
Resolution Independent Curve Rendering
using

Programmable Graphics Hardware

Charles Loop∗
Microsoft Research

Jim Blinn†

Microsoft Research

Abstract

We present a method for resolution independent rendering of paths
and bounded regions, defined by quadratic and cubic spline curves,
that leverages the parallelism of programmable graphics hardware
to achieve high performance. A simple implicit equation for a para-
metric curve is found in a space that can be thought of as an analog
to texture space. The image of a curve’s Bézier control points are
found in this space and assigned to the control points as texture co-
ordinates. When the triangle(s) corresponding to the Bézier curve
control hull are rendered, a pixel shader program evaluates the im-
plicit equation for a pixel’s interpolated texture coordinates to deter-
mine an inside/outside test for the curve. We extend our technique
to handle anti-aliasing of boundaries. We also construct a vector
image from mosaics of triangulated Bézier control points and show
how to deform such images to create resolution independent texture
on three dimensional objects.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation;

Keywords: curve rendering, resolution independence, vector rep-
resentations, graphics hardware algorithms

1 Introduction

The main ideas of this paper are extensions of our solution to the
following simple problem. Suppose we want to render a triangle,
whose vertices are the control points of a quadratic Bézier curve,
such that the parts inside and outside the curve are shaded differ-
ently. Furthermore, we assume that our triangle might be embedded
in a three dimensional space and viewed in perspective.

One solution might be to densely sample the curve and form many
more smaller triangles and shade the inside and outside triangles
accordingly. Alternatively, we might create a texture image of the
untransformed triangle and mark texels as inside or outside, and
then render the triangle with this texture. While both of these ap-
proaches will work, they are both plagued by sampling artifacts. If
we zoom in on the triangle using the sampled curve, we will see
the facets of the piecewise linear approximation to the curve. If
we zoom in on the textured triangle, we will see the texels of the
underlying texture image.

∗e-mail: cloop@microsoft.com
†e-mail: blinn@microsoft.com

If we had an implicit curve, we could solve the problem by trans-
forming this curve to screen space and evaluating the new implicit
curve at pixel locations. Values less than zero are inside, values
greater than or equal to zero are outside (by arbitrary choice). With
a bit of computation one can readily implicitize a parametric curve.
However, the screen space projection of the curve, and hence its im-
plicit equation, might change at every frame. Finding the implicit
form of the curve every frame could be fairly expensive.

Fortunately, there is a better way. We observe that the implicit form
of any rational parametric quadratic curve is a conic section; and
that any conic section is the projected image of single canonical
parabola. This leads to a simple solution to our original problem.

Suppose the vertices of our triangle are the quadratic Bézier con-
trol points b0, b1, and b2. We associate with these vertices the [u v]
texture coordinates [0 0], [ 1

2 0] and [1 1], see Figure 1. During raster-
ization, the Graphics Processing Unit (GPU) will calculate a texture
coordinate for each pixel on the interior of the triangle by interpo-
lating the texture coordinates of the triangle vertices. We determine
if the pixel is inside or outside the curve by evaluating

f (u,v) = u2 − v

in a pixel shader program. If f (u,v) < 0 then the pixel is inside the
curve, otherwise it is outside.

[0  0]

[1  1]

b0

b1

b2

Canonical Texture Space Screen Space

[    0]1
2

Figure 1: The canonical quadratic curve element (left), a triangle
formed by the control points of a quadratic Bézier curve (right).

We are interested in rendering more than a single triangle that con-
tains a quadratic curve. Our goal is to construct mosaics of triangles
that contain quadratic and cubic curves. Our result is a mechanism
for rendering vector geometry that has the following properties:

- resolution independence,

- compact geometric representation,

- high performance.

Resolution independence means that the curved elements of a vec-
tor based image are always curved, independent of viewpoint. Our
representation consists of a collection of triangles that is propor-
tional to the design time complexity of the vector image; this is of-
ten much smaller than a corresponding raster image of comparable
quality. Our scheme is fast since our shader programs are small and



run in parallel on programmable graphics hardware with multiple
pixel pipelines.

Previous work on implicit curve rendering concentrates on interval
based searches for pixels containing the curve, and on the topol-
ogy of extreme points [Arnon 1983; Taubin 1994; Tupper 2001].
The rendering of ellipsoids using a GPU has been considered in
[Gumhold 2003] where the algebraic form is used to determine
if a pixel-ray intersects the surface. Embedding sharp linear fea-
tures into images to obtain resolution independence while leverag-
ing GPU pixel processing has been done in [Tumblin and Choud-
hury 2004] and [Sen 2004]. Curved elements have been embed-
ded into texture images at the texel level in [Ramanarayanan et al.
2004]. However, the curves are parametric, requiring a complex
winding rule test (performed on the CPU) to determine if a pixel
is inside or outside of a closed region. We consider a new class of
algorithms that are made practical by the speed of modern GPU’s.

This paper is organized as follows. Basic properties of program-
mable GPUs, and parametric and implicit curves are covered in
Section 2. In Section 3, we present our algorithm for rendering
quadratic curves, and applied it to the problem of font rendering.
The more complex cubic case is considered in Section 4. The im-
portant issue of anti-aliasing is addressed in Section 5, and we show
how to deal with degenerate viewpoints in Section 6. We discuss
aspects of this work in Section 7, and make concluding remarks in
Section 8.

2 Preliminaries

2.1 Programmable Graphics Hardware

Graphics hardware has evolved from a fixed function to a program-
mable pipeline in recent years. The programmable pipeline is based
on vertex and pixel shaders. A vertex shader program executes on
each vertex of a graphics primitive, while a pixel shader program
executes on every pixel of a rasterized triangle. The data encapsu-
lated in a vertex is a user defined collection of floating point num-
bers, much like a C struct. The vertex shader program can modify
this, or invent new data, and pass the result along to a pixel shader.
The input to a pixel shader is an interpolation of the vertex data on
the vertices of a triangle. This interpolation is non-linear, involving
the projective transform that maps a triangle from model to screen
space. The pixel shader can output a color value that is written to
the frame buffer.

