection
vector R when the codimension exceeds 1: there are infinitely
many to choose from.

Deriving a solution has two parts. First, one determines the set of
candidate reflection vectors R. By Fermat’s principle, light follows
a path of minimal length. Even in large codimensions this prin-
ciple implies that the angle of incidence (measured against the
tangent space) equals the angle of reflection. Section 2.3.1 derives
this relation as RT = LT. The second step is to compute the distance
between V and the space R of reflection vectors. Section 2.3.2
computes that distance by means of a “dot product” V ⋅ R.

2.3.1 Angle of Reflection and the Family of Reflection V ectors
To see how Fermat’s principle applies to a ray of light reflecting
from a tangent space T, consider a point source q that shines on
the point p and bounces to reach a point u (Figure 3). The
segments from q to p and from p to u are straight-line paths, satis-
fying Fermat’s principle. But for fixed q and u, where does p lie?

In 2-dimensional space the problem is easy and the solution
obvious: the angles a= ∠(q p qT) and b= ∠(u p uT) are equal,
with qT and uT lying on opposite sides of p. The situation in
n-dimensional space is nearly this simple.

If u − p really is a reflection vector then a path from q to u via a
nearby point s in T must be longer than the path via p. Thus qT, p,
and uT must be collinear. To see why, consider choosing s off of
the line . For each of the two triangles (figure 3), the base
would be shortened by moving s to its projection onto
(because of the triangle inequality), as would each hypotenuse. So
the total path-length through s is not minimal, defying Fermat’s
principle. Thus the base of each triangle lies on the line .

Suppose that a = b and consider what happens when p is then
perturbed (in the line ) over to some p + s(qT - uT). The
total distance D(s) is parametrized by s:

D(s) = d(q, p + s(qT - uT)) + d(p + s(qT - uT), u)

A straightforward application of trigonometry and calculus dem-
onstrates that the total distance is a local minimum exactly when
b= a. One must simply verify that D(s) = 0 when s= 0.
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Figure 3. A ray of light emanates fromq, strikes the tangent space
T at p, and reflects tou. If the total path has minimum length,
angles a and b are equal.
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The unit vectors L and R consequently have identical tangent
components, so the first requirement on a unit reflection vector R
is that RT = LT. If the codimension is 1, there are two such “reflec-
tion” vectors, R+ and R−; R+ is the continuation of L transmitted
through T (for opaque manifolds of codimension 1, this solution is
ignored). When the codimension is 2, the set of all reflection
vectors forms a cone-shaped family R (Figure 4). The unit reflec-
tion vectors from R project to a circle in the normal space N. In
general, the unit reflection vectors project to Sc-1(r) in N when the
codimension is c.

2.3.2 Angle Between the V iew Vector and the Reflection V ector
What is the angle between the view vector V and the space R of
reflections? It is the angle between V and the closest vector R in R.
This vector is easy to find. A unit reflection R can be expressed by
its tangent and normal components RT = LT and RN. The unit view
vector can be likewise decomposed into VT and VN.

The components VT, VN, and RT are all fixed, so the distance
between R and V is minimized when ||RN - VN|| is minimized.
That occurs when RN and VN are collinear: RN = λVN for some
scalar λ. To see why this is minimal, recall that the vector RN is
also perpendicular to the point RN on the sphere Sc-1 in the normal
space. It is a familiar result from calculus that if the distance from
a point p (off of Sc-1) to a point q (on Sc-1) is minimal, the vector
p - q is perpendicular to Sc-1.

In particular, the reflection R is found by requiring its normal
component to be

RN = − = −

This aligns R with the projection of the view vector onto the
normal space (Figure 3).The cosine of the angle between R and V
is just the dot product

V ⋅ R = (VT + VN) ⋅ (RT + RN)

= VT ⋅ RT + VN ⋅ RN

The two inner terms of the expansion are zero because the tangent
and normal spaces are orthogonal. By substituting for the compo-
nents RT and RN of the reflection vector, one finds the projection
formula

V ⋅ R = VT ⋅ LT − VN ⋅

L

T

Figure 4. The light vectorL reflects off a tangent lineT in 3-space,
forming a coneR of reflections. The view vectorV projects toR in
R. The components ofV andR in the normal spaceN are aligned.
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which simplifies to produce the specular term for large codimen-
sions:

(2) V ⋅ R = VT ⋅ LT − ||VN|| ||LN||

It is convenient to use V ⋅ R to denote this dot product between V
and the nearest unit vector in R.

