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ABSTRACT

This paper considers an idealized subclass of surface reflectivities; pnamely

a simple superposition of ideal ife and ideal specularestricted to
point light sources. The paper derives a model éfiskf and specular illu-
mination in arbitrarily lage dimensions, based on a few characteristics of
material and light in 3-space. It describes how to adjust for the anomaly of
excess brightness in g codimensions. If a surface is grooved or fitry

can be illuminated with a hybrid model that incorporates both the 1D
geometry (the grooves or fur) and the 2D geometry (the surface).

CR Categories and Subject Descriptors: 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realisircolor, shading, shadowing
and texture.

Additional Keywords and Phrases: manifold, anisotropic reflection,
hair, fur.

1 Introduction

When a geometric object possesses a distinct (outward) unit

normal at each point, the familiar models of illumination can be
applied to the object. When the object is in gdadimensional

space, the space of unit normals has two or more dimensions an
the illumination model must be extended; examples include
curves in 3-space and 4-space, or surfaces in 4-space and higher

This paper addresses the problem of applying light gelaodi-
mensions. Consider an object of dimension0 in Euclidean
space of dimension>k. The diferencen-k is thecodimension

of the object. Mathematicians use the tdemanifold to denote
the k-dimensional generalization of curves (1-manifolds) and
surfaces (2-manifolds). Every neighborhood ok-manifold is
homeomorphic with Euclidedaspace.

Regarding codimension 1, popular texts on computer graphics
[Foley90, Rogers85] handle the special cas&=o2 andn=3:

surfaces in 4-space. Kajiya and Hanson each testify that their
model is not based on physical principles; Kajiya calls it “ad hoc”
and Hanson calls it a “heuristic” result. But in fact the Kajiya-
Hanson model can be derived from a few physical principles. This
is the subject of section 2.

In daily life one encounters illuminated surfaces everywhere. It is
reasonable to believe that the human visual system is especially
well designed to infer shape from the shading of 2-dimensional
surfaces in 3-space [Horn89]. If surfaces in 3-space represent the
ideal for visual comprehension, the Kajiya-Hanson modéémsuf
from a peculiar drawback: manifolds are “too bright” when the
codimension grows lger The increase in brightness in higher
dimensional spaces is not caused by any defect in the idesledif
model, but is caused instead by the increasing proportion of unit
vectors that lie near the normal space. Section 3 discusses the
problem and section 3.4 presents a simple remedy

Kajiya [Kajiya85] noted the importance of global illumination
effects (in the form of attenuation and shadows) for rendering

&extured volume elements. Section 4 shows how the combination

of a manifold together with a vector field (like a surface together
with fur) can be illuminated to simulate globafeets. The tech-
nigue can be incorporated into a simple object-order (e.g.,
polygon) renderer

That reader should note that more complete reflection models are
available; in particularmodels that accurately describe the form
of the specularly-reflected eggrand the shape of the fuisely-
reflected engy. The quantity of specular and fuie reflection
depends on the solid angle of the incident irradiation. In partjcular
the reflected intensity is not finite at grazing angles of reflection,
but goes to zero. Examples of more comprehensive reflection
models for surfaces in 3-space can be found elsewhere [Kajiya86,

these are ordinary surfaces in 3-space. Other authors [Carey87He92, Hanrahan93].
[Steiner87] have noted that whenever the codimension is 1, each

point of a manifold can be naturally assigned a normal vether
usual lighting equations then prevail. (Special care is required for
non-orientable manifolds or manifolds with boundasince their
“frontfacing” elements are not well defined.)

2 The Model for Large Codimensions

The final results of this section will be equations fofudé and
specular illumination that are equivalent to the results that Kajiya
and Hanson have presented [Kajiya89] [Hanson93]. The new

Regarding codimension 2, several authors have considered thecontribution that this sectionfefs is a physical motivation to the

case ofk=1, n=3 for illuminating fur [Kajiya85], hair [Anjyo92,
Miller88, LeBlanc91l, Vdtanabe92], or anisotropic grooves on a
surface [Kajiya89, Poulin90, ¥8tin92, Vird92]. The cask=2,

n=4 has been studied in the “Fourphront” system [Banks92,
Banks93] and elsewhere [Hanson93] for examining a variety of
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derivation. The conventional motivation begins by promoting the
dimension of a manifold, illuminating the promoted manifold, and
integrating. The new motivation dispenses with the promotion and
integration steps altogethdt proceeds directly from the geom-
etry to the illumination solution, without regard to the partici-
pating dimensions.