2.2 Parametric Curves

We assume familiarity with basic concepts of affine and projective
geometry. We work in projective 2D space where points are rep-
resented by a homogeneous 3-tuple [x y w ]; and the position of a
point in the plane is [x/w y/w ].

A parametric curve is a vector valued function of a single variable.
Points on the curve are found by sampling the function at parameter
values t. We write a rational parametric curve of degree n as the
product

C (t) = t · C,

where

t = [ 1 t · · · tn ], and C =

⎡
⎢⎢⎣

x0 y0 w0

x1 y1 w1

.

.

.
.
.
.

.

.

.
xn yn wn

⎤
⎥⎥⎦.

The vector t contains power basis functions and C is the coefficient
matrix that determines the shape of the curve. The rational curve
C(t) has components [x(t) y(t) w(t) ]. In the special case where
w(t) = 1, we refer to C(t) as an integral curve. Commonly, the
parameter t is restricted to the interval [0,1] and we think of C(t) as
defining a curve segment.

Parametric curves may be represented in any linearly independent
basis. We will also represent curves in terms of the Bernstein (a.k.a
Bézier) basis

B(t) = [ Bn
0(t) Bn

1(t) · · · Bn
n(t) ] · B,

where the Bernstein basis functions are defined as

Bn
i (t) =

(n
i

)
(1− t)n−i ti, and B = [ b0 b1 · · · bn ]T ,

is an n × 3 matrix of Bézier control points bi. Changing from
power basis to Bernstein basis is an invertible linear operation im-
plemented as a multiplication of the coefficient matrix by an n× n
change of basis matrix. For quadratics and cubics, these matrices
are

M2 =

[
1 0 0

−2 2 0
1 −2 1

]
, M−1

2 =

[
1 0 0
1 1

2 0
1 1 1

]
,

M3 =

⎡
⎢⎣

1 0 0 0
−3 3 0 0

3 −6 3 0
−1 3 −3 1

⎤
⎥⎦, M−1

3 =

⎡
⎢⎣

1 0 0 0
1 1

3 0 0
1 2

3
1
3 0

1 1 1 1

⎤
⎥⎦.

Therefore, the power basis coefficients of a Bézier curve are

C = Mi ·B.

2.3 Implicit Curves

An implicit curve is the zero set of a function of two variables

c(x,y) = 0.

That is, the set of points [x y ] in the plane where c evaluates to
zero. The relationship between implicit and parametric forms was
the topic of Sederberg’s Ph.D. thesis [Sederberg 1983]. He points
out that many of the tools needed to convert between parametric and
implicit forms have been known from elimination theory for well
over a century. Adopting the notation cn(·) to mean a polynomial
of maximum degree n, we repeat the result noted by Sederberg:

Any curve which is defined parametrically by the equation

x =
xn(t)
wn(t)

, y =
yn(t)
wn(t)

will have an implicit equation of the form

cn(x,y) = 0.

It is worth noting that the reverse is not true in general; that is,
not all implicit curves can be parameterized by rational polynomi-
als. For our purposes (assuming no degree lowering degeneracies)
quadratic parametric curves will have degree 2 implicit equations
(conic sections); and cubic parametric curves will have degree 3
implicit equations. Note that many parametric curves might have
the same implicit form. This is because parametric curves represent
a particular parametrization of the underlying algebraic curve. A
given algebraic curve may have infinitely many parameterizations.



3 Rendering Quadratic Curves

After noting the basic fact about quadratic curves that makes our al-
gorithm possible, we apply the technique to the problem of render-
ing two dimensional text embedded in a three dimensional space.

Restating the claim made in the introduction, we have

Claim 1 Any rational quadratic parametric curve has an implicit
form that is a projected image of the algebraic curve

f (u, v) = u2 − v. (1)

Proof : Begin with an arbitrary rational quadratic parametric curve

C (t) = t · C

where

t =
[

1 t t2
]
, and C =

[
x0 y0 w0

x1 y1 w1

x2 y2 w2

]
.

Compare this to the curve

F(t) = t ·F =
[

t t2 1
]
, where F =

[
0 0 1
1 0 0
0 1 0

]
.

The curve F has u(t) = t and v(t) = t2 and so has the desired im-
plicit equation

f (u,v) = u2 − v = 0.

We seek a transform Ψ such that

C = F ·Ψ−1.

Clearly Ψ−1 = F−1 ·C, so we may write C(t) = t · (F ·Ψ−1). That
is, C(t) belongs to the transformed image of the curve f (u,v). �
We assign the Bézier control points of our canonical curve as tex-
ture coordinates on the vertices of a triangle that correspond to the
control points of an arbitrary quadratic curve. These are found by
applying the change of basis matrix to the coefficients of the canon-
ical curve

M−1
2 ·F =

[
0 0 1
1
2 0 1
1 1 1

]
.

We can ignore the constant w = 1 component and use [0 0], [ 1
2 0],

and [1 1] as [u v] texture coordinates corresponding to b0, b1, and b2
of any triangle containing a quadratic curve. We render this triangle
using a pixel shader program that evaluates Equation (1).

The color of a pixel depends on the sign of f (u,v). This implicit
curve will partition the plane into two sets. In texture coordinates,
points above the parabola will be associated with negative values
of f (u,v), and below with positive values of f (u,v). We arbitrarily
choose to associate the inside with negative sign. This implies that
all triangles containing curves will treat the convex region of the
curve as inside. However, we want to have shapes containing both
convex and concave curve pieces, see Figure 2.

There are several ways to handle this. Two different shaders could
be used, one that evaluates u2 − v and another that evaluates v−
u2; however, shader context switching can hurt performance. In
practice, we add an extra floating point number with value ±1 to
each triangle vertex; this is used to change the sign of f (u,v) to get
both shapes.