2.3.3 Summary of Specular Model
Even when the codimension of the manifold is 1, equation (2)
ignores which side of the manifold is being illuminated, reminis-
cent of the diffuse reflection in equation (1). When V is more than
90° away from the reflection space R, the quantity V ⋅ R becomes
negative. The fact that it can be negative is unrelated to the codi-
mension, and it is reasonable to clamp it to zero. The rationale is
that when V ⋅ R is less than zero, V is so far from the reflection
space that it receives no reflected light at all.

The Phong model for calculating the specular intensity is therefore

(3) Ispecular = ks Isource (clamp(V ⋅ R )) power

where clamp(x) = 0 when x < 0. The principles for specular illumi-
nation are thus (1) light travels in paths of locally minimal length;
and (2) the specular reflection is maximized exactly when the
view vector nears the reflection space.

This seems like a lot of effort to expend just to end up with the
same equation used by Hanson [Hanson93]. But the purpose of
this derivation was not to replace the equations. The purpose was
to replace the descriptions “ad hoc” and “heuristic” by means of a
physically-motivated derivation of the geometric behavior of
light, arguing from principles independent of any particular
dimension.

3 Excess Brightness in Big Dimensions
When the diffuse model is applied to a k-manifold in n-space,
under different values of k and n, a curious phenomenon occurs:
the overall brightness of a manifold increases with the codimen-
sion. The torus T2 is a convenient test object for demonstrating the
effect. The surface can be imbedded in 4-space as the cross-
product of two circles by the parametrization

(x, y, z, w) = (r1 cos θ, r1 sin θ, r2 cos φ, r2 sin φ)

where r1 and r2 are the “outer” and “inner” radii. One can wrap a
curve around the torus T2 by letting φ = Aθ for some constant A.
The curve or surface can be illuminated in 4-space, or else
projected to 3-space and then illuminated there. Illustration 1 (top
row) shows the result. Notice, especially, how uniformly bright
the case k = 1, n = 4 is.

In order to understand the brightness phenomenon, first suppose
there are light sources uniformly distributed in all directions. How
bright is a point p on a surface or a curve? The answer requires
integrating the illumination term over all directions of incoming
light. In n-space, these directions cover the unit (n-1)-sphere.

3.1 Uniform Illumination of a Surface in 3-space
To integrate the uniform illumination of a point on a surface, let
the tangent space T be the xz-plane and let the light vectors fill a
unit sphere. The sphere S2 has the following parametrization and
area element dS2.

(x, y, z) = (sin φ cos θ, sin φ sin θ, cos φ)

The total area A(S2) of the sphere is 4π. The area-averaged diffuse
illumination I 2, 3 at p (with k = 2, n = 3) is given by

The constants kd and Isource will clutter the ensuing calculations; it

is convenient to just ignore them (by assuming they are both equal
to 1, say). The rest of the computations follow this convention.

Evaluating the integral requires finding an expression for sin a. It
is easier to first find cos2 a(L, LT) = L ⋅ LT / ||LT||. If L = (x, y, z)
then LT = (x, 0, z). The sine can be computed from the cosine as

The total illumination for a point on a surface is therefore

3.2 Uniform Illumination of a Curve in 3-space
Compare the value I 2, 3 to the average illumination of a point on a
1-dimensional curve whose tangent lies in the (0, 0, 1)-direction.
The area-averaged illumination I 1, 3 is given by the integral

The light’s tangent component is LT = (0, 0, z), so the sine can be

easily calculated from the cosine.

The total illumination for a point on a curve is therefore

The point is nearly 60% brighter just because the curve has a
lower dimension than the surface does.