The following discussion makes heavy use of the tangent 3pace
and the normal spad¢ at a pointp on ak-manifoldM in n-space
(see Figure 1). The spateis the vector space tangent to a point
in M. It has dimensiork, matching that of the manifolsl. The
spaceN is orthogonal td and has dimension(the codimension
of M). The dimensions of andN add up to the dimension of the
entire space (that ig+c =n).



2.1 Conventional Motivation the arclength of the circle can vary from(2iewing the tube from
The benefit of codimension 1 is that there exist only two unit the side) tar (viewing the tube end-on). So the average intensity
normals in a poing 1-dimensional normal space. The usual illu- 'anges between a minimum ofiXy L [Ly and a maximum of
mination equations require the modest choice of one of the two. If%d L lLn according to the viewing angle. Kajiya avoided this
the codimension is Ige, there is no clear way to select one unit Problem by treating the quantiky 2r/projectedArclengtir) as a
normal from the infinitude that are available. There is a clever cOnstant, so that a point on the original manifold M has intensity
solution that other authors have adopted: the dimension of the

. . . | 4i = K4qL'L
manifold can be promoted to reduce the codimension. diffuse d- =N

Let S'(r) denote am-sphere of radius. A circle of radius 10 is 2.2 Principles for Diffuse Reflection
thenS'(10); a unit sphere i§%(1), or simplyS’. Kajiya, Hanson,
and others have proposed that illuminating-manifold M of
codimensionc>1 can be accomplished after forming the Carte-
sian product oM with S(r). It is required tha&(r) lie within unit cross section), and then it re-radiates a fradgpmf the

the normal spa_cN. A point is thus p_romoted to acircle in _2-space absorbed engy. How much engy does the beam deliver to a
ortoa sphere In 3-space; a curve 1S promoted to a tube in 3'Spac%'nit-neighborhood op? That depends on the cross section of the
a surface is promoted to a volume in 4-space. beam and the angle it makes with the tangent plane (Figure 2).

One can, in fact, justify Kajiya'result by characterizing @ike
reflection in the following wayA neighborhood of a poinp
absorbs engy from the incoming light (which delivetgy e per

The advantage of promotinl to M' = MoS™(r) is that the Suppose an incident light beam strikésatp. The light vectoi
promoted manifold has codimension 1. This represents the s'mple(pointing in the direction that the beam propagates) projects
case where the usual lighting equations prevail. The prommedorthogonally onto the tangent spabet p to produce the vector
manifold M’ can_provide an &ctive r'epresentation ofl with no L1. The two vectors form an angié_, L1). Simple trigonometry
further processing. But to renddt itself, one must employ a g5 that a unit neighborhood of the tangent space intercepts a
scheme whereby a poiptin M inherits the illumination of its fiber beam whose cross-section has measure)siNote that this quan-
poSTHr) in M'. A reasonable way to accomplish that goal is to tity is never negative, since a vector can be no more ttafic9f
integrate the intensity of the reflected light owsc'l(r) and the tangent space. The manifold re-radiégesf the enegy deliv-

then to average it. The average intensity is obtained by dividing 5 oq by the beam’cross-section. Thus the fdife component of

the integrated intensity by the measure of the fiber as seen by the 4o ion ap is given by

eye. This measure can be a length, an area, a volume, or so forth, )
in accordance with the dimension1l of the spher&(r) (used (1) liffuse = Kd Isoucesina(L, Lt).
in the cross product) over which the average is taken. The limit of

. . ) . This solution is essentially the same as Kafiyathe sine
the average, as- 0, yields a reasonable intensity for the ppint y asy