We now apply our technique to the problem of rendering arbitrarily
projected 2D text.

a) b)

Figure 2: The quadratic curve contained in a triangle can have two
possible orientations: a) convex, and b) concave orientation.

3.1 Font Rendering

Our simple pixel shader for rendering triangles that contain
quadratic curves is sufficient for rendering TrueType font outlines,
see Figure 3. Each character, or glyph, outline consists of a set of
contours, corresponding to closed curves. Each curve is defined
by an ordered set of on-curve and off-curve control points. The
on-curve points are used to create straight edges and discontinu-
ities. The off-curve points are control points of quadratic B-spline
curves. By convention, the region of the glyph to the right of each
oriented outline is considered to be on the inside of the shape.

First, we need to convert the B-spline curves into Bézier form by in-
serting a new point between each pair of adjacent off-curve points.
These newly inserted points will lie on the curve and can be thought
of as implied on-curve points. Once these points have been inserted
into the boundary, every off-curve point will correspond to the mid-
dle point of a quadratic Bézier control point triangle b0 b1 b2.

Before proceeding we must check for, and remove, triangle over-
laps. Although somewhat rare, this is done to avoid overdraw and
possible visual artifacts. If an overlap is detected, we subdivide the
triangle with the larger area and repeat until no more overlaps ex-
ist, see Figure 4. This process will terminate provided the original
boundary curves do not (self) intersect or osculate. Dealing with
these conditions is future work.

Figure 4: To avoid overdraw and visual artifacts, we do not allow
overlapping triangles. We remove overlaps by subdividing the tri-
angle with the larger area.

Next, we apply a constrained Delaunay triangulation to the control
points, where we require each contour edge and triangle containing
a Bézier curve to be preserved in the triangulation. After removal of
those triangles not on the inside of the shape, we are left with three
types of triangles. Interior triangles that do not contain a curve,
and both orientations of triangles that contain a quadratic curve.
We use our quadratic curve shader program to render the triangles
containing a curve; the triangles that do not contain curves may be
rasterized in a conventional way, or given texture coordinates that
ensure the triangle is entirely inside (e.g. [0 1], [0 1], [0 1]).

The overlap removal and triangulation is a one-time preprocess that
takes place on the CPU; the number of triangles is proportional to
the complexity of the font outline and remains fixed. The triangu-
lated font outlines could conceivably be stored on disk for reuse
without any need for the tessellation framework. Once the triangles
have been uploaded to GPU memory, they may be transformed by
an arbitrary projective transform to yield a rendered image that is
resolution independent.



Figure 3: A two contour TrueType font outline on the left; filled dots represent on-curve points, hollow dots represent off-curve points. The
outline is triangulated together with implied on-curve points as shown in the middle. The green triangles are interior to the shape and are
entirely filled. The red (convex) and blue (concave) curves within triangles are rendered using our pixel shader program. The resulting shape
on the right, can be arbitrarily transformed projectively and remains resolution independent.

3.2 Rendering Rational Quadratic Curves

While integral quadratic curves are sufficient for many applications,
such as font rendering, it is sometime useful to be able to render
rational quadratic curves. The algorithm presented Section 3 cor-
rectly renders integral quadratic curves under projective transfor-
mations, such that the image curves are rational, but the underlying
curves in design space are not rational.

We can extend our rendering technique to handle the more general
class of quadratic curves that are rational in design space. We can
write an implicit quadratic curve as

c(x,y,w) = k2 − lm (2)

where l, and m are the homogeneous equations of any two lines
tangent to the curve, and k is the line connecting these points of
tangency. More specifically, k = ax+by+ cw for some a,b,c, with
similar expressions for l, m. With appropriate choice of functionals
k, l, and m, any conic section can be represented in this way. In the
special case where m = 1, the curve is a parabola. Furthermore, if
k = u and l = v then Equation (1) simplifies to Equation (2).

The three linear functionals k, l, and m are exactly the functions
that graphics hardware specializes in evaluating (with appropriate
perspective correction) for each pixel in a triangle, so the expression
in Equation (2) fits well with the hardware. The idea of reducing an
implicit equation to a sum of products of a few linear functionals is
the key to extending our rendering approach to handle cubic curves.

4 Rendering Cubic Curves

Rendering cubic curves is important since many commercial draw-
ing packages produce vector art representations that contain cubics.
The observation that made shading of quadratic curves efficient was
that all quadratics are the projected image of a single canonical
quadratic that has a simple algebraic form. For cubics, any para-
metric curve is the projected image of one of three canonical curves
illustrated in Figure 5 [Stone and DeRose 1989; Blinn 2003], (plus
a quadratic, straight line, and point as degenerate cases). It has been
known for some time [Salmon 1852] that all three of these curves

can be expressed implicitly in one simple homogeneous algebraic
form:

c(x,y,w) = k3 − lmn, (3)

Where k, l,m, and n are the homogeneous equations of the lines
k, l,m and n respectively, in Figure 5.

k

l
m

n
l

mn

k

l m n

k

a) b) c)

Figure 5: a) Serpentine curve. This curve has three collinear in-
flection points (on line k) with tangent lines l,m and n at those
inflections. b) Loop curve. This curve has one inflection and one
double point with k the line through them. The lines l and m are
the tangents to the curve at the double point and n is the tangent at
the inflection. c) Cusp curve. This curve has one inflection point
and one cusp, with k the line through them. The line l = m is the
tangent at the cusp and n is the tangent at the inflection.

4.1 Algorithm Overview

Our algorithm for rendering parametric cubics is as follows. For
each cubic curve we start with four Bézier control points. We then
calculate values for the four quantities k, l,m, and n at each control
point to use as texture coordinates. These values are equal to the dot
product of the control point coordinates with the lines k, l, m and
n. We tessellate each Bézier curve segment as shown in Figure 7
and pass the triangles to the hardware. The graphics hardware will
properly interpolate the k, l,m,n values so that a simple pixel shader
needs only evaluate Equation 3 using these interpolated values.