3.3 Uniform Illumination of a Curve in 4-space
If the curve is in 4-space, the point becomes brighter still. The 3-
sphere S3 has the following parametrization and volume element.

dS2 = |sin φ| dφ dθ

I 2, 3 = kd Isource sin a(L, LT) dS21

A(S
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cos2 a(L, LT) = 1 - sin2 θ sin2 φ

sin a(L, LT) = |sin θ sin φ|

I 2, 3 = |sin θ sin φ| |sin φ| dθ dφ = 0.5
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I 1, 3 = sin a(L, LT) dS21
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(x, y, z, w) = (sin χ sin φ cos θ, sin χ sin φ sin θ, sin χ cos φ, cos χ)

dS3 = |sin φ sin2 χ| dθ dφ dχ



The total “surface area” A(S3) of the 3-sphere is 2π2. If the tangent
is aligned with the (0, 0, 0, 1) direction, the uniformly-lit point p
has an area-averaged intensity which is calculated as follows.

Similar calculations show that I 1, 2  = 2/π  0.673 (a curve illu-
minated in 2-space), and I 2, 4 = 2/3  0.667 (a surface illumi-
nated in 4-space).

3.4 Compensating for Excess Brightness
Why does the average reflected intensity of a manifold increase
with the dimension of the space that the manifold occupies?
Consider a k-manifold with codimension greater than k. For most
light vectors L, the large-dimensional normal space N is closer to
L than the k-dimensional tangent space T is. Light vectors that are
in, or near, the normal space make a point look bright, so most
light vectors reflect brightly when the codimension is large.
Conversely, if the codimension is smaller than k most light vectors
are closer to T than they are to N: a point is likely to look dim.

It is not enough simply to adjust the diffuse coefficient kd to
compensate for the codimension. Consider what it means for the
average illumination to approach the limit of 1: the integrand is
bounded above by 1, so it must in fact attain that bound almost
everywhere. In almost every direction that light shines, it brightly
illuminates almost all of the manifold.

I 1, 4 = sin a(L, LT) dS3

= |sin χ| |sin φ sin2 χ| dθ dφ dχ =  0.849
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Probably no one is very interested in illuminating a flat object
using infinitely many point-light sources distributed uniformly in
all directions. The typical situation is complementary to it: there
may be a single light source, but the manifold’s tangents vary
continuously over many (if not all) directions. The visual result is
generally the same as the theory predicts: a manifold becomes
more uniformly bright when its codimension increases.

A simple way to increase the contrast is to exponentiate using a
power p(k,n). This changes the diffuse term in equation (1) to be

(5) Icomp = kd Isource sin p(k, n)a(L, LT)

The brightness is thereby balanced so that a k-manifold in n-space
approximates the contrast displayed by a surface in 3-space.
Whereas the diffuse model could be derived from physical princi-
ples, there is no physical motivation for this tactic of exponentia-
tion. Its merits are that it opposes the tendency for large
codimensions to increase the average brightness of a manifold,
and that it yields an integrable expression for the average illumina-
tion of a point on a manifold. The only difficulty is in choosing a
suitable value of the exponent p(k, n).

It is natural to set p(2,3) = 1 since surface-shading in 3-space is
the standard for visual comprehension. For other values of k and n,
one proceeds by comparing the averaged integrated intensities
I k, n to the averaged integrated intensities I 2, 3 under the new
compensating model of equation (5), finding a value of p(k, n) that
makes them equal. The integration is somewhat laborious even for
low dimensions, so it is relegated to the appendix. The results are
summarized in Table 1, and are applied in Illustration 1 (bottom
row). As evidence that this normalization technique works, note
that the images on the bottom row of Illustration 1 all look very
similar in the amount of brightness and contrast they exhibit.

k = 1, n = 3 k = 1, n = 4 k = 2, n = 3 k = 2, n = 4

p = 4.7635 p = 7.6737 p = 1 p = 2

Illustration 1. Local diffuse illumination (without self-shadowing) of a k-manifold in Euclidean n-space. The infinite point-source light
vector in these images has direction (0.70.60.38) in 3-space and (0.70.60.380.0) in 4-space. The upper set of images use the diffuse
model of equation (1). The bottom set compensates for excess brightness by using equation (5) with an exponent p as in Table 1.