(measured again3t) and cosine (measured agaiN3tare equal.
There are two drawbacks to this approach of promadirtg M’,
integrating, and then averaging. First, the integration is unwieldy
for c>1, due to the specular term in the integrand. Second, the
projected measure &X(r) is view-dependent. This opposes the
notion that difuse reflection is view-independent. For example, in Equation {) is purely local, neglecting anyfeéts of shadowing
derivation (13) of [Kajiya89], the integrated intensity over a fiber (even self-shadowing). For a closed surface in 3-space, it is

The principles for this result are (1) the re-radiated lggintensity
varies with the engy delivered by the incident beam; and (2) the
manifold re-radiates isotropically

poSKr) of M’ is calculated to be common practice to clamp the fdife term to zero when the
surface normal points away from the light source. This is best
I"giffuse = KgrL Ly J’g sinB dd regarded as a “global” calculation. A very thin surfacesre-
radiate light both forward and backward, as the local model
= kg2rL Ly predicts. Moreoverwhen the codimension is ¢gr than 1, the
unit normals form a connected set. In that case there is no “front”
whereky is the difuse codiicient, L is the light vectarandL  is or “back” side of the manifold. Local two-sidedness is an exclu-

the projection ot ontoN (Figure 1). Under a parallel projection, sive property of codimension 1.

T
Figure 1. Light shines in dictionL at a pointp on a tubelL is Figure 2. Light shines in déctionL at a pointp. Lt is the pojec-
the pojection of the light onto the normal spale The diffust tion of the light onto the tangent spateThe beam strikes a ul

reflection is integrated over the visible portion of theleis!. neighbohood ofp at an angle a.



2.3 Principles for Specular Reflection

A specular highlight is most intense where a reflection vector R
and the view vector V are aligned. One can use a power function
to condense the reflected intensity within a neighborhood where
the angle between R and V is small (Phong lighting). The only
problem is how to determine an appropriate unit-length reflection
vector R when the codimension exceeds 1. there are infinitely
many to choose from.

Deriving a solution has two parts. First, one determines the set of
candidate reflection vectors R. By Fermat's principle, light follows
a path of minimal length. Even in large codimensions this prin-
ciple implies that the angle of incidence (measured against the
tangent space) equals the angle of reflection. Section 2.3.1 derives
thisrelation as Rt = L. The second step is to compute the distance
between V and the space R of reflection vectors. Section 2.3.2
computes that distance by means of a“dot product” V [R.

2.3.1 Angle of Reflection and the Family of Reflection V  ectors
To see how Fermat’s principle applies to a ray of light reflecting
from a tangent space T, consider a point source q that shines on
the point p and bounces to reach a point u (Figure 3). The
segments from g to p and from p to u are straight-line paths, satis-
fying Fermat’s principle. But for fixed g and u, where does p lie?

In 2-dimensional space the problem is easy and the solution
obvious: the angles a=0(q p gy) and b=0(u p ut) are equd,
with gt and ug lying on opposite sides of p. The situation in
n-dimensional spaceis nearly this simple.

If u—p redly is a reflection vector then a path from g to u viaa
nearby point sin T must be longer than the path viap. Thus g, p,
and utr must be collinear. To see why, consider choosing s off of
the line Uy g . For each of the two triangles (figure 3), the base
would be shortened by moving s to its projection onto u; g

(because of the triangle inequality), as would each hypotenuse. So
the total path-length through s is not minimal, defying Fermat's
principle. Thus the base of each triangle lieson the line Uy g .

Suppose that a = b and consider what happens when p is then
perturbed (in the line u; gq;) over to some p+s(gr-uy). The
total distance D(s) is parametrized by s:

D(s) = d(@, p+s(ar-ur)) + d(p+s(ar-ur), u)

A straightforward application of trigonometry and calculus dem-
onstrates that the total distance is alocal minimum exactly when
b=a. One must simply verify that dﬂs D(s) = 0 when s=0.
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Figure 3. A ray of light emanateofnq, strikes the tangent spe
T at p, and eflects tou. If the total path has minimum leng
angles a and b arequal.

The unit vectors L and R consequently have identical tangent
components, so the first requirement on a unit reflection vector R
isthat Ry =Lr. If the codimension is 1, there are two such “reflec-
tion” vectors, R* and R™; R* is the continuation of L transmitted
through T (for opagque manifolds of codimension 1, this solutionis
ignored). When the codimension is 2, the set of al reflection
vectors forms a cone-shaped family R (Figure 4). The unit reflec-
tion vectors from R project to a circle in the normal space N. In
general, the unit reflection vectors project to S(r) in N when the
codimensionisc.