4.2 Curve Categorization

As a first step in finding k, l,m,n we determine which of the cases
of Figure 5 we have. This requires finding out how many inflection
points the curve has. An inflection point is a point on the curve
where the curvature vanishes; this occurs for values of t such that



the cross product of the first and second derivatives Ċ(t)×C̈(t) = 0.
As shown in [Blinn 2003]) the problem of finding the parameter
values of the inflection points of a given cubic curve C(t) can be
converted to finding a special scalar valued cubic polynomial I(t),
whose roots are also at the inflection points parameters. We find the
explicit form of I(t) as follows.

First convert the Bézier control points, b0, . . . ,b3 to the power ba-
sis by the product C = M3 · B. Then compute the vector d =
[d0 d1 d2 d3 ] where

d0 = det

[
x3 y3 w3

x2 y2 w2

x1 y1 w1

]
, d1 = −det

[
x3 y3 w3

x2 y2 w2

x0 y0 w0

]
,

d2 = det

[
x3 y3 w3

x1 y1 w1

x0 y0 w0

]
, d3 = −det

[
x2 y2 w2

x1 y1 w1

x0 y0 w0

]
.

Note that d is (up to a scalar multiple) the unique vector that is
perpendicular to the columns of the coefficient matrix C, that is
d ·C = [ 0 0 0 ]. Clearly, a projective transform of the curve will
not change d, since d · (C ·P) = (d ·C) ·P = [ 0 0 0 ].

Given the vector d, the inflection point polynomial is then

I (t,s) = d0t3 −3d1t2s+3d2ts2 −d3s3

(see [Blinn 2003] for the derivation). Note that, since an inflection
or other singularity may occur at a parametric value of infinity, we
have expressed this polynomial in terms of the homogeneous para-
meter pair (t,s). The number and multiplicity of real roots to this
polynomial will determine the curve type as follows

1. 3 distinct real roots - Serpentine

2. 1 real root and 2 complex roots - Loop

3. 1 double root and a distinct single root - Cusp

4. 1 triple root - Curve is a quadratic.

5. I(t,s) is identically zero – Curve is a line or point.

To form a numerical test for the root count we evaluate the discrim-
inant of I(t,s) by the calculations

δ1 = d0 d2 −d2
1 ,

δ2 = d1 d2 −d0 d3,

δ3 = d1 d3 −d2
2 ,

discr (I) = 4δ1δ3 −δ 2
2 .

If the discriminant is positive we have case 1, if negative we have
case 2, and if zero we have case 3, or if additionally δ1 = δ2 = δ3 =
0 we have case 4, or if all d0 = · · · = d3 = 0 we have case 5.

The loop (case 2) has a double point at the intersection of lines k, l,
and m. The two parameter values at this double point can be found
as the solutions of the quadratic polynomial H(t,s), the Hessian of
I(t,s) defined as

H(t,s) = IssItt − I2
st ,

= 36
(

δ1t2 +δ2ts+δ3s2
)

.

4.3 Finding klmn

In this section we show the calculations that will find the values of
k, l,m, and n to use as texture coordinates at the control vertices of

a rational Bézier curve. Our aim is to give a high level overview
of the procedure in the most general setting; in the next section
we specialize to the integral cubic case and work out more of the
details.

We assume that a given cubic curve C(t,s) has been classi-
fied according to the method just given, and the three roots
(tl , sl),(tm, sm), (tn, sn) of the cubic inflection point polynomial
I(t,s) are known. If the curve is a loop, we assume that the pa-
rameter values (td , sd) and (te, se) of the double point have been
found as the roots of the quadratic polynomial H(t,s). In the case
of a cusp, the double point parameters coincide at the parameter
value (td , sd) = (te, se).

Our strategy is to find cubic polynomials k(t,s), l(t,s),m(t,s),
and n(t,s) that represent the values of the four linear function-
als k, l,m,n evaluated at points on the curve C(t,s), for example
k(t,s) = C(t,s) ·k. These polynomials are constructed differently
for each of the three cubic curve types by considering how C(t,s)
behaves as it passes through the intersection points of line k with
lines l,m, and n. These points are all zeroes of k(t,s), l(t,s),m(t,s),
and n(t,s), so we can construct these polynomials as products of
known linear factors. We label these linear factors with the upper
case letter corresponding the subscript of the parameter value from
which is was constructed,that is

L = (stl − tsl), M = (stm − tsm), N = (stn − tsn),
D = (std − tsd), E = (ste − tse).

The following table shows the factored forms of k(t,s), l(t,s),
m(t,s), and n(t,s) for each of the cubic curve types:

serpentine loop cusp

k(t,s) LMN DEN D2N

l(t,s) L3 D2E D3

m(t,s) M3 DE2 D3

n(t,s) N3 N3 N3

Table 1: Factored forms of klmn polynomials.

Note that, for each curve type above, the relation k3 − lmn = 0
is satisfied. The 4D texture coordinates to be assigned to the
Bézier control points correspond to the Bézier coefficients of
k(t,s), l(t,s),m(t,s), and n(t,s). The Bézier coefficients are found
by expanding the factored forms of these polynomials, and collect-
ing power basis coefficients into a 4× 4 matrix F, then taking the
product M−1

3 F.

Note that F is not unique; any homogeneous scale of one or more
of the roots (ti, si) will generate a different F. In particular, a sign
change will flip the orientation of an implicit curve, reversing the
roles of inside and outside. In order to resolve this ambiguity, we
apply an orientation test to make sure the inside of the curve is to
the right (by convention) of the direction of parametric travel as
(t/s) increases.

Our orientation test is based on comparing the tangent line formula
calculated from the parametric form, C(t,s)×Ċ(t,s), with that cal-
culated by taking the gradient of the implicit form, ∇c(x,y,w) and
evaluating it at the same point, ∇c(C(t,s)). These will be the same
up to a scale factor

α(t,s)
(
C(t,s)×Ċ(t,s)

)
= ∇c(C(t,s)).

By our convention, if α(t,s) > 0 we must flip the signs of k and l
to properly orient the implicit curve.