4 Mixing Dimensions for Global Effects
This section describes how the large-codimension model for illu-
mination (equations 1 and 2) can be used to render anisotropic
reflectors and furry surfaces. These two examples exhibit a mix of
diverse codimensions: 1-dimensional grooves on a 2D surface, or
1-dimensional fibers protruding from a 2D surface. The solution
presented here applies to other combinations of codimensions as
well.

A manifold may be supplied with one or more vector fields. For
example, an isosurface of constant pressure in a fluid flow might
possess 1D velocity vectors at every point together with a 2D
tangent plane. If vector spaces of different dimensions are associ-
ated with a point, one is free to select which space will participate
in the lighting calculation. In the case of the pressure-surface, the
tangent space reflects like a 2-manifold, whereas the velocity field
reflects like a 1-manifold at each sample point.

4.1 Anisotropy: Inheritance of Self-shadowing
Section 2.2 noted that a manifold of codimension 1 enjoys the
special property of possessing, at most, two sides. The local illu-
mination model can thus simulate the “global” effect of self-shad-
owing. Consider a surface M with a 2D tangent space T and a 1D
vector field V in 3-space. A point p in M is in shadow if its
outward normal aims away from the light source. With the light
vector directed away from the source, −N ⋅ L is negative for a self-
shadowed point. Assigning a unique normal vector is only
possible when T (of codimension 1) governs the illumination, not
V (of codimension 2). That is unfortunate when one desires to use
V, since self-shadowing enhances the fidelity of a rendered image.

n = 2 n = 3 n = 4

k = 1 p = 2 p = 4.7635 p = 7.6737

k = 2 ____ p = 1 p = 2

Table 1. Values of the powerp used by equation (5) for compen-
sated diffuse illumination of ak-manifold inn-space.

The remedy is to let V inherit the quantity (namely N ⋅ L) that
informs the model of self-shadowing. To illuminate p using V, the
reflection terms arising from V are conditioned by the clamped
cosine term arising from the 2-dimensional space T:

(6) Iconditioned = (clamp( −N ⋅ L) (Idiffuse + Ispecular)

The diffuse and specular terms are calculated using equations (1)
and (3) for the vector space of high codimension. The vector space
of codimension 1 is consulted in order to provide the normal
vector that offers a global effect (self-shadowing).

Illustration 2 shows various renderings of a sphere in 3-space
endowed with a vector field V which is tangent to the sphere and
aligned in “north-south” directions. Intuitively, this is like a satin
ball used as a Christmas ornament. The satin fibers are integral
curves (of codimension 2) through V. The material properties are
defined by the coefficients kambient= 0.1, kd = 0.5, ks = 1.0 and an
intrinsic color (r, g, b) = (1.0, 0.25, 0.30). In the first image, A, the
Kajiya-Hanson model is applied to integral curves through V. In
the second image, B, the surface is illuminated in the usual way,
using the tangent space T (of codimension 1) and applying the
clamp function to −N ⋅ L to produce self-shadowing. The third
image, C, shows the result of illuminating according to V and
interpolating the result over the polygon mesh (but without the
benefit of any such dot product −N ⋅ L to be clamped). The fourth
image, D, shows the result of conditioning the solution of image C
according to equation (6) in order to produce the global effect of
self-shadowing.

4.2 Fur: Attenuation by a Vector Field
Equation (6) shows how the tangent space T can be used to simu-
late global effects in illuminating the vector V space over p. The
roles of T and V can be reversed as well. In the “satin ball”
example, each fiber Vp lay in the tangent space Tp at each point p.
That is, each fiber was constrained to fit the underlying surface.
But that need not be the case. Real, physical fibers may protrude
outward from a surface, partially shadowing the surface from
light. It is possible to simulate this global effect by attenuating the
light that reaches Tp. A simple model for attenuation requires the
incoming energy to decay exponentially with the distance that it
passes through an absorbing medium of density ρ (ρ being