2.3.2 Angle Between the V iew Vector and the Reflection V ector
What is the angle between the view vector V and the space R of
reflections? It isthe angle between V and the closest vector R in R.
This vector is easy to find. A unit reflection R can be expressed by
its tangent and normal components Rt =L and Ry. The unit view
vector can be likewise decomposed into V1 and V.

The components V1, Vi, and Ry are al fixed, so the distance
between R and V is minimized when ||Ry-Vyll is minimized.
That occurs when Ryand Vy are collinear: Ry=AVy for some
scalar A. To see why this is minimal, recall that the vector Ry is
also perpendicular to the point Ry on the sphere SLin the normal
space. It isafamiliar result from calculus that if the distance from
apoint p (off of 1) to a point g (on 1) is minimal, the vector
p-q is perpendicular to S,

In particular, the reflection R is found by requiring its normal
component to be

RN = _”R

== L

SURA NIy

This aligns R with the projection of the view vector onto the
normal space (Figure 3).The cosine of the angle between R and V
isjust the dot product

VIR = (Vr+VN) IRt +Ry)
= VTI:IRT + VNDRN

VN VN
v v

The two inner terms of the expansion are zero because the tangent
and normal spaces are orthogonal. By substituting for the compo-
nents Ry and Ry of the reflection vector, one finds the projection
formula

VN
VIR = VTDLT - VND”LNHW

\RN R

N

Figure 4. The light vectdr reflects off a tangent linBin 3-space
forming a coneR of reflections. The view vect@rprojects toR in
R. The components dfandR in the normal spachl are aligned



which simplifies to produce the specular term for large codimen-
sions:

] VIR = Vs = [IVNIHIEN

It is convenient to use V R to denote this dot product between V
and the nearest unit vector in R.

2.3.3 Summary of Specular Model

Even when the codimension of the manifold is 1, equation (2)
ignores which side of the manifold is being illuminated, reminis-
cent of the diffuse reflection in equation (1). When V is more than
90° away from the reflection space R, the quantity V [R becomes
negative. The fact that it can be negative is unrelated to the codi-
mension, and it is reasonable to clamp it to zero. The rationale is
that when V [R is less than zero, V is so far from the reflection
space that it receives no reflected light at all.

The Phong model for calculating the specular intensity is therefore

©) Ispecular = Ks Isource (Clamp(V [R))Pover

where clamp(x) =0 when x<0. The principles for specular illumi-
nation are thus (1) light travelsin paths of locally minimal length;
and (2) the specular reflection is maximized exactly when the
view vector nears the reflection space.

This seems like a lot of effort to expend just to end up with the
same equation used by Hanson [Hanson93]. But the purpose of
this derivation was not to replace the equations. The purpose was
to replace the descriptions “ad hoc” and “heuristic” by means of a
physically-motivated derivation of the geometric behavior of
light, arguing from principles independent of any particular
dimension.

3 Excess Brightness in Big Dimensions

When the diffuse model is applied to a k-manifold in n-space,
under different values of k and n, a curious phenomenon occurs:
the overall brightness of a manifold increases with the codimen-
sion. Thetorus T2 is a convenient test object for demonstrating the
effect. The surface can be imbedded in 4-space as the cross-
product of two circles by the parametrization

(X, ¥,z w) = (r{cos6, rysind, rp,cos@, r,sing)

where r, and r, are the “outer” and “inner” radii. One can wrap a
curve around the torus T2 by letting ¢ = AB for some constant A.
The curve or surface can be illuminated in 4-space, or else
projected to 3-space and then illuminated there. Illustration 1 (top
row) shows the result. Notice, especially, how uniformly bright
thecasek=1,n=4is

In order to understand the brightness phenomenon, first suppose
there are light sources uniformly distributed in all directions. How
bright is a point p on a surface or a curve? The answer requires
integrating the illumination term over all directions of incoming
light. In n-space, these directions cover the unit (n-1)-sphere.