To calculate the gradient of c(x,y,w) we apply the chain rule to
f = k3 − lmn

∇c(x,y,w) =
∂ f
∂k

∇k +
∂ f
∂ l

∇l +
∂ f
∂m

∇m+
∂ f
∂n

∇n,

= 3k2∇k−mn∇l− ln∇m− lm∇n.

The gradients of klmn are constants; they are just the columns of the
matrix Ψ = [k l m n], a 3×4 matrix whose columns represent the
lines in Figure 5. So we can write ∇c(x,y,w) as the matrix product

∇c(x,y,w) = Ψ ·
[
3k2 −mn − ln − lm

]T
.

We can compute the matrix Ψ by noting that

CΨ = F.

Since C is not square, we use the pseudo inverse to compute Ψ, that
is

Ψ =
(

CT C
)−1

CT F.

In the next section we show a simplified situation and the above
calculations are carried out explicitly.

4.4 Integral Cubics

Solving for the roots of I(t,s) will, for arbitrary rational cubic
curves, require solving a cubic equation. For simplicity, we have
restricted our input curves to be integral, meaning that the w value
of each control point equals 1. This makes the coefficients w1 =
w2 = w3 = 0, and makes the value d0 = 0. The inflection point
polynomial and its discriminant reduce to

Iintegral (t,s) = s
(
−3d1t2 +3d2ts−d3s2

)
,

discr
(
Iintegral

)
= d2

1

(
3d2

2 −4d3d1

)
.

In this case one inflection point is always at (t,s) = (1,0) and the
other two require solving only a quadratic equation. We will iden-
tify the root at (1,0) with the intersection of line n with line k. The
line n will be the line-at-infinity, [0 0 1]T . Since the control points
bi of integral curves always have w = 1, bi ·n = 1 so the interpolated
value of n will always be 1. This allows us to eliminate one of our
texture coordinate slots and simplify our shader equation further to

c(x,y) = k3 − l m. (4)

Note that this does not preclude perspective projection of the inte-
gral curve. This will work correctly and still maintain n = 1. Only
if the original model had non-unit values for their w components
(making them no longer be integral curves) will the interpolated n
be other than 1.

In the integral case where d0 = 0, the formula for the Hessian sim-
plifies to

H(t,s) = 36
((

d3d1 −d2
2

)
s2 +d1d2st −d2

1t2
)

Note that if H(t,s) has no real roots (meaning that we have a ser-
pentine curve) we will have H(t,s) < 0 for all (t, s).

To handle all the possible geometric situations we must consider
the following six cases:

1. The Serpentine d1 �= 0, 3d2
2 −4d1d3 > 0

For integral curves the three inflection points occur at the following
(t,s) parameter values (the homogeneous roots of Iintegral(t,s)):

(tl ,sl) =
(

d2 +
1√
3

√
3d2

2 −4d1d3, 2d1

)
,

(tm,sm) =
(

d2 − 1√
3

√
3d2

2 −4d1d3, 2d1

)
,

(tn,sn) = (1, 0)

(Actually a somewhat more stable quadratic solution technique
should be used [Press et al. 1992], but the above is shown for sim-
plicity). Since any scalar multiple of (tl , sl) or (tm, sm) represent
the same roots, it is a good idea to scale these homogeneous 2D
vectors to be unit length to avoid possible exponent overflows.

Putting these root values into the factor forms of the polynomials
shown in Table 1 and multiplying them out to get the power basis
coefficients of klmn gives

F =

⎡
⎢⎣

tl tm t3
l t3

m 1
−smtl − sltm −3slt2

l −3smt2
m 0

sl sm 3s2
l tl 3s2

mtm 0
0 −s3

l −s3
m 0

⎤
⎥⎦ .

The ith row of M−1
3 F is assigned to point bi as a texture coordinate.

Evaluation of our orientation test for the case d0 = 0, d1 �= 0 shows

α(t,s) = 32
3 d3

1 H(t,s)

(This formula also applies to cases 2 and 3a below). Since H(t,s)
is negative for the serpentine curve, this means that we must flip the
sign of k and l if d1 is negative.

2. The Loop d1 �= 0, 3d2
2 −4d1d3 < 0

The double point occurs at the roots of H(t,s), which are:

(td ,sd) =
(

d2 +
√

4d1d3 −3d2
2 ,2d1

)
,

(te,se) =
(

d2 −
√

4d1d3 −3d2
2 ,2d1

)
.

These roots are used to compute the k(t,s), l(t,s) and m(t,s) for the
loop case using Table 1; resulting in the power basis coefficients
matrix

F =

⎡
⎢⎣

tdte t2
d te tdt2

e 1
−setd − sdte −set2

d −2sdtetd −sdt2
e −2setdte 0

sdse tes2
d +2setdsd tds2

e +2sdtese 0
0 −s2

dse −sds2
e 0

⎤
⎥⎦ .

If one of the parameter values (td/sd) or (te/se) should lie in the
interval [0,1], then the double point will cause a shading anom-
aly. We see this in the left side of Figure 6 where the desired in-
side/outside decision for the function changes when passing over
the double point. We eliminate this possibility by subdividing the
curve at the offending parameter value. This will move the dou-
ble point to t/s = 0 and t/s = 1 for the two subcurves, and guar-
antee that α(t,s) = 32/3d3

1 H(t,s) will not change signs over the
parameter interval [0,1] of each curve. Due to the subdivision of
a curve, either H(0) or H(1) will be zero for each subcurve. Our
orientation test for loop curves is based on the larger (in absolute
value) of H(0) and H(1) to handle the case where one of these is
zero. If d1H(·) is positive, then we flip the signs of k and l.



Figure 6: If a cubic curve has a double point in the interval [0,1],
then the curve is subdivided at the double point and treated as two
curves.

3a. Cusp with inflection at infinity d1 �= 0, 3d2
2 −4d1d3 = 0

This is the boundary case between the above two situations. The
two roots of the quadratic portion of I(t,s) are equal

(td ,sd) = (d2,2d1)

so lines l and m are the same. This case can actually be merged
with case 1, since that case does the right thing if 3d2

2 −4d1d3 = 0.