A B C D

Illustration 2. Different vector spaces can combine illumination effects. (A) Integral curves (of codimension 2) through a vector fieldV on a
sphere. (B) The sphere S2 (of codimension 1) with self-shadowing. (C) Illuminating all ofV, neglecting any self-shadowing from S2. (D)
Illuminating V, conditioned by the surface normals of S2 according to equation (6).



between 0 and 1). That medium is the vector fieldV. The light
generally passes through the medium twice: once on the way in,
and again on its reflected path back out. In either case, the distance
that it passes through the medium is given by

(7) d = h / sina

whereh is the height (perpendicular toTp) of a fiber atp anda is
the angle betweenTp and the light (entering) or betweenTp and
the eye (exiting). The attenuated light therefore has energy Iatten
given by

(8) Iatten = Isource (1-ρ)d

Illustration 3 shows how conditioning and attenuating the illumi-
nation of a mixed-dimensional object can yield convincing results
on a torus with radiir1 = 1.5,r2 = 0.75. The fibers have a material
property defined by the coefficients kambient= 0.1, kd = 0.9,
kspec= 0.1, andρ = 0.02. In imageA, the vector fields are illumi-
nated according to the local model of equation (1). In imageB, the
vectors are conditioned according to equation (6) using the surface
normals of the underlying torus. In imageC, the light at the base
of each vector is both conditioned and attenuated. Light at the tip
is conditioned only. The difference betweenB andC is especially
visible near the shadow terminator: the fibers blend together inB
but are individually visible inC.

5 Running Time
The most complex image (Illustration 3C) contains 2,408,448 line
segments. The fibers are procedurally generated from jittered
interpolated samples on the 128✕ 128 mesh of the torus. The
image was rendered on a Silicon Graphics Indigo2 (75MHZ R4400
MIPS processor, 16KB caches, and 128MB memory) with Extreme
graphics, which draws about 150,000 de-aliased Gouraud-shaded
vectors per second. The image required 2 seconds to compute the
illumination on the mesh, 20 seconds to generate the fibers, and 16
seconds to draw the fibers. This compares very favorably to
image-order (ray-traced) solutions [Perlin89, Kajiya 93].

6 Conclusions
This paper considers an idealized subclass of surface reflectivities;
namely, a simple superposition of ideal diffuse and ideal specular,

restricted to point light sources. It shows how the diffuse and
specular reflection of ak-manifold in n-space can be derived by
appealing to four basic principles:

• The re-radiated light’s intensity varies with the energy deliv-
ered by the incident beam;

• The manifold re-radiates isotropically;

• Light travels in paths of locally minimal length; and

• The specular reflection is maximized exactly when the view
vector nears the reflection space.

A manifold generally becomes brighter in larger dimensions. This
paper describes how to ameliorate the effect by exponentiating
part of the diffuse term. The exponent can be found via an aver-
aged integration so that the total contrast matches that of a surface
in 3-space.

The lighting model can be enhanced to produce global effects. A
vector space of large codimension can inherit self-shadowing
from an underlying vector space of codimension 1, creating real-
istic anisotropically reflective surfaces in 3-space. Light may be
attenuated as it passes through one vector space to reach another
to create effective images of a furry surface in 3-space. The tech-
niques may also be applied to visualize vector fields over mani-
folds of higher dimension in large-dimensional spaces.
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Appendix
This section calculates the area-averaged compensated illumina-
tion for various combinations ofk andn. This amounts to solving
the equation

I k, n
comp = sinp a(L, LT) dS n-1 = I 2, 3 =

for the exponentp = p(k, n). The definite integral of the exponenti-
ated sine can be looked up in a table: it involves a quotient of
gamma functions. Section 3 gives the area element and the volume
element forS2 andS3. These quantities have been substituted in
the following integrals.

I 1, 2
comp =  4 sinp+1φ dθ dφ =

I 1, 3
comp =  2 sinp+2φ dθ dφ =

I 1, 4
comp =  4 sinp+2χ sinφ dθ dφ dχ

=

I 2, 4
comp =  4 sinp+2χ sinp+1φ dθ dφ dχ

=  =  =

To find p(k, n), one merely setsI k, n
comp = 1/2 and solves forp.

The numerical solutions are listed in Table 1.
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