3.1 Uniform lllumination of a Surface in 3-space

To integrate the uniform illumination of a point on a surface, let
the tangent space T be the xz-plane and let the light vectors fill a
unit sphere. The sphere S has the following parametrization and
area element dS2.

X, ¥,2 = (sn@cosB, sn@sind, cosy)
dS? = |sing| dp do

Thetotal area A(S?) of the sphereis 41t The area-averaged diffuse
illumination | % 3 at p (with k=2, n=3) is given by

123= L kile e [ sina,Ly) o8

A(S)

The constants ky and | g,,rce Will clutter the ensuing calculations; it

is convenient to just ignore them (by assuming they are both equal
to 1, say). Therest of the computations follow this convention.

LOS

Evaluating the integral requires finding an expression for sina. It
is easier to first find cos?a(L, L) =Lt/ |Ly] IfL=(XY, 2
then Lt = (x, 0, 2). The sine can be computed from the cosine as

cos?a(L, L) = 1-sinBsin’g
sina(L, Lt) = |snBsing
Thetotal illumination for a point on a surface is therefore

T 27
'2'3:%1 [ [ lin@sing|singldd d=05
=0 6=0

3.2 Uniform Illumination of a Curve in 3-space

Compare the value | 2 3 to the average il lumination of a point on a
1-dimensional curve whose tangent lies in the (0, 0, 1)-direction.
The area-averaged illumination | - 3 is given by the integral

|13

1 .
D) L g‘szsma(L, L) d
The light's tangent component is Lt = (0, 0, 2), so the sine can be
easily calculated from the cosine.
cosa(L, Lt) = |cosq|
sina(L, Lt) =|sing|

Thetotal illumination for apoint on a curveis therefore

T 27

1 ) .
L3 = ye I .[ lsing| |sing| dO do
®=0 6=0
2 21
_ 1 ;2 o
= E[Z I J’sm @do dp= 2 = 0.785
®=0 6=0

The point is nearly 60% brighter just because the curve has a
lower dimension than the surface does.

3.3 Uniform lllumination of a Curve in 4-space

If the curve isin 4-space, the point becomes brighter still. The 3-
sphere S has the following parametrization and volume element.

X, ¥, zzw) = (sinx sin@cosh, sinx sin@sing, sinx cosg, cosx)
ds® = |sin@sin?y| d6 dedy



p=47635

p=7.6737

p=1 p=2

lllustration 1. Local diffuse illumination (without self-shadowing) of a k-manifold in Euclidean n-space. The infinite paiathgt
vector in these images hasatition (0.70.60.38) in 3-space and (0060.380.0) in 4-space. The upper set of images use the (
model of equation (1). The bottom set compensates for excess brightness by using equation (5) with an exporesieplas in T

Thetotal “surface area’ A(S%) of the 3-sphereis 21 If the tangent
is aligned with the (0, 0, 0, 1) direction, the uniformly-lit point p
has an area-averaged intensity which is calculated as follows.
1 .
1h4= —— [ sinalL,Ly) ds®
A(s) Los

1 T T 2T 8

— i i in2 —

= = dodedy = —— = 0.849

o2 [ | [ lsinxllsin@sin“|dodedy = =~
X=0¢=06=0

Similar calculations show that | 12 = 2/t = 0.673 (acurveillu-
minated in 2-space), and 124 = 2/3 = 0.667 (a surface illumi-
nated in 4-space).

3.4 Compensating for Excess Brightness

Why does the average reflected intensity of a manifold increase
with the dimension of the space that the manifold occupies?
Consider a k-manifold with codimension greater than k. For most
light vectors L, the large-dimensional normal space N is closer to
L than the k-dimensional tangent space T is. Light vectorsthat are
in, or near, the normal space make a point look bright, so most
light vectors reflect brightly when the codimension is large.
Conversely, if the codimension is smaller than k most light vectors
arecloser to T than they areto N: apoint islikely to look dim.

It is not enough simply to adjust the diffuse coefficient ky to
compensate for the codimension. Consider what it means for the
average illumination to approach the limit of 1: the integrand is
bounded above by 1, so it must in fact attain that bound almost
everywhere. In amost every direction that light shines, it brightly
illuminates almost all of the manifold.