3b. Cusp with cusp at infinity d1 = 0, d2 �= 0

The inflection point polynomial is

I (t,s) = s2 (3d2t −d3s)

which has a double root at parametric infinity (s = 0). This means
that the cusp is at infinity and the inflection point is local. This is a
perfectly possible situation for integral curves. We assign the roots
of I as follows, exchanging the roles of lines l and n from Figure 5.

(t,s)l = (d3,3d2)
(t,s)m = (1,0)
(t,s)n = (1,0)

The resulting power basis coefficient matrix for this case is

F =

⎡
⎢⎣

tl t3
l 1 1

−sl −3slt2
l 0 0

0 3s2
l tl 0 0

0 −s3
l 0 0

⎤
⎥⎦ .

Conversion to Bézier form reveals that the interpolated values of
both m and n are constant at 1. To keep the shader uniform for all
curves we retain the m interpolation and just plug the value 1 into
the m slot of all four control points.

To construct an orientation test, we first note that when d1 = 0 the
Hessian simplifies to

H(t,s) = −36d2
2 s2.

Further derivations show that

α(t,s) = 9
2 H(t,s).

Since this is negative for all (t, s) we never have to flip the signs of
k and l.

4. The curve is really a quadratic d1 = d2 = 0, d3 �= 0

In this case the curve could be rendered using the quadratic tech-
niques of Section 3. However this requires a different pixel shader
equation to be evaluated. We have seen that this is the function
c(x,y) = k2 − lm. For integral curves, the line m is the line-at-
infinity and its interpolated value is constant at 1, so the quadratic

shader function only needs to be c(x,y) = k2 − l as derived in sec-
tion 3. We can therefore cause a quadratic curve to masquerade
as a cubic curve (and use the existing cubic machinery) by simply
multiplying through by k yielding

c(x,y) = k3 − lk

We simply put a copy of the texture coordinates for k into the m
slot of the tessellated Bézier control mesh. This actually evaluates
an implicit function that is the product of the desired curve with
the line k. This is generally not a problem since line k does not
intersect the Bézier control mesh except at just the single point b0.

5. The curve is really a line or point d1 = d2 = d3 = 0

This final degeneration of the curve into a line (point) takes place
only if all four control points are collinear (coincident). In that case
the tessellated triangles have zero area and can be eliminated from
the mesh.

One potential difficulty with our categorization is the possibility of
numerical problems encountered when, say d1 is almost (but not
exactly) zero. While this has not been a problem in our experi-
ence, it can be addressed by finding a threshold for d1 where the
exact d1 = 0 curve is within subpixel accuracy of the approxima-
tion. However, if curve control points are defined in a fixed point
design space (as is the case in most graphic design scenarios) then
the di’s are computed exactly and the categorization is unambigu-
ous.

4.5 Tessellation of Cubics

We assign texture coordinates from the product M−1
3 F, to the con-

trol points of a cubic Bézier curve and locally triangulate these 4
points. We constrain the edges of these triangles and globally trian-
gulate all of the control points, honoring the constrained edges and
enforcing the Deluanay condition elsewhere. We remove the trian-
gles that do not belong to the interior of the shape, see Figure 7.
We upload the triangles to the GPU for rendering using a shader
program that evaluates Equation (4).

5 Anti-Aliasing

The GPU will sample the implicit equations given in Sections 3
and 4 at pixel centers, producing images with aliasing artifacts. We
can reduce these artifacts by performing anti-aliasing calculations
in our pixel shader code. If we know the distance from a pixel to a
curve, we can estimate a filtered alpha value for the pixel by either
a 1D texture lookup or by evaluating a simple blending function
[Gupta and Sproull 1981; Turkowski 1982].

All of our previous calculations have taken place in curve design
space [x y], we now move to pixel space [X Y ]. We approximate
the distance from a pixel to a curve g(X , Y ) = 0 as follows. The
gradient

∇g(X , Y ) =
[

∂g
∂X

(X ,Y )
∂g
∂Y

(X ,Y )
]

is a vector perpendicular to the curve when [X Y ] is on the curve.
For pixels [X Y ] that are close to the curve, the vector ∇g is still
nearly perpendicular to the curve. We use the gradient to define an
approximate signed distance function from a pixel to a curve to be

d(X ,Y ) =
g(X , Y )

‖∇g(X , Y )‖ .



Figure 7: A region bounded by cubic Bézier curves (left). Control points are assigned texture coordinates and the shape is triangulated
(middle). The triangles are rendered using our pixel shader, resulting in a resolution independent projectively transformed shape (right).

This distance function assumes that g(X ,Y ) is known in screen
space. The implicit curves evaluated in our pixel shader programs
are defined in texture space, not screen space.

We can find g(X ,Y ) as a composition. If all curve control points lie
in the z = 0 plane, then the viewing transform is a mapping from
this plane to the screen plane represented by the 3× 3 matrix V,
formed by removing the third row and column from the usual 4×4
composite viewing matrix. If c(x,y) is a design space curve, we can
write its screen space image as

g(X ,Y ) = c(V−1(X , Y )),

= f (Ψ(V−1(X , Y ))),
= f (Φ(X , Y,)),

where Ψ is the mapping from curve design space to texture space,
and Φ = Ψ◦V−1 is the mapping from screen space to texture space.
We do not have direct access to Φ; rather, it is implemented by the
GPU as it interpolates the texture coordinates assigned to triangle
vertices. The GPU evaluates f using pixel shader code.