Probably no one is very interested in illuminating a flat object
using infinitely many point-light sources distributed uniformly in
all directions. The typical situation is complementary to it: there
may be a single light source, but the manifold's tangents vary
continuously over many (if not al) directions. The visual result is
generally the same as the theory predicts: a manifold becomes
more uniformly bright when its codimension increases.

A simple way to increase the contrast is to exponentiate using a
power p(k, n). This changes the diffuse term in equation (1) to be

) lcomp = Kd lsouceSin Pl Ma(L, Ly)

The brightness is thereby balanced so that a k-manifold in n-space
approximates the contrast displayed by a surface in 3-space.
Whereas the diffuse model could be derived from physical princi-
ples, there is no physical motivation for this tactic of exponentia-
tion. Its merits are that it opposes the tendency for large
codimensions to increase the average brightness of a manifold,
and that it yields an integrable expression for the averageillumina-
tion of a point on a manifold. The only difficulty isin choosing a
suitable value of the exponent p(k, n).

It is natural to set p(2,3) =1 since surface-shading in 3-space is
the standard for visual comprehension. For other values of k and n,
one proceeds by comparing the averaged integrated intensities
1% to the averaged integrated intensities 123 under the new
compensating model of equation (5), finding avalue of p(k, n) that
makes them equal. The integration is somewhat laborious even for
low dimensions, so it is relegated to the appendix. The results are
summarized in Table 1, and are applied in Illustration 1 (bottom
row). As evidence that this normalization technique works, note
that the images on the bottom row of Illustration 1 al look very
similar in the amount of brightness and contrast they exhibit.



A B

C D

lllustration 2. Diffeeent vector spaces can combine illumination effects. (A) Integral curves (of codimensia@u@h tavector fiel® on ¢
sphee. (B) The spher§ (of codimension 1) with self-shadowing. (C) llluminating alVpheglecting any self-shadowingpifin 3 (D)
llluminating V, conditioned by the surface normals Sfa@coding to equation (6).

n=2 n=3 n=4
k=1 p=2 p=4.7635 p=7.6737
k=2 p=1 p=2

Table 1. \lues of the powep used by equation (5) for comp
sated diffuse illumination of kemanifold inn-space.

4 Mixing Dimensions for Global Effects

This section describes how the large-codimension model for illu-
mination (equations 1 and 2) can be used to render anisotropic
reflectors and furry surfaces. These two examples exhibit a mix of
diverse codimensions: 1-dimensional grooves on a 2D surface, or
1-dimensional fibers protruding from a 2D surface. The solution
presented here applies to other combinations of codimensions as
well.

A manifold may be supplied with one or more vector fields. For
example, an isosurface of constant pressure in a fluid flow might
possess 1D velocity vectors at every point together with a 2D
tangent plane. If vector spaces of different dimensions are associ-
ated with a point, oneis free to select which space will participate
in the lighting calculation. In the case of the pressure-surface, the
tangent space reflects like a 2-manifold, whereas the velocity field
reflects like a 1-manifold at each sample point.

4.1 Anisotropy: Inheritance of Self-shadowing

Section 2.2 noted that a manifold of codimension 1 enjoys the
specia property of possessing, at most, two sides. The local illu-
mination model can thus simulate the “global” effect of self-shad-
owing. Consider a surface M with a 2D tangent space T and a 1D
vector field V in 3-space. A point p in M is in shadow if its
outward normal aims away from the light source. With the light
vector directed away from the source, N [L is negative for a self-
shadowed point. Assigning a unique normal vector is only
possible when T (of codimension 1) governs the illumination, not
V (of codimension 2). That is unfortunate when one desiresto use
V, since self-shadowing enhances the fidelity of arendered image.

The remedy is to let V inherit the quantity (namely N[L) that
informs the model of self-shadowing. To illuminate p using V, the
reflection terms arising from V are conditioned by the clamped
cosine term arising from the 2-dimensional space T:

(6) Iconditioned = (clamp( =N IL) (Igiffuset Ispecula)

The diffuse and specular terms are calculated using equations (1)
and (3) for the vector space of high codimension. The vector space
of codimension 1 is consulted in order to provide the normal
vector that offers a global effect (self-shadowing).