There are several ways to compute ∇g(X ,Y ). Newer hardware im-
plementations support gradient instructions. By arranging for 2×2
pixel blocks to execute in parallel, the hardware is able to take dif-
ferences of values local to adjacent pixels. These differences are
used to approximate gradients with respect to pixel coordinates in
pixel shaders. If gradient instructions are available, ∇g can be ap-
proximated from the values of g(X ,Y ) computed at adjacent pixels.
Or, we can apply the chain rule to get

∇g(X ,Y ) = ∇ f (Φ(X ,Y ))◦ J(Φ),

and compute ∇g(X ,Y ) exactly since gradient instructions applied
to Φ(X ,Y ) (the interpolated texture coordinates) compute the Jaco-
bian J(Φ) exactly, since Φ is linear in projective coordinates. Fi-
nally, if gradient instructions are not available, we must encode the
matrix for Ψ in each vertex, so that Φ is available to compute ∇g.

5.1 Tessellation for Anti-Aliasing

Our signed distance function can be used to determine a filtered
color value when a pixel is close to a curve boundary. This works
well for pixels on the interior of a triangle containing a curve. How-
ever, pixels that need to be affected by anti-aliasing calculations of-
ten belong to interior triangles that do not contain curves, or may
be outside the boundary of the shape.

The only way to affect pixels whose centers lie outside the shape
boundary is to add geometry to cover these pixels. We have tried
various ways of doing this. One possibility, is to add a thin layer
of triangles around the perimeter of a shape. The exact thickness of
this layer will depend on the screen space projection of the shape.
This can be worked out in a vertex shader by encoding the boundary
as a 2D line, whose transformed image can be used to measure per-
pendicular distance from the boundary. This approach gets some-
what tricky as the bloated boundaries of adjacent shapes overlap,
requiring alpha blending that may not yield correct results.

A much simpler approach is to include some of the negative space
of a shape by enclosing it in a slightly enlarged bounding box and
triangulating. This will create triangles that will (in general) cover
pixel centers that are adjacent to line segments or points of tangency
on the curves. It is still possible that for highly oblique viewpoints
some pixel centers may be missed. Our experience with a bounding
box enlargement of 10% has not shown this to be a problem.

The other difficulty relating to preparing geometry for anti-aliasing
is handling triangles that do not contain curves. For triangles that
have one edge on a boundary, we can assign texture coordinates so
that the edge will be treated as an implicit line. For triangles with
two edges on a boundary, we can assign texture coordinates to treat
the shape as a pair of intersecting lines. If a triangle has all three
edges on the boundary, then we cannot find a quadratic that will
interpolate this data. In such cases we can subdivide the triangle to
isolate the boundaries.

Figure 8: Chordal axis of letter
‘e’ shown in yellow.

In practice, we take a somewhat
brute force approach by subdi-
viding all interior triangles to
compute a variant of the chordal
axis [Prasad 1997] of a shape.
The chordal axis is similar to the
medial axis, and easily computed
from our triangulation, as shown
in Figure 8. By subdividing trian-
gles along the chordal axis, each
new triangle will have at most
two vertices incident on a bound-
ary, greatly simplifying texture
coordinate assignment for pro-
ducing a signed distance func-
tion.



The results of our anti-aliasing scheme are shown in Figure 9. On
the left is the rendering of TrueType data using only the in/out test
for triangles containing a curve (the image has been enlarged some-
what to make pixels more visible). On the right is the same set
of triangles that has been split along the chordal axis and rendered
using our anti-aliased technique.

Figure 9: On the left is a vector image of text using just our in/out
pixel shader. On the right is the result of our anti-aliasing scheme.

If the image in Figure 9 were rotated a bit more, the image will
begin to collapse to a line. This degenerate situation will result in
image artifacts as our curves are poorly sampled at such extreme
viewpoints. While these artifacts are confined to a narrow band
only a few pixels in width, they create a highly pixelated look that
we strive to eliminate in the next section.

6 Degenerate Transforms

Careful treatment of extreme viewpoints, such as when a planar im-
age is viewed (nearly) edge-on, can greatly enhance overall image
quality. Recall that V is the 3× 3 matrix that represents the trans-
form from curve design space to screen space. We know that a
triangle will degenerate when det(V) = 0. Visually, this will mean
that a triangle is being viewed edge on. When this happens, or is
close to happening, entire triangles may fall between pixel centers
resulting in undersampling artifacts.

One way of avoiding this is to monitor det(V) and do something
as it nears zero. However, this metric is meaningless since the pro-
jective matrix V is scale invariant. What is needed is a metric in
meaningful units that will tell us when a triangle is approaching the
edge-on state.

Our solution to this problem is to map the line-at-infinity in the
curve design plane z = 0 to the screen space line h. When a triangle
is viewed edge-on, it will coincide with this line. We transform this

line to the screen by

h = V∗ · [ 0 0 1 ]T ,

= v0 ×v1,

where V∗ is the adjoint of V, and v0 × v1 is the cross product of
the first two rows of V. If (v0 ×v1) ∝ [ 0 0 1 ]T , then the line-at-
infinity maps onto itself, and is not visible on screen; otherwise, we
normalize h so that h2

x + h2
y = 1. When the resulting linear func-

tional is evaluated at a pixel, the value corresponds to the distance
(in pixels) from the given pixel to the projected image of the line-
at-infinity. We choose an arbitrary tolerance of 50 pixels to the line
h and smoothly reduce opacity in this region.

The result is that planar images can be freely transformed with no
pixelation artifacts. As the plane containing the image approaches
being viewed edge on, it will fade out and fade in as the plane is
rotated. The effect is subtle, but its absence is noticeable. The cost
of this effect is a dot product in the vertex shader, and an extra
field of vertex data that needs to be interpolated by the rasterizer,
and the computation or lookup of, and multiplication by, the fade
coefficient.

7 Discussion

Our scheme consists of two distinct phases. In the first phase, we
analyze the constituent curve segments, looking for overlap and
double points and subdividing as necessary. We assign texture coor-
dinates for subsequent shader evaluation and triangulate the plane
together with the Bézier control points of the curves. All of this
work is done as a preprocess on the CPU. In phase two, the trian-
gles are transferred to GPU memory and rendered using the pro-
grammable pipeline. Once resident in GPU memory, the CPU is
free to do other work and need only issue new transformation ma-
trices for each new frame.