Illustration 2 shows various renderings of a sphere in 3-space
endowed with a vector field V which is tangent to the sphere and
aligned in “north-south” directions. Intuitively, thisis like a satin
ball used as a Christmas ornament. The satin fibers are integral
curves (of codimension 2) through V. The materia properties are
defined by the coefficients kympient= 0.1, ky = 0.5, kg= 1.0 and an
intrinsic color (r, g, b) = (1.0, 0.25, 0.30). In the first image, A, the
Kajiya-Hanson model is applied to integral curves through V. In
the second image, B, the surface is illuminated in the usua way,
using the tangent space T (of codimension 1) and applying the
clamp function to =N [L to produce self-shadowing. The third
image, C, shows the result of illuminating according to V and
interpolating the result over the polygon mesh (but without the
benefit of any such dot product —-N [ to be clamped). The fourth
image, D, shows the result of conditioning the solution of image C
according to equation (6) in order to produce the global effect of
self-shadowing.

4.2 Fur: Attenuation by a Vector Field

Equation (6) shows how the tangent space T can be used to simu-
late global effects in illuminating the vector V space over p. The
roles of T and V can be reversed as well. In the “satin ball”
example, each fiber V; lay in the tangent space T, at each point p.
That is, each fiber was constrained to fit the underlying surface.
But that need not be the case. Real, physical fibers may protrude
outward from a surface, partialy shadowing the surface from
light. It is possible to simulate this global effect by attenuating the
light that reaches T,,. A simple model for attenuation requires the
incoming energy to decay exponentially with the distance that it
passes through an absorbing medium of density p (p being
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lllustration 3. A bumpy torus and a textar vector field mtruding flom it ae illuminated with the mixed model. In A, the vector field is
illuminated in isolation using equation (1). In B, the underlying surface conditions the illuminated vector fietinrgctmequation (6),
producing self-shadowing. In C, self-shadowing is augmented with attenuation using equation (8).

between 0 and 1). That medium is the vector fieldhe light restricted to point light sources. It shows how thdudé and
generally passes through the medium twice: once on the way in,specular reflection of kmanifold inn-space can be derived by
and again on its reflected path back out. In either case, the distancappealing to four basic principles:

that it passes through the medium is given by
©) d=h/sina

whereh is the height (perpendicular 1q,) of a fiber ap anda is

¢ The re-radiated lighd#’intensity varies with the erggr deliv-
ered by the incident beam;

* The manifold re-radiates isotropically;

the angle betweefi, and the light (entering) or betwe&y and
the eye (exiting). The attenuated light therefore hasggrggen
given by

* Light travels in paths of locally minimal length; and

¢ The specular reflection is maximized exactly when the view
vector nears the reflection space.

A manifold generally becomes brighter ingar dimensions. This
paper describes how to ameliorate thieafby exponentiating

part of the difuse term. The exponent can be found via an aver-
aged integration so that the total contrast matches that of a surface
in 3-space.

(8) latten= I'souce (1'p)d

lllustration 3 shows how conditioning and attenuating the illumi-
nation of a mixed-dimensional object can yield convincing results
on a torus with radii; = 1.5,r, = 0.75. The fibers have a material
property defined by the cdigients Kynpient= 0.1, kg=0.9,
Kspec= 0.1, andp = 0.02. In imageA, the vector fields are illumi-
nated according to the local model of equatihnlf imageB, the

The lighting model can be enhanced to produce glolfedtef A

vector space of lge codimension can inherit self-shadowing
vectors are conditioned according to equat&rging the surface from an underlying vector space of codimension 1, creating real-
normals of the underlying torus. In ima@ethe light at the base  istic anisotropically reflective surfaces in 3-space. Light may be
of each vector is both conditioned and attenuated. Light at the tip attenuated as it passes through one vector space to reach another
is conditioned onlyThe diference betweeB andC is especially to create déctive images of a furry surface in 3-space. The tech-
visible near the shadow terminator: the fibers blend togetH&r in  niques may also be applied to visualize vector fields over mani-
but are individually visible iIC. folds of higher dimension in lge-dimensional spaces.
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