The basic in/out test uses a very small number of instructions. The
following is a Microsoft DirectX high-level shader language (HLSL)
listing of our integral cubic shader:

float4x4 WVP : WORLDVIEWPROJECTION;

float4 VertexShader (

float3 pos : POSITION,

inout float3 klm : TEXCOORD0 ) : POSITION

{
return mul(float4(pos, 1), WVP);

}

float4 PixelShader(float3 klm : TEXCOORD0) : COLOR

{
clip(pow(klm.x,3) - klm.y*klm.z);

return (float4)0;

}

We omit the anti-aliasing instructions for simplicity. Our
VertexShader() transforms a vertex from world space to de-
vice coordinates using the matrix WVP. The texture coordinate slots,
stored in the xyz components of the vector klm, are passed to the
pixel shader untouched. Our PixelShader() evaluates the cubic
function of Equation (4). If the resulting argument to clip() is
negative, the pixel is killed and no further processing is done; oth-
erwise the pixel shader returns the color black.

Another application of our method is to rendering curves as paths
instead of filling closed regions. Since we have a signed distance



Figure 10: We use our curve rendering technique to embed vector based geometry on the surface of a 3 dimensional object. A triangular
mosaic vector image is (possibly subdivided and) deformed to become a part of the existing surface geometry.

function for determining a pixel’s distance to a curve boundary, we
alter our shader slightly to render just the boundary with varying
thickness. Our anti-aliasing scheme works in this context as well
resulting in a high quality, high performance curve rendering algo-
rithm.

Aside from rendering planar images of vector based geometry, we
can use our algorithm to texture objects in a resolution independent
way. The idea is to embed one of our planar images on a surface.
Once we have tessellated and assigned texture coordinates we can
deform the image plane by an arbitrary function, or project it onto a
mesh. This simple approach might reveal the faceted nature of the
vector image if the local curvature of the under lying surface is too
high. We can deal with this by subdividing our vector image. Each
triangle of the vector image can be split 1 to 4, recursively, to create
a flexible image. The position and texture coordinates of the subtri-
angles will yield the expected subimage. Similarly, we could dice
the vector image at intersections with a regular grid. If we main-
tain the original vertices within the grid, then the added geometric
complexity will not alter the rendered image. It will however, lead
to fewer faceting artifacts when deformed. These are sampling ar-
tifacts, but come from sampling the geometry, not the shading. The
vector image as it appears on a curved surface will be resolution
independent, see Figure 10.

8 Conclusions

We have presented a simple, high performance curve rendering al-
gorithm whose efficiency is predicated on the design of modern
programmable graphics hardware. We compute a set of texture co-
ordinates that are attached to the vertices of quadratic and cubic
Bézier curve control points. These texture coordinates encode a
corresponding implicit function for these parametric curves that is
evaluated by a pixel shader program to determine if the pixel is in-
side or outside of the curve, relative to the Bézier control hull. Our
pixel shader program is extremely simple resulting in very high per-
formance.

Our algorithm has the property that once the CPU has preprocessed
the curve data, the resulting geometry is sent to the GPU for ren-
dering. However, this model does not allow for dynamic geometry
without CPU involvement. While the analysis code for classifying
curves and assigning texture coordinates is well within the scope
of GPU execution, the global nature of triangulation and overlap-
ping triangle avoidance is not. We expect to render some dynamic
geometry, but at reduced performance.

Our examples have only shown filled areas with solid color. We
envision that shaders can be written to provide a wide range of fill
tools, such as gradients and textures.

References

ARNON, D. 1983. Topologically reliable display of algebraic
curves. Siggraph 1983 Conference Proceeding 17, 3 (July), 219–
227.

BLINN, J. 2003. Jim Blinn’s Corner Notation, notation, notation.
Morgan Kaufmann. Chap. 14,15,16, and 19.

GUMHOLD, S. 2003. Splatting illuminated ellipsoids with depth
correction. In Proceedings of 8th International Fall Workshop
on Vision, Modelling and Visualization 2003, 245–252.

GUPTA, S., AND SPROULL, R. 1981. Filtering edges for gray-scale
displays. Siggraph 1981 Conference Proceeding 15, 3, 1–5.

PRASAD, L. 1997. Morphological analysis of shapes. CNLS
Newsletter 139 (July), 1–18.

PRESS, W., TEUKOLSKY, S., VETTERLING, W., AND FLAN-
NERY, B. 1992. Numerical Recipes in C. Cambridge Press.

RAMANARAYANAN, G., BALA, K., AND WALTER, B. 2004.
Feature-based textures. In Eurographics Symposium on Render-
ing, Eurographics Association.

SALMON, G. 1852. A Treatise on the Higher Plane
Curves. Dublin, Hodges & Smith. available online at
http://name.umdl.umich.edu/ABQ9497.

SEDERBERG, T. 1983. Implicit and Parametric Curves and Sur-
faces for Computer Aided Geometric Design. PhD thesis, Purdue
University. Mechanical Engineering Department.

SEN, P. 2004. Silhouette maps for improved texture magnifica-
tion. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware, Eurographics Association.

STONE, M., AND DEROSE, T. 1989. A geometric characterization
of parametric cubic curves. ACM Transactions on Graphics 8, 4
(July), 147–163.

TAUBIN, G. 1994. Distance approximations for rasterizing implicit
curves. ACM Transactions on Graphics 13, 1 (January), 3–42.

TUMBLIN, J., AND CHOUDHURY, P. 2004. Bixels: Picture sam-
ples with sharp embedded boundaries. In Eurographics Sympo-
sium on Rendering, Eurographics Association.

TUPPER, J. 2001. Reliable two-dimensional graphing methods for
mathematical formulae with two free variables. Siggraph 2001
Conference Proceeding, 77–86.

TURKOWSKI, K. 1982. Anti-aliasing through the use of coordi-
nate transformations. ACM Transactions on Graphics 1, 3 (July),
215–234